

#### Welcome to the

## Community Heat Pump Systems Webinar

A Series of 17 Webinars on Community Heat Pump Systems

Sponsored by NYSERDA



If you miss one of the webinars, register and view the recording at <a href="https://www.ashrae.org/CHPSWebinars">https://www.ashrae.org/CHPSWebinars</a>.



## Design for the Consumer Interconnection for District/Community Energy Systems

Presented by:

Steve Tredinnick, P.E., FASHRAE, CEM

#### Copyright

Copyright ©2021 by ASHRAE. All rights reserved. No part of this presentation may be reproduced without written permission from ASHRAE, nor may any part of this presentation be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, photocopying, recording or other) without written permission from ASHRAE.

ASHRAE has compiled this presentation with care, but ASHRAE has not investigated and ASHRAE expressly disclaims any duty to investigate any product, service, process, procedure, design or the like, that may be described herein. The appearance of any technical data or editorial material in this presentation does not constitute endorsement, warranty or guaranty by ASHRAE of any product, service, process, procedure, design or the like. ASHRAE does not warrant that the information in this publication is free of errors. The user assumes the entire risk of the use of any information in this presentation.

### AIA/CES Registered Provider

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Attendance for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

### **Learning Objectives**

- 1. Learn common district energy components and terms.
- 2. Distinguish the difference between Direct and Indirect Connections.
- 3. Understand impact to new and existing building HVAC design in connecting to district energy system.
- 4. Understand effect on heating unit capacity reducing entering water temperature.
- 5. Learn about available technology to assist with interconnections.
- 6. Design for more efficient building interconnection.

#### Instructors



Steve Tredinnick, P.E. FASHRAE, CEM Burns & McDonnell Chicago, IL



Gary Phetteplace, Ph.D, P.E. FASHRAE GWA LLC Lyme, NH

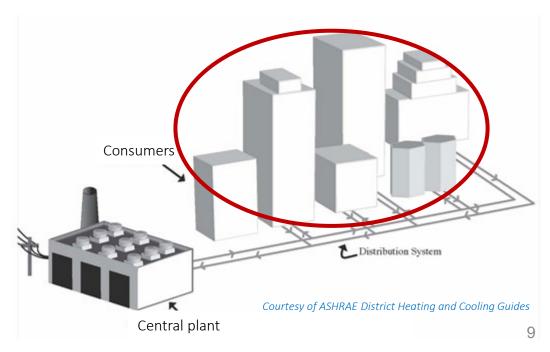
### **Outline/Agenda**

- 1. Briefly cover some standard definitions and concepts.
- 2. Discuss supply temperatures available from different technologies.
- 3. Discussion on service connection types:
  - a. Direct connections
  - Indirect connections
- 4. Need for metering and technologies or solutions available.
- Delivering Space Heat Temperature Limitations of Available Methods (especially retrofit systems) regarding generation and terminal units.
- Thoughts and difficulties on retrofitting existing HVAC systems (gas forced air furnaces, hydronic systems, and steam systems).

### Community Heat Pump Systems

New York State Energy Research Development Authority's (NYSERDA) vision is a strategic network of distribution pipes serving multiple buildings:

- Meet the thermal needs within a building (HVAC and DHW) using renewable electricity
- Expand clean energy options for customers who have insufficient footprint space to serve their own needs
- Leverage economy of scale
- Use this approach to address New York State's nationleading climate goals


# Standard Definitions and Concepts District Heating and Cooling Systems

#### **District Energy System Main Components:**

- Central Plant or Generation Source
- Distribution Piping Network
- Consumer Interconnection (Energy Transfer Stations)



Courtesy of International District Energy Association



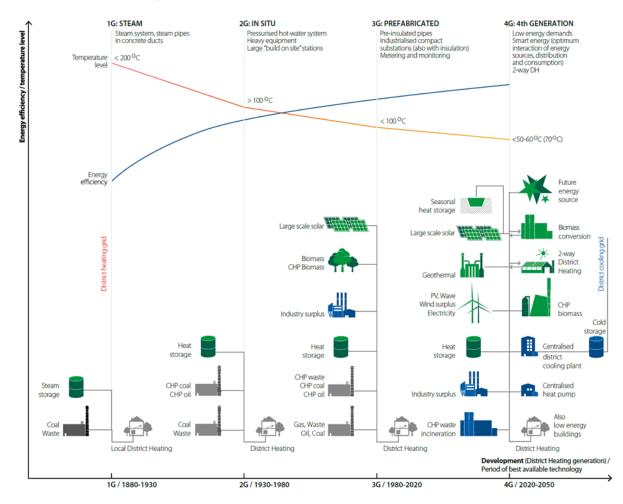
## Standard Definitions & Concepts DH Building Interconnection Terms

#### Commonly used Acronyms:

- BPHE or BHE: Brazed Plate Heat Exchanger
- DEP: District Energy Provider
- DES: District Energy System
- DHS&R: District Heating Supply & Return
- ETS: Energy Transfer Stations
- EWT: Entering Water Temperature
- GPHE: Gasketed Plate Heat Exchanger (PHE)
- ULTDH: Ultra Low Temperature District Heating (5G)

# Standard Definitions & Concepts DH Building Interconnection Terms

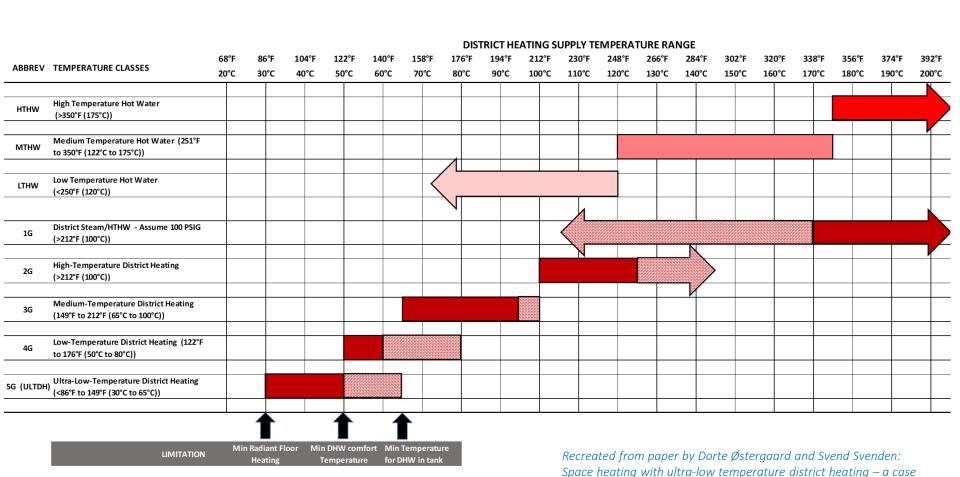
#### Known by many names or aliases:


- Building Interconnection Facilities (BIF)
- District Heating Substations (Swedes)
- District Heating Centrals (Swedes)
- Customer Centrals (Swedes)
- Connection Plants (Danes)
- Heat Interface Unit (Brits)
- Energy Transfer Stations or ETS (US & Canada)



Courtesy of International District Energy Association

### The Generations of District Heating


#### District heating from 1G to 4G

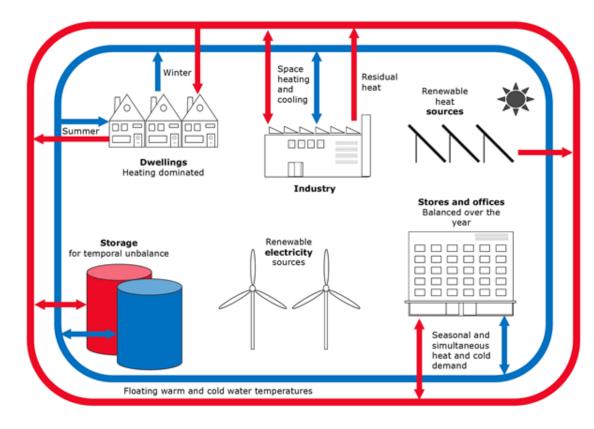


- 1st Generation (1G)
- 2nd Generation (2G)
- 3rd Generation (3G)
- 4th Generation (4G)
- 5th Generation (5G) (not shown on this graph but on next page)

Courtesy of Danfoss 'District heating application handbook'

### Generations of District Heating (cont.)




study of four single-family houses from the 1980s

**Electric Boosting of** 

**HX for DHW** 

ADDITIONAL REQUIREMENTS

### 5<sup>th</sup> Generation District Energy Systems



Boesten, S., Ivens, W., Dekker, S. C., and Eijdems, H.: 5th generation district heating and cooling systems as a solution for renewable urban thermal energy supply, Adv. Geosci., 49, 129–136, https://doi.org/10.5194/adgeo-49-129-2019, 2019.

- District heating and cooling approach using renewable resources
- District heating and cooling components may be decentralized.
- Systems may be bidirectional, close to ground temperature
- Seasonal storage
- All electric. Ideally, no CO<sub>2</sub> produced at sites
- Includes Community Heat Pump Systems

## ETS Standard Design Concepts Understanding Your Load

- Know and understand the building load
  - Assists in Quantity and size of PHE and other equipment
  - ANSI/ASHRAE/ACCA Standard 183 Peak Cooling and Heating Load Calculations in Buildings Except Low-rise Residential Buildings and ASHRAE Load Calculation Manual
- How much of load is critical and needs to be on emergency power?
  - Hospitals, Data centers, Vivarium
  - Emergency CHW connections
  - Separate set of PHEs or even separate ETS Service Rooms
- The better you know the load the more confident you are in spending the Owner's money wisely



## ETS Standard Design Concepts Load Estimation – Old School Rule of Thumb

Typically, the District Heating Provider has their own metrics for the overall development or plant capacity, but there is some published rules of thumb data out there.

Heating Energy Load Factor (HELF) [Btu/ft<sup>2</sup>-hr] calculation per IDHA District Heating Handbook 4<sup>th</sup> Edition (1983)

| Building Type              | Boston, MA | Chicago, IL | Denver, CO | Detroit, MI | Duluth, MN | Kansas City,<br>MO | New York,<br>NY | Portland,<br>OR | Seattle, WA |
|----------------------------|------------|-------------|------------|-------------|------------|--------------------|-----------------|-----------------|-------------|
| Medium-Density Residential | 33         | 37          | 37         | 34          | 45         | 34                 | 30              | 25              | 24          |
| High-Density Residential   | 30         | 33          | 33         | 31          | 40         | 31                 | 27              | 23              | 22          |
| Commercial/Institutional   | 18         | 21          | 21         | 19          | 26         | 19                 | 16              | 13              | 13          |
| Industrial                 | 21         | 24          | 24         | 22          | 30         | 22                 | 19              | 16              | 15          |

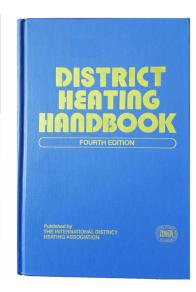


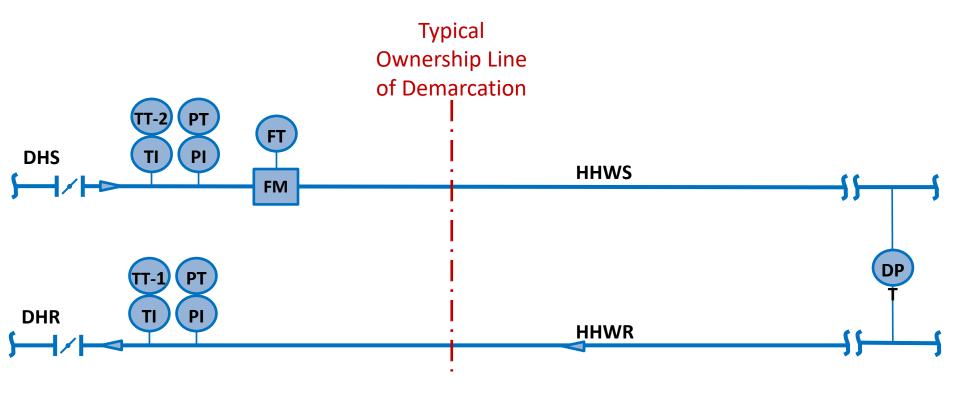

TABLE 2.2 SPACE AND WATER HEATING FACTORS

| SPACE AND WATER HEATING PACTORS |                                                             |                                                         |                                                        |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Building Type                   | Annual Space<br>Heating Factor:<br>ASHF<br>(Btu/ft²·HDD·yr) | Annual Water<br>Heating Factor:<br>AWHF<br>(Btu/ft²-yr) | Hourly Water<br>Heating Factor<br>HWHF<br>(Btu/ft²-hr) |  |  |  |  |  |
| Medium-density residential      | 11.9                                                        | 15,000                                                  | 5.0                                                    |  |  |  |  |  |
| High-density residential        | 10.5                                                        | 15,000                                                  | 5.0                                                    |  |  |  |  |  |
| Commercial/institutional        | 7.37                                                        | 3,300                                                   | 0.9                                                    |  |  |  |  |  |
| Industrial                      | 8.70                                                        | 4,000                                                   | 0.9                                                    |  |  |  |  |  |

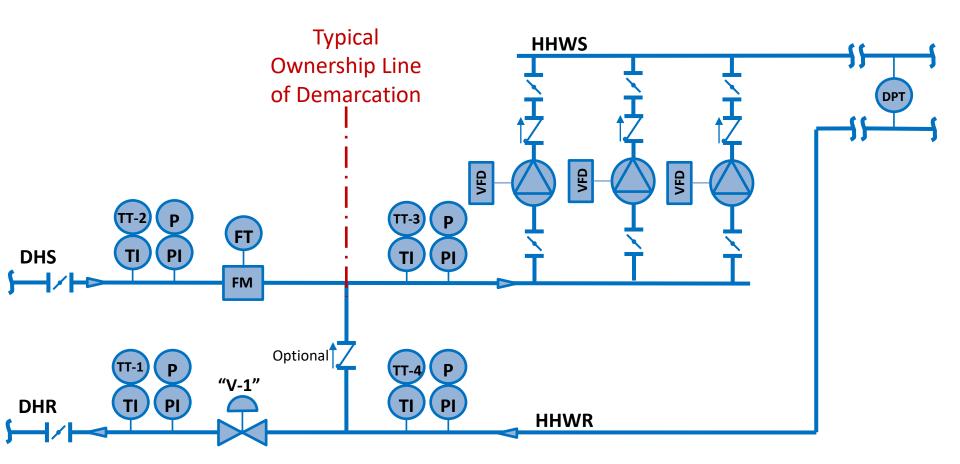
$$HELF = \frac{(65^{\circ} - WDT)}{24}(ASHF) + HWHF$$

## ETS Standard Design Concepts Load Estimation – Newer School Rule of Thumb

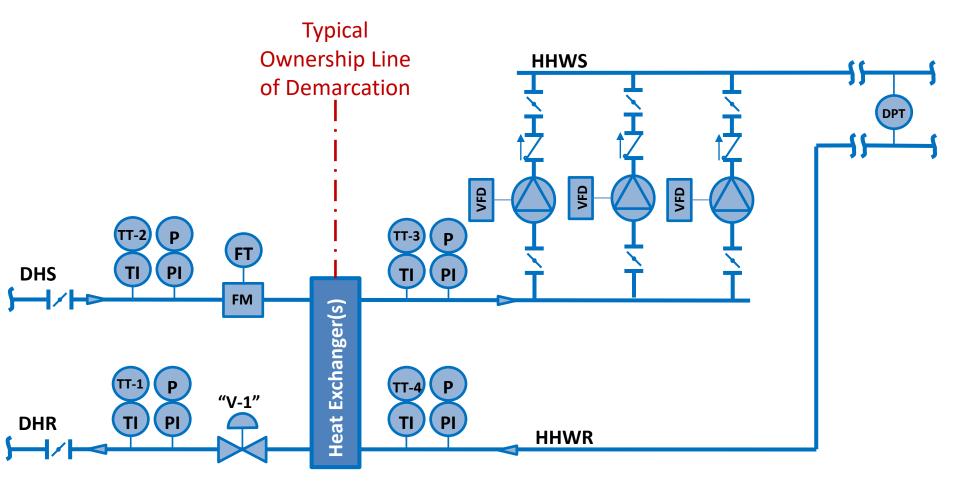
|                       | St. Lo | uis, MO | (CZ4)   | Portla | and, OR | R (CZ4) Boston, MA (CZ5) |      |      | Duluth, MN (CZ7) |      |      |         |
|-----------------------|--------|---------|---------|--------|---------|--------------------------|------|------|------------------|------|------|---------|
| <b>Building Type</b>  | Base   | High    | Premier | Base   | High    | Premier                  | Base | High | Premier          | Base | High | Premier |
| City Hall             | 24.7   | 10.9    | 9.0     | 17.4   | 7.7     | 6.3                      | 22.0 | 9.5  | 7.8              | 30.3 | 12.6 | 10.4    |
| Convention Center     | 44.3   | 16.0    | 13.5    | 31.3   | 11.3    | 9.5                      | 40.4 | 14.4 | 12.1             | 57.3 | 20.0 | 16.9    |
| Hotel                 | 16.6   | 8.4     | 6.9     | 11.7   | 5.9     | 4.9                      | 14.5 | 7.2  | 5.9              | 19.2 | 9.1  | 7.5     |
| Multi-Family          | 31.5   | 24.6    | 16.1    | 21.9   | 17.0    | 11.0                     | 29.6 | 22.7 | 14.8             | 44.1 | 34.1 | 22.2    |
| Medium Density Office | 22.0   | 12.0    | 11.0    | 22.0   | 10.0    | 8.0                      | 22.0 | 11.0 | 10.0             | 26.0 | 14.0 | 12.0    |
| High Density Office   | 24.0   | 16.0    | 13.0    | 24.0   | 11.0    | 9.0                      | 24.0 | 14.0 | 11.0             | 32.0 | 18.5 | 15.4    |
| High Density Retail   | 34.7   | 12.8    | 10.8    | 24.5   | 9.1     | 7.7                      | 31.9 | 11.8 | 9.9              | 45.8 | 16.8 | 14.2    |
| School                | 35.7   | 15.3    | 12.8    | 25.9   | 10.9    | 9.1                      | 32.7 | 13.7 | 11.5             | 43.7 | 18.5 | 15.4    |


Information per 2008 EPA Research Project by Stephen P. Kavanaugh PhD from University of Alabama – all units in BTU/FT²-Hr

## Standard Definitions & Concepts Configuration & Main ETS Components


- Connection Types:
  - Direct and Indirect
- Equipment/Components:
  - Heat Exchangers
    - Gasketed Plate or Brazed Plate Heat Exchanger
  - Piping
  - Controls
    - Metering and Sub-metering
    - Sensors
    - Control Valves




## Standard Definitions & Concepts Direct Connection – District Pumped



# Standard Definitions & Concepts Direct Connection – Building Pumped



## Standard Definitions & Concepts Indirect Connection



# Standard Definitions & Concepts Direct vs. Indirect Connection Comparison

| Issue                 | Direct Connection                                                                                                                                                      | Indirect Connection                                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Quality         | DH water is exposed to a building system which may have lower levels of treatment and filtering                                                                        | Water quality of the DH water is isolated from building system and can be controlled                                                                                                       |
| Water<br>Consumption  | Leakage and consumption of DH water within the building may be difficult to control and correct                                                                        | Water leakage is within the control of the district heating utility                                                                                                                        |
| Contractual           | Demarcation of consumer's building system may not be clear                                                                                                             | Clear delineation between the consumer and district cooling utility equipment                                                                                                              |
| Cost                  | Generally lower in overall cost due to the absence of a heat exchanger and possible deletion of building pumps and controls                                            | Higher cost due to a heat exchanger and additional controls                                                                                                                                |
| Reliability           | Failures within the building may cause problems or potentially even outages for the district system                                                                    | The DCS is largely isolated of any problems in the building beyond the interconnection                                                                                                     |
| Pressure<br>Isolation | Building systems may need to be protected from higher pressure in a DH system or for tall buildings, a DCS may be subjected to higher pressures by the building system | The heat exchanger provides isolation from building system pressure and the DH System pressure so that each loop may operate at their preferred pressures without influence from the other |
| ΔΤ                    | Potential for greater $\Delta T$ due to absence of heat exchanger                                                                                                      | Approach temperature in heat exchanger is a detriment to supply temperature and differential temperature ( $\Delta T$ )                                                                    |
| Space<br>Requirements | Low space requirements                                                                                                                                                 | Additional space required for heat exchanger and controls                                                                                                                                  |

©2021 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

## ETS Standard Design Concepts Layout & Enhancements

#### Design Concepts:

- Be Cognizant of Maintenance Clearances
- Number of PHEs based on capacity and redundancy requirements
  - 2@75%?
  - 2@100%?
  - 3@50%?

#### **Enhancement:**

Add emergency connections





## Standard Definitions & Concepts ETS Components – Flow Meters

- Main Building meter is the "Cash Register" of ETS Components, therefore, desire highly accurate and maintenance free technology
  - Typically, meters are flow tube magnetic "mag" or ultrasonic (strap-on or flow tube)
  - Follow MFR's straight diameter recommendations



| Meter Type      | Accuracy            | Range of Control | Pressure Loss       | Straight Piping Requirements (Length in Pipe Diameters) |
|-----------------|---------------------|------------------|---------------------|---------------------------------------------------------|
| Electromagnetic | ±0.15% to 1% rate   | 30:1 to 100:1    | Low (<3 psi)        | 5 D to 10 D upstream;<br>3 D downstream                 |
| Vortex          | ±0.5% to 1.25% rate | 10:1 to 25:1     | Medium (3 to 5 psi) | 10 D to 40 D upstream;<br>2 D to 6 D downstream         |
| Turbine         | ±0.15% to 0.5% rate | 10:1 to 50:1     | Medium (3 to 5 psi) | 10 D to 40 D upstream;<br>2 D to 20 D downstream        |
| Ultrasonic      | ±1% to 5% rate      | >10:1 to 100:1   | Low (<3 psi)        | 10 D to 40 D upstream;<br>2 D to 6 D downstream         |

### Standard Definitions & Concepts ETS Components – Flow Meters - Submetering

Need cost allocation method for multi-tenant buildings, either us a flow meter or another "equitable" method of cost allocation (SF)



District Energy / Second Quarter 2013

How Much Is That Meter in the Window?

Table 1. Summary of Water Energy Meter Material Costs Based on Technology.

|            | ,                   | 5,                  |                     |                     |                                 | -                   |                        |                    |                     |                    | III CI                  |                                                |  |
|------------|---------------------|---------------------|---------------------|---------------------|---------------------------------|---------------------|------------------------|--------------------|---------------------|--------------------|-------------------------|------------------------------------------------|--|
| Туре       | Ultrasonic          | (In-Line)           | Ultra               | asonic (Clamp       | -On)                            | Insertion Turbine   |                        | Insertion Magnetic |                     | Insertion Magnetic |                         | In-Line Magnetic<br>(Chilled Water) (Hot Water |  |
| Accuracy   | ±2.0% of<br>reading | ±1.0% of<br>reading | ±1.0% of<br>reading | ±1.0% of<br>reading | ±0.5% to<br>±1.6% of<br>reading | ±1.0% of<br>reading | ±1.0% of<br>full scale | ±1.0% of<br>rate   | ±2.0% of<br>reading | ±0.40%             | of reading <sup>1</sup> |                                                |  |
| Size Range | MFR A               | MFR B               | MFR C               | MFR D               | MFR E                           | MFR F               | MFR G                  | MFR H              | MFR I               | MFR J              | MFR J                   |                                                |  |
| 1/2"       | _                   | \$1,260             | \$500               | \$4,200             | \$6,600                         | \$745               | _                      | _                  | _                   | \$2,865            | \$3,265                 |                                                |  |
| 34"        | \$1,970             | \$1,350             | \$500               | \$4,200             | \$6,600                         | \$745               | _                      | _                  | _                   | \$2,865            | \$3,265                 |                                                |  |
| 1"         | \$2,010             | \$1,350             | \$500               | \$4,200             | \$6,600                         | \$745               | _                      | _                  | _                   | \$2,640            | \$2,815                 |                                                |  |
| 1-1/2"     | \$2,010             | \$1,825             | \$665               | \$4,200             | \$6,600                         | \$1,565             | \$3,250                | _                  | _                   | \$3,055            | \$3,400                 |                                                |  |
| 2"         | \$2,600             | \$2,325             | \$775               | \$4,200             | \$6,600                         | \$1,565             | \$3,250                | _                  | \$4,200             | \$3,100            | \$3,420                 |                                                |  |
| 2-1/2"     | \$3,700             | \$2,750             | \$1,025             | \$4,365             | \$6,600                         | \$1,565             | \$3,360                | _                  | \$4,200             | \$3,245            | \$3,645                 |                                                |  |
| 3″         | \$4,150             | \$3,150             | \$1,110             | \$4,365             | \$6,600                         | \$1,565             | \$3,420                | \$3,050            | \$4,200             | \$3,400            | \$3,875                 |                                                |  |
| 4"         | \$5,100             | \$3,730             | \$1,270             | \$4,365             | \$6,600                         | \$1,865             | \$3,480                | \$3,050            | \$4,200             | \$3,510            | \$3,995                 |                                                |  |
| 5″         |                     |                     | \$1,430             | \$4,365             | \$6,600                         | \$1,865             | \$3,480                | \$3,050            |                     | \$4,110            | \$4,705                 |                                                |  |
| 6"         | _                   | _                   | \$1,555             | \$4,400             | \$6,600                         | \$1,900             | \$3,480                | \$3,050            | \$4,200             | \$4,400            | \$5,045                 |                                                |  |



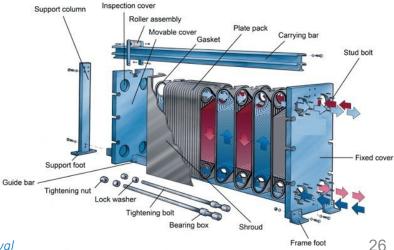


Source: Compiled by Steve Tredinnick.

**Note:** The author has made best efforts to get real-world, apples-to-apples comparisons for all costs including flow meter, Btu calculator, temperature sensors and communications module but cannot guarantee pricing for all vendors. Some temperature sensors were more accurate than others. Costs do not include installation, power and communications connections or programming. A rough value of \$1,200 to \$1,500 per meter can be assumed for budgetary purposes. Most vendors will offer discounted prices (more than 20 percent reductions) for volume purchases of meters. It is suggested that readers contact their local vendor for more project-specific pricing.

<sup>1 ±0.4%</sup> of actual reading from 3.3 to 33 fps, ±0.75% of reading from 1.0 to 3.3 fps and ±0.0075 fps below 1.0 fps.

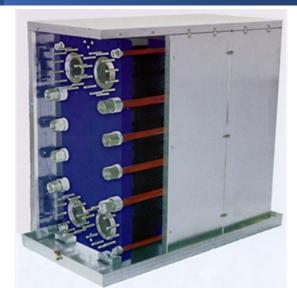
# Standard Definitions & Concepts Heat Exchangers


### Brazed Plate Heat Exchangers (BPHE) Single & Double Wall

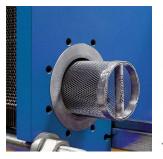


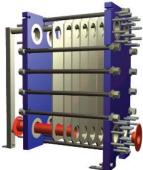
- Counterflow Design
- PHEs up to 5X more efficient than Shell & Tube Heat Exchangers (HX)
- As close as a 1°F approach temperature
- ~1/5<sup>th</sup> floor space requirements

## Gasketed Plate Heat Exchangers (GPHE) Single & Double Wall







Images courtesy of Alfa Laval


## Standard Definitions & Concepts Heat Exchanger Best Practices — What to Specify

- Understand the load minimums and maximums
- Minimum Plate Thickness = 0.4mm
- Gasket material one piece snap-in
- AHRI certified
- Fouling factors based on water quality
- Pressure drop
- ASME Section VIII Division 1 (U-Stamp)
- Frame is typically oversized for 20% additional plates
- Accessories:
  - Insulated cabinets/shroud
  - Provide Wye or Port strainers (1/16" openings)



Images courtesy of Alfa Laval





## Standard Definitions & Concepts Controller & Instrumentation

#### Controller

- The "brains" of the ETS components
- Control of all devices
- Communications back to DCP
- UPS Power to panel

#### Instrumentation

- Industrial grade preferred due to accuracy and robustness
  - Commercial grade acceptable if is accurate
- Resistance Temperature Detectors (RTD)
  - 4-wire, 100-ohm, platinum, matched and calibrated pair of sensors and transmitters
  - Digital/Analog Accuracy: +/- 0.02% of span
  - Stability: +/- 0.1% of reading or 0.1°C, whichever is greater
- Differential Pressure Transmitters (DPT)
  - Accuracy: +/-0.2% of span
  - Repeatability: +/- .01% of span



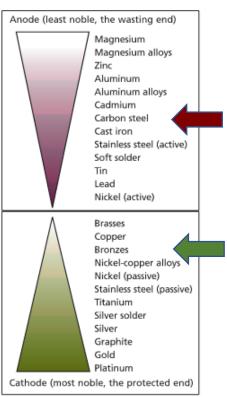
## Standard Definitions & Concepts Control Valves

- Avoid butterfly throttling valves
- High Turndown
- Depending on configuration and location in system, may need to "eat" a great deal of pressure
  - Characterized rotary ball valves
  - Eccentric disc valves
- Tight and close off pressure (bubble tight) Class VI per ANSI/FCI 70-2-199
- Fail closed, slow acting
- Two-way configuration
- Electric actuation with manual overrides
- Valve positioners
- Could have multiple valves based on load turndown or phased in growth





# Standard Definitions & Concepts Pipe Sizing and Design


TABLE 6.5.4.6 Piping System Design Maximum Flow Rate in GPM

| Operating Hours/Year                               | ≤2000    | Hours/Year                       | >2000 and ≤ | 4400 Hours/Year                  | >4400 Hours/Year |                                  |  |
|----------------------------------------------------|----------|----------------------------------|-------------|----------------------------------|------------------|----------------------------------|--|
| Nominal Pipe Size, in.                             | Other    | Variable Flow/<br>Variable Speed | Other       | Variable Flow/<br>Variable Speed | Other            | Variable Flow/<br>Variable Speed |  |
| 2 1/2                                              | 120      | 180                              | 85          | 130                              | 68               | 110                              |  |
| 3                                                  | 180      | 270                              | 140         | 210                              | 110              | 170                              |  |
| 4                                                  | 350      | 530                              | 260         | 400                              | 210              | 320                              |  |
| 5                                                  | 410      | 620                              | 310         | 470                              | 250              | 370                              |  |
| 6                                                  | 740      | 1100                             | 570         | 860                              | 440              | 680                              |  |
| 8                                                  | 1200     | 1800                             | 900         | 1400                             | 700              | 1100                             |  |
| 10                                                 | 1800     | 2700                             | 1300        | 2000                             | 1000             | 1600                             |  |
| 12                                                 | 2500     | 3800                             | 1900        | 2900                             | 1500             | 2300                             |  |
| ximum velocity for pipes over<br>14-24 in. in size | 8.5 ft/s | 13.0 ft/s                        | 6.5 ft/s    | 9.5 ft/s                         | 5.0 ft/s         | 7.5 ft/s                         |  |

Size piping per ASHRAE Standard 90.1 Table 6.5.4.6

# Standard Definitions & Concepts Galvanic Corrosion – Need for Dielectric Fittings

Dielectric Fittings – Use between dissimilar metals and similar metals that have age disparity





Corrosion that developed between carbon steel and bronze fitting in less than 2-years

## ETS Components: Who Typically Provides What?

- Typically, the DEP will have their own design manual with interconnection standards
- The process is a constant communication between the DEP and their consultants, building owner (customer) and their consultants
  - Location of ETS room
  - Routing of District Piping
  - Controls
- ETS room needs to house all equipment, have adequate access for maintenance, have lighting and convenience power, ventilated and have restricted access

## ETS Components: Who Typically Provides What?

#### District Energy Provider Responsibilities:

- Design, Installs, Operates & Maintains the Primary Side of ETS:
  - Piping from distribution to ETS (dielectric)
  - Plate Heat Exchangers
  - Strainers (both sides)
  - Instrumentation
    - Energy Meters
    - Temperature transmitters & thermowells (both sides)
    - Pressure gauges & thermowell
    - Temperature gauge & thermowell
    - Manual Isolation & Control Valves
  - Control Panel
    - Secondary side monitoring and control of pumps and DHW
- Power to all devices
- Chemical Treatment and Makeup Water
- Commissioning of all DES equipment

#### Customer/Consumer Responsibilities:

- Design, Install, Operates and Maintains the Secondary Side of ETS:
  - Piping to building system
  - Circulation Pumps
  - Suitable Space for ETS Room
    - Ventilated, drains, water, receptacles
  - Penetration in building foundation wall for DH piping and communications conduit
  - Chemical Treatment and Makeup Water
    - DEP may require certified water treatment analysis prior to energizing
  - 2-way control valves at terminal units
- Building Side Controls
- Commissioning of Bldg HVAC Systems

For more info, refer to ASHRAE District Heating and Cooling Guides

#### System Supply Temperature Requirements

Traditional commercial HW heating temperatures – 180°F to 160°F

Typical chiller leaving condenser water temperatures – 85°F to 100°F

Heat Pump HW outlet temperatures –
 95°F to ~170°F

Scroll or Screw compressor chiller – up to 140°F

Typical heat recovery chiller – 100°F to 110°F

Drying process for food industry – >266°F

Spa and wellness resort – >158°F

Greenhouse air heating –
 140°F

Greenhouse with floor heating - >104°F

Most reheat and building heat applications do not need 130 to 140°F to perform satisfactorily – lower temperatures change from 1 row to 2 row reheat coil, lower than that, required larger duct mounted coil

#### Typical HW System Supply Temperatures

Radiant Floor Heating: 85°F to 125°F

Baseboard Radiators: 100°F to +180°F

Domestic Water Heater: 120°F to 140°F\*

Condensing boilers: <80°F to +160°F\*\*</li>

Radiator wall panels: 120°F to +190°F

Air Handler Preheat coils: +140°F

Ducted Reheat coils: 100°F to 120°F

• Snow Melt: 95°F to 120°F

<sup>\*</sup> Typical temperature to mitigate bacteria (legionella) growth

<sup>\*\*</sup> Needs maximum 130°F return water temperature to be in condensing mode

### Ease of Retrofits – Conversion Suitability

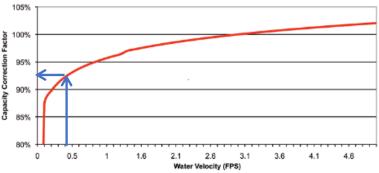
| System Type                       | Low | Medium | High |
|-----------------------------------|-----|--------|------|
| Steam Equipment                   |     |        |      |
| One Pipe Cast Iron Radiator       | X   |        |      |
| Two Pipe Cast Iron Radiator & FTR |     | X      |      |
| AHU Coils                         |     | X      |      |
| Hot Water Equipment               |     |        |      |
| Radiators & Convectors            |     |        | Χ    |
| Radiant Panels and Floors         |     |        | Χ    |
| AHU Coils (Reheat & Preheat)      |     |        | Χ    |
| Solar Hot Water                   |     |        | Χ    |
| Gas/Oil Fired Equipment           | X   |        |      |
| Electric Equipment                | X   |        |      |

### Delivering space Heat **Baseboard Limitations**



District Energy / First Quarter 2009

#### When Is Too Much **Delta T Too Much?**


Avoiding the low-flowhydronic-heating blues

- Impact of Lower Temperatures
- Temperature Limitations of Available Methods
- Retrofit issues

Table 1. Load Summary Space (Btuh).

| Wall<br>Load | Window<br>Load | Roof<br>Load | Ventilation<br>Load | Infiltration<br>Load | Total<br>Heat<br>Loss |
|--------------|----------------|--------------|---------------------|----------------------|-----------------------|
| 550          | 3,325          | 480          | 2,770               | 3,000                | 10,125                |

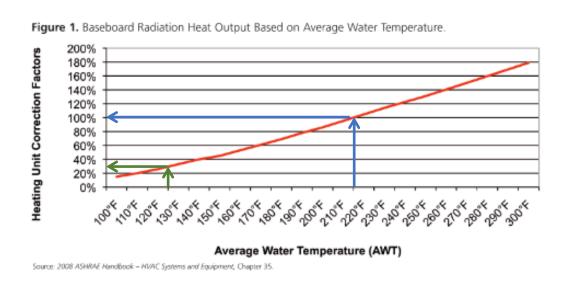
Figure 2. Baseboard Radiation Heat Output Based on Water Velocity.



Source: 2008 ASHRAF Handbook - HUSC Systems and Equipment, Chapter 35

Table 1. Sample Finned Tube Selection Data for .75" Copper Tubing.

|      |        | atet          | xet.                        | ,et     |        | alph                                      | ter<br>(tos) rected<br>(tos) rected | A Velocity<br>nitra Length | Lemen   |
|------|--------|---------------|-----------------------------|---------|--------|-------------------------------------------|-------------------------------------|----------------------------|---------|
|      | in     | ing ing       | K) 306                      | 45.     | 80     | spacific Actual Mar<br>Stuffer Actual Mar | the meter                           | alter the                  | of the  |
| Cage | Entemp | Water Leaving | Water<br>Fi Ryerage<br>Remp | of Mich | 13,105 | Aradin Actual Me<br>Artifer Actual Me     | Albert Steel                        | ni. Lengui                 | st elen |
| A1   | 200    | 180           | 190                         | 20      | 848    | 0.45                                      | 786                                 | 8.8                        |         |
| A2   | 200    | 170           | 185                         | 30      | 797    | 0.30                                      | 726                                 | 9.5                        |         |
| А3   | 200    | 160           | 180                         | 40      | 745    | 0.22                                      | 671                                 | 10.2                       |         |
| A4   | 180    | 160           | 170                         | 20      | 658    | 0.45                                      | 610                                 | 11.3                       |         |
| A5   | 180    | 150           | 165                         | 30      | 615    | 0.30                                      | 561                                 | 12.3                       |         |
| A6   | 180    | 140           | 160                         | 40      | 572    | 0.22                                      | 515                                 | 13.3                       |         |
| Α7   | 160    | 140           | 150                         | 20      | 486    | 0.45                                      | 450                                 | 15.3                       |         |
| Α8   | 160    | 130           | 145                         | 30      | 459    | 0.30                                      | 418                                 | 16.4                       |         |
| A9   | 160    | 120           | 140                         | 40      | 432    | 0.22                                      | 389                                 | 17.7                       |         |
| A10  | 140    | 120           | 130                         | 20      | 356    | 0.45                                      | 330                                 | 20.9                       |         |
| A11  | 140    | 110           | 125                         | 30      | 319    | 0.30                                      | 290                                 | 23.7                       |         |
| A12  | 140    | 100           | 120                         | 40      | 281    | 0.22                                      | 253                                 | 27.2                       |         |
| A13  | 120    | 100           | 110                         | 20      | 216    | 0.45                                      | 200                                 | 34.3                       |         |


Table 2. Sample Finned Tube Selection Data for 1.25" Copper Tubing.

| В1  | 200 | 180 | 190 | 20 | 803 | 0.18 | 717.5 | 9.58  |   |
|-----|-----|-----|-----|----|-----|------|-------|-------|---|
| B2  | 200 | 170 | 185 | 30 | 757 | 0.12 | 665.5 | 10.33 |   |
| ВЗ  | 200 | 160 | 180 | 40 | 711 | 0.09 | 618.0 | 11.13 |   |
| В4  | 180 | 160 | 170 | 20 | 628 | 0.18 | 561.2 | 12.25 |   |
| B5  | 180 | 150 | 165 | 30 | 587 | 0.12 | 516.1 | 13.32 |   |
| В6  | 180 | 140 | 160 | 40 | 546 | 0.09 | 474.5 | 14.49 |   |
| В7  | 160 | 140 | 150 | 20 | 464 | 0.18 | 414.6 | 16.58 |   |
| В8  | 160 | 130 | 145 | 30 | 438 | 0.12 | 385.1 | 17.85 |   |
| В9  | 160 | 120 | 140 | 40 | 412 | 0.09 | 358.1 | 19.20 |   |
| B10 | 140 | 120 | 130 | 20 | 340 | 0.18 | 303.8 | 22.63 |   |
| B11 | 140 | 110 | 125 | 30 | 304 | 0.12 | 267.3 | 25.72 |   |
| B12 | 140 | 100 | 120 | 40 | 268 | 0.09 | 232.9 | 29.52 | 3 |
| B13 | 120 | 100 | 110 | 20 | 206 | 0.18 | 184.1 | 37.35 |   |
|     |     |     |     |    |     |      |       |       |   |

©2021 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in 6

## Delivering space Heat Baseboard Radiation Impact of Lower EWT

| Table 2             |                                         |  |  |  |  |
|---------------------|-----------------------------------------|--|--|--|--|
|                     | UH Output for<br>r Temperatures         |  |  |  |  |
| in this catalog are | g chart may be used<br>BTUH outputs for |  |  |  |  |
| Water               | Multiply listed                         |  |  |  |  |
| Temperature:        | BTÜH by:                                |  |  |  |  |
| 120°                | .38                                     |  |  |  |  |
| 130°                | .48                                     |  |  |  |  |
| 140°                | .57                                     |  |  |  |  |
| 150°                | .67                                     |  |  |  |  |
| 160°                | .78                                     |  |  |  |  |
| 170°                | .89                                     |  |  |  |  |
| 180°                | 1                                       |  |  |  |  |
| 190°                | 1.13                                    |  |  |  |  |



- Lower temperatures require more heat transfer area
- Temperature Limitations of Available Methods
- Retrofit issues
- Terminal Units
- Laminar flow

### Reheat Coil Capacity Impact from Reduced EWT

Table 2. Reheat Coil Selection Samples

| Table 2. Reneat Coil Selection Samples. |                  |                  |            |          |            |          |          |             |      |     |
|-----------------------------------------|------------------|------------------|------------|----------|------------|----------|----------|-------------|------|-----|
| Item                                    | Height<br>(inch) | Length<br>(inch) | Oversizing | LAT (°F) | Load (MBH) | EWT (°F) | LFT (°F) | Flow (GPM ) | Rows | FPI |
| 1                                       | 9                | 8                | 0%         | 90.9     | 11.8       | 180      | 156.6    | 1.0         | 2    | 8   |
| 2                                       | 9                | 8                | 0%         | 90.5     | 11.6       | 180      | 145.5    | 0.7         | 2    | 8   |
| 3                                       | 9                | 8                | 0%         | 87.5     | 10.7       | 180      | 137.7    | 0.5         | 2    | 8   |
| 4                                       | 9                | 8                | 0%         | 90.7     | 11.7       | 170      | 146.9    | 1.0         | 2    | 8   |
| 5                                       | 9                | 8                | 0%         | 87.4     | 10.6       | 170      | 138.5    | 0.7         | 2    | 8   |
| 6                                       | 9                | 8                | 0%         | 88.0     | 10.8       | 170      | 127.1    | 0.5         | 2    | 10  |
| 7                                       | 9                | 8                | 0%         | 86.6     | 10.4       | 160      | 139.7    | 1.0         | 2    | 8   |
| 8                                       | 9                | 8                | 0%         | 88.0     | 10.8       | 160      | 128.0    | 0.7         | 2    | 10  |
| 9                                       | 9                | 8                | 0%         | 87.3     | 10.6       | 160      | 118.0    | 0.5         | 2    | 12  |
| 10                                      | 9                | 8                | 0%         | 87.2     | 10.6       | 150      | 129.4    | 1.0         | 2    | 10  |
| 11                                      | 9                | 12               | 50%        | 86.4     | 10.3       | 150      | 119.4    | 0.7         | 2    | 8   |
| 12                                      | 9                | 12               | 50%        | 87.0     | 10.5       | 150      | 108.5    | 0.5         | 2    | 10  |
| 13                                      | 9                | 12               | 50%        | 89.2     | 11.2       | 140      | 118.0    | 1.0         | 2    | 10  |
| 14                                      | 9                | 12               | 50%        | 86.3     | 10.3       | 140      | 109.6    | 0.7         | 2    | 10  |
| 15                                      | 9                | 12               | 50%        | 87.6     | 10.7       | 140      | 97.7     | 0.5         | 2    | 12  |
| 16                                      | 9                | 14               | 75%        | 87.0     | 10.5       | 130      | 109.5    | 1.0         | 2    | 10  |
| 17                                      | 12               | 14               | 133%       | 86.5     | 10.3       | 130      | 99.7     | 0.7         | 2    | 10  |
| 18                                      | 12               | 14               | 133%       | 86.6     | 10.4       | 130      | 88.9     | 0.5         | 2    | 12  |
| 19                                      | 12               | 14               | 133%       | 85.7     | 10.1       | 120      | 100.3    | 1.0         | 2    | 10  |
| 20                                      | 12               | 14               | 133%       | 71.4     | 5.4        | 120      | 104.0    | 0.7         | 2    | 12  |
| 21                                      | 12               | 14               | 133%       | 68.8     | 4.3        | 120      | 102.0    | 0.5         | 2    | 14  |
| 22                                      | 12               | 14               | 133%       | 72.9     | 5.9        | 110      | 98.5     | 1.0         | 2    | 14  |
| 23                                      | 12               | 14               | 133%       | 69.0     | 4.6        | 110      | 96.5     | 0.7         | 2    | 14  |
| 24                                      | 12               | 14               | 133%       | 66.5     | 3.8        | 110      | 95.2     | 0.5         | 2    | 14  |



### When Is Too Much Delta T Too Much?

Part 2 - Getting real about reheat

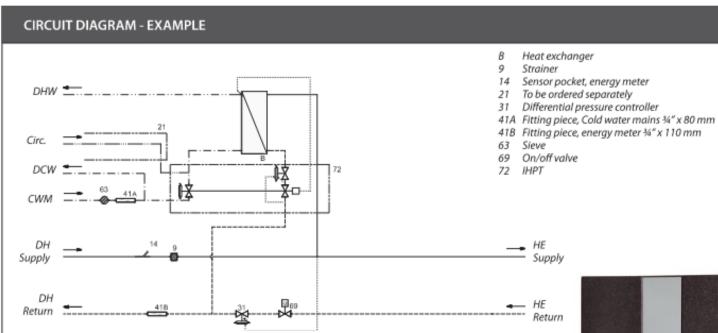
District Energy / Second Quarter 2009

## Difficulties in Retrofitting Existing HVAC Systems

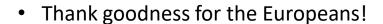
#### Gas forced air furnaces

- For District heating, add HW coil, new fan
- Typically, no vertical space above residential furnace
- Need to replace furnace/AHU due to higher static, etc.

#### Hydronic systems


 Lower supply temperatures mean larger coils to obtain the same capacity

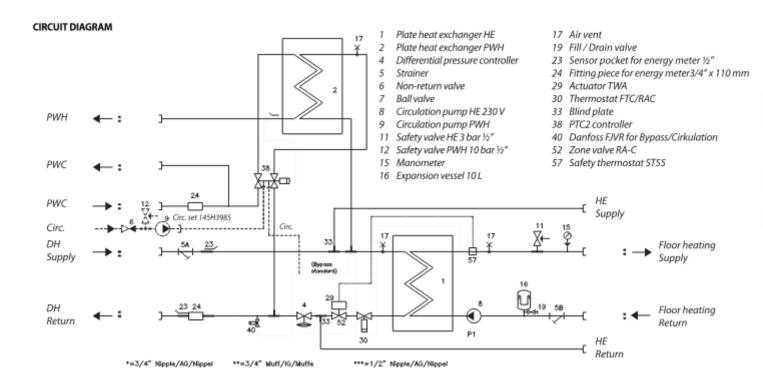
#### Steam systems


- Possible to reuse radiators, but they will be derated
- Possible, but very difficult due to condensate piping is smaller than steam piping



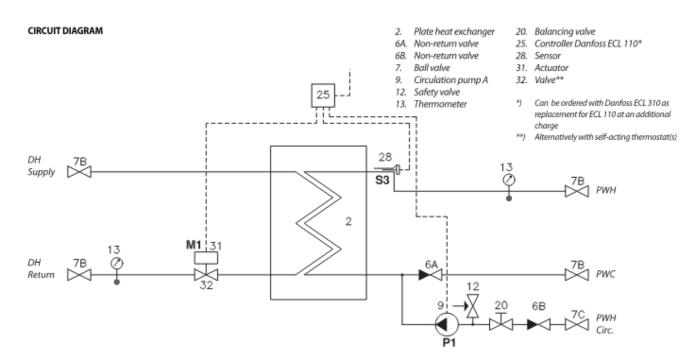
# Pre-manufactured Substations / ETS ~125 MBH Direct/Indirect (Heating & DHW)




Images courtesy of Danfoss

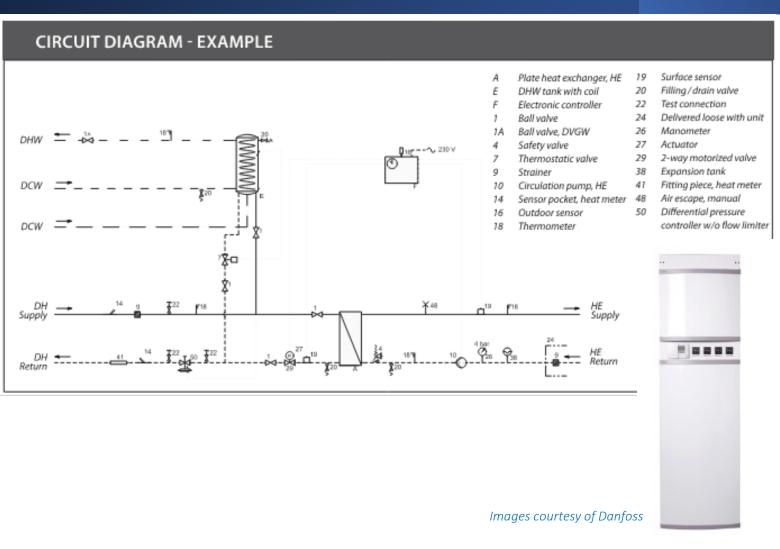






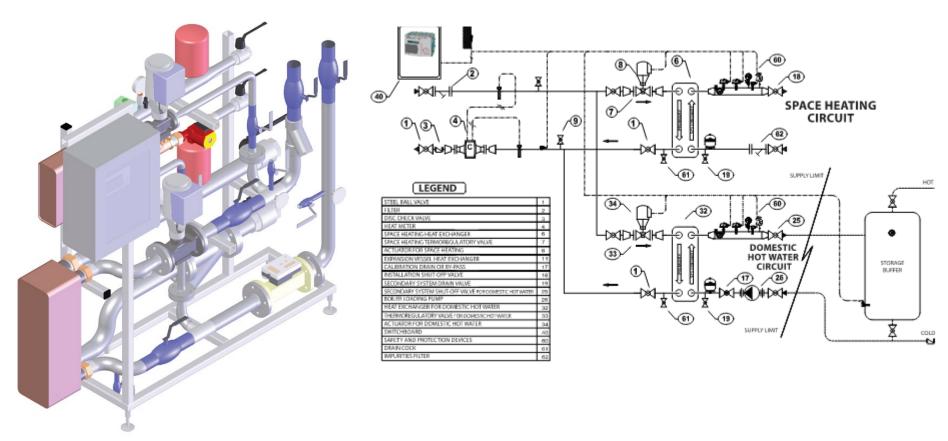

# Pre-manufactured Substations / ETS ~125 MBH Indirect (Heating & DHW)






# Pre-manufactured Substations / ETS ~460 MBH Indirect (Heating Only)






# Pre-manufactured Substations / ETS Small Apartment Bldgs (340 to 500 MBH)





# Pre-manufactured Substations / ETS Larger installation (up to 5,000 MBH)



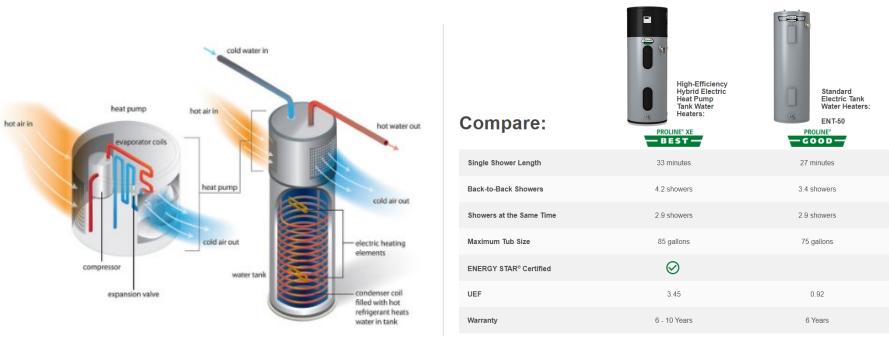
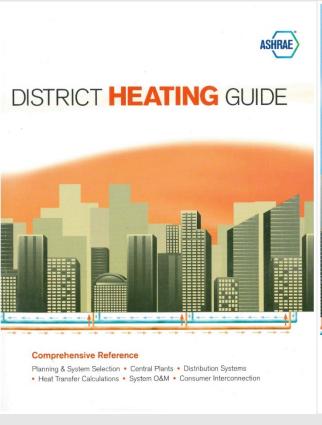
Images courtesy of Stea S.p.A

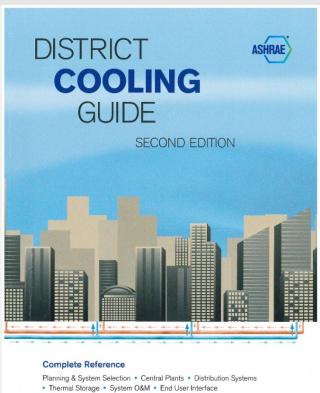
## Field Erected Energy Transfer Stations Larger installation (>5,000 MBH)



- May be able to get pre-manufactured units, but for retrofit must fit through standard door opening, therefore, typically field erected or "stick built"
- Example of District Heating Thermal and Domestic HW BPHE
- Not shown: pump, meters, instrumentation

### Delivering Domestic Hot Water Efficiently



Image courtesy EPA Energy Star®

Images courtesy of A.O Smith

- How to get to 140°F Efficiently for larger volumes
- Hybrid Electric Heat Pump Tank Water Heaters

### Community Heat Pump Energy Planning Resources





# **OWNER'S GUIDE** for BUILDINGS SERVED by DISTRICT COOLING

Comprehensive Reference for Building Owners

District Cooling System Attributes • Design Necessities • Coping with Deficiencies

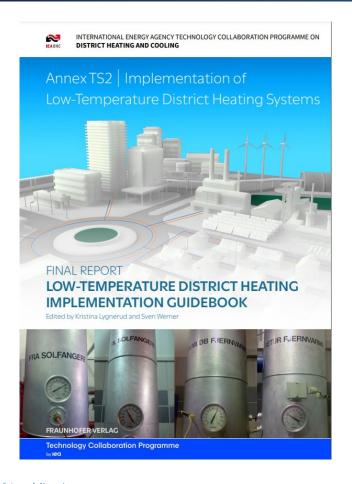
### Community Heat Pump Energy Planning Resources (Cont.)

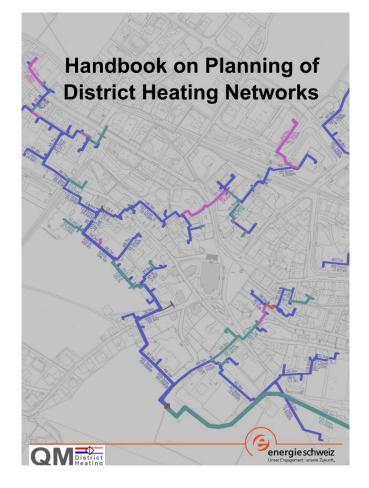


**AND DELIVERY** 

INTERNATIONAL ENERGY AGENCY IEA DISTRICT HEATING AND COOLING

Programme of Research, Development and Demonstration on District Heating and Cooling

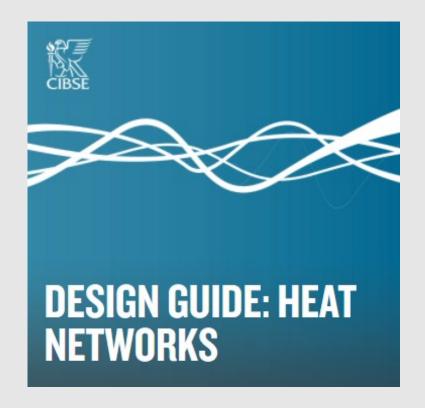

District Heating and Cooling Connection Handbook


Bord Skagestad\*, Peter Mildenstein\*

KattnenFVB District Energy Inc. Canada Sheffield Fleat and Fosver Group, UK



### Additional District Energy Reading






 2021 publication https://publica.fraunhofer.de/eprints/urn\_nbn\_de\_0011-n-6402040.pdf

### Community Heat Pump Energy Planning Resources (Cont.)









Date: December 15, 2021

☐ Topic: Commercial Scale In-Building Equipment for

4th & 5th Generation Water Sources

Register at <a href="https://www.ashrae.org/CHPSWebinars">https://www.ashrae.org/CHPSWebinars</a>





- Funding Opportunity PON 4614
- Fact Sheets of Prior Winners at PON 4614
- List of Solution Providers focused on this Marketplace
- Report regarding Regulatory Issues affecting this Marketplace
- Please see <u>www.nyserda.ny.gov/district-thermal-systems</u>









Learn about the ASHRAE
Decarbonization Initiative and the
ASHRAE Task Force for Building
Decarbonization (TFBD) at

https://www.ashrae.org/decarb

#### **Explore ASHRAE Learning Institute Courses**



#### https://www.ashrae.org/instructor-led-courses

#### Find a Topic that Fits You:

- Commissioning
- Energy Efficiency
- Environmental Quality
- HVAC&R Applications
- Standards and Guidelines
- CoV-2 Mitigation

See all the ways to learn and grow with ASHRAE at <a href="https://www.ashrae.org/professional-development/learning-portal">https://www.ashrae.org/professional-development/learning-portal</a>

#### **Evaluation and Certificate**

□ ASHRAE values your comments. All webinar registrants will receive a separate email from ALI-Education (edu@ashrae.org) with a link to the Webinar Survey and Certificate of Attendance. Once the survey is complete, you will be directed to the certificate. Questions should be sent to edu@ashrae.org.
 □ A copy of the presentation is available at: <a href="https://www.ashrae.org/consumerdsgn2021NYSERDAchp">https://www.ashrae.org/consumerdsgn2021NYSERDAchp</a>
 □ If you have any questions about the webinar certificate, please contact Kelly Arnold, Coordinator Professional Development, <a href="karnold@ashrae.org">karnold@ashrae.org</a>.
 □ If you have any questions about the webinar presentation, please contact Tiffany Cox, Course Administrator, <a href="tcox@ashrae.org">tcox@ashrae.org</a>.

#### **ASHRAE Certification**

- More than 3,000 certifications earned to-date
- Elevate your reputation among peers, in the workplace and among clients
- NEW! Digital Badging:

















- Embedded metadata uniquely linked to you
- Shareable in electronic media, including LinkedIn and email
- Instant recognition, with real-time, third-part verification
- Visit <u>www.ashrae.org/certification</u> to learn more