

CHARLES ELEY

DESIGN PROFESSIONAL'S GUIDE to ZERO NET ENERGY BUILDINGS

Advanced Designs for Net Zero Buildings

Charles Eley, P.E., Fellow ASHRAE, Fellow AIA, LEED® AP

©2020 ASHRAE, Inc.

Copyright

Copyright © 2018, 2019, 2020 by ASHRAE. All rights reserved. No part of this presentation may be reproduced without written permission from ASHRAE, nor may any part of this presentation be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, photocopying, recording, or other) without written permission from ASHRAE.

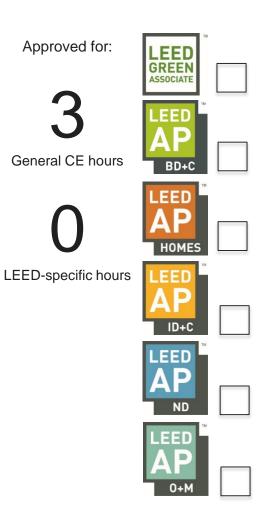
ASHRAE has compiled this presentation with care, but ASHRAE has not investigated and ASHRAE expressly disclaims any duty to investigate any product, service, process, procedure, design or the like, that may be described herein. The appearance of any technical data or editorial material in this presentation does not constitute endorsement, warranty or guaranty by ASHRAE of any product, service, process, procedure, design, or the like. ASHRAE does not warrant that the information in this publication is free of errors. The user assumes the entire risk of the use of the use of any information in this presentation.

Advanced Designs for Net Zero Buildings – Slide 2

AIA/CES Registered Provider

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Attendance for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.



Advanced Designs for Net Zero Buildings

By ASHRAE

GBCI cannot guarantee that course sessions will be delivered to you as submitted to GBCI. However, any course found to be in violation of the standards of the program, or otherwise contrary to the mission of GBCI, shall be removed. Your course evaluations will help us uphold these standards.

Course ID: 920015146

Advanced Designs for Net Zero Buildings - Slide 4

Target Audience

Consulting engineers, Architects, Developers, Owners, Architectural and Engineering Students, Facility managers, Contractors)

This course is for professional engineers and architects who want to expand their practice to include the design, construction and operation of zero net energy buildings. The course will begin with a definition of a ZNE building.

- The first principle of ZNE design is to make the building as energy efficient as possible.
- On-site renewable energy systems will then be added to achieve ZNE.
- If adequate on-site ZNE is not feasible, then options for off-site renewable energy should be explored.
- The test for ZNE is at the energy meter, so proper commissioning and operator training is critical to success.

The ZNE principles outlined above will be presented with case studies and examples showing how other design professionals have met the ZNE goal.

Today's Program

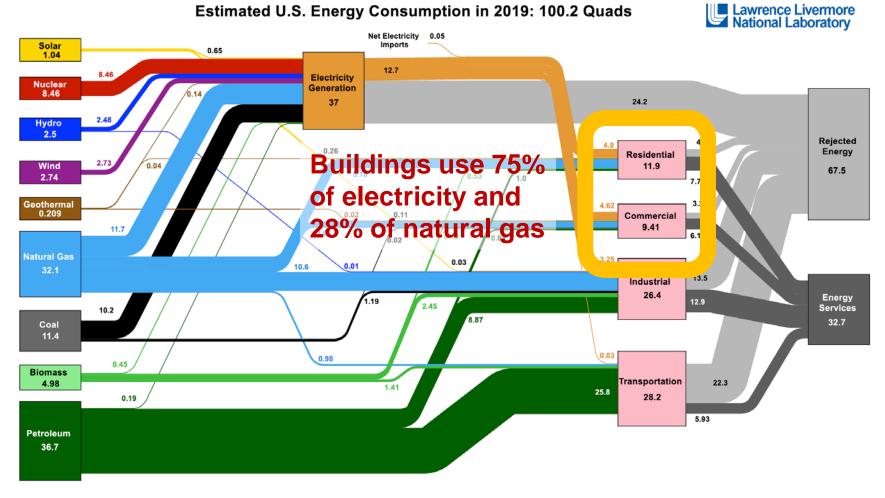
Learning Objectives

At the conclusion of this course, attendees will :

- Understand what a zero-net energy building is.
- Analyze a building's energy components and how these can be reduced to a minimum.
- Show compliance to zero net energy at the design phase.
- Identify system operation that should be measured and verified after construction.
- Provide owner information on how to operate zero net energy buildings and their systems.

Agenda

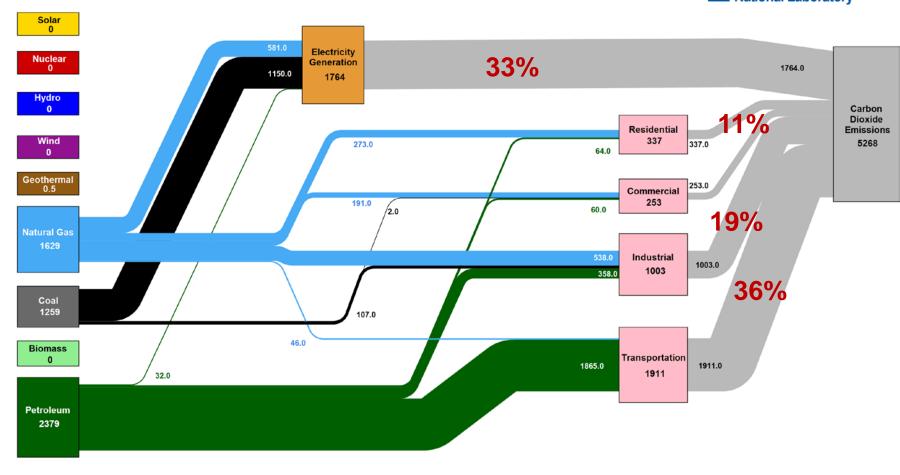
Торіс	Approximate Time
Introduction to Zero Net Energy (ZNE)	10 minutes
Source Energy and the California Grid	15 minutes
Time Dependent Source (TDS) Energy	10 minutes
HVAC and Thermal Comfort	15 minutes
Energy Modeling in the Design Process	10 minutes
Break	20 minutes
EUI Targets and Potential	10 minutes
Renewable Energy Systems	25 minutes
Making It All Work	10 minutes
Practical Examples	15 minutes
Closing Comments	5 minutes
Wrap-Up	10 minutes



Introduction to Zero Net Energy (ZNE)

Advanced Designs for Net Zero Buildings – Slide 8

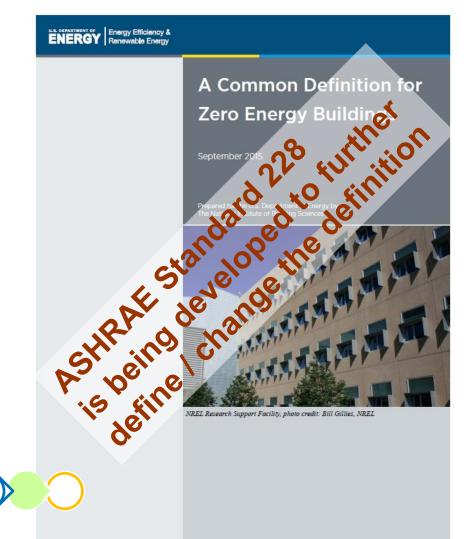
United States Energy Flows – 2019


Source: LLNL March, 2020. Data is based on DOE/EIA MER (2019). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and due on ot include self-generation. Efficiency is reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical forsil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, and 10% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect DDE's analysis of manufacturing. Totals may not equil sum of components due to independent rounding. LLNL-M1-410527

Advanced Designs for Net Zero Buildings – Slide 9

Estimated U.S. Carbon Dioxide Emissions in 2018: ~5,268 Million Metric Tons

Source: LLAL July, 2019. Data is based on DOE/EIA MER (2018). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose augpices the work was performed. Contemptions are attributed to their physical source, and are not allocated to end use for electricity consumption in the residental, commorcial, industrial and transportation sectors. Petroloum consumption in the electric power sector includes the non-renewable portion of municipal solid waste. Combustion of biologically derived fuels is assumed to have zero net carbon emissions - the lifecycle emissions associated with producing biofuels are included in commercial and industrial emissions. Totals may not equal use of components due to indepedent rounding errors. LLNL-MI-410527


Advanced Designs for Net Zero Buildings - Slide 10

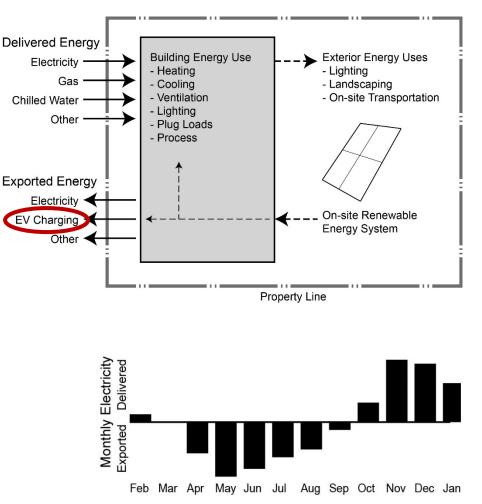
Introduction to **ZNE**

DOE Common Definition

Zero Net Energy Net Zero Energy Zero Energy

Living Buildings

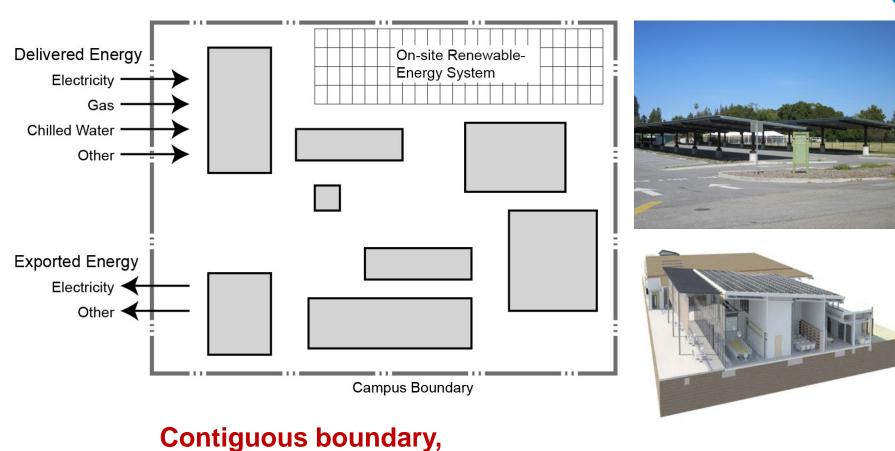
Nearly Zero Energy Zero Net Ready Ultra-Low Energy

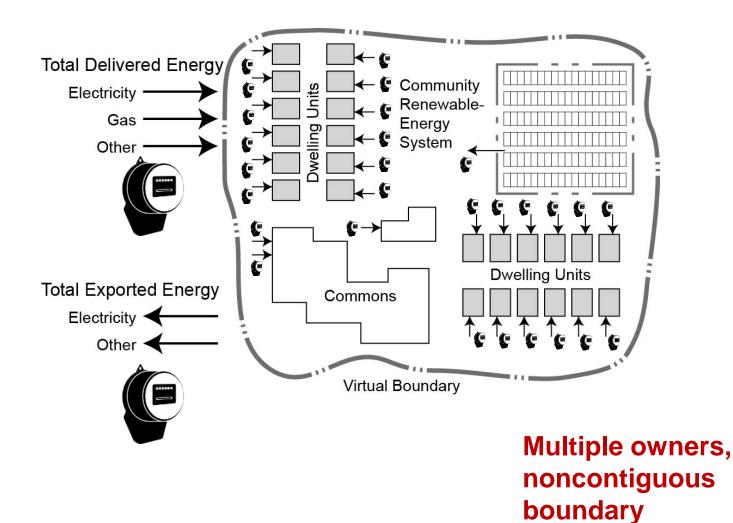

Zero Electric Zero Carbon

Advanced Designs for Net Zero Buildings – Slide 11

ZNE Definition

- The sum of all source energy that is delivered to the property line must be less than the energy that is exported from the property.
- All energy use is included:
 - Electricity
 - Gas
 - District energy
- EV charging is considered exported energy if the vehicles are used off site.
- No on-site combustion is allowed for International Living Building Institute certified ZNE buildings.





Advanced Designs for Net Zero Buildings – Slide 13

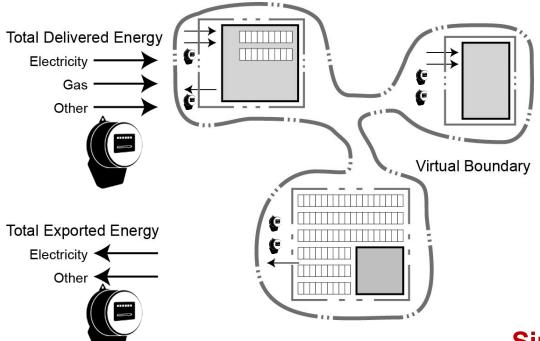
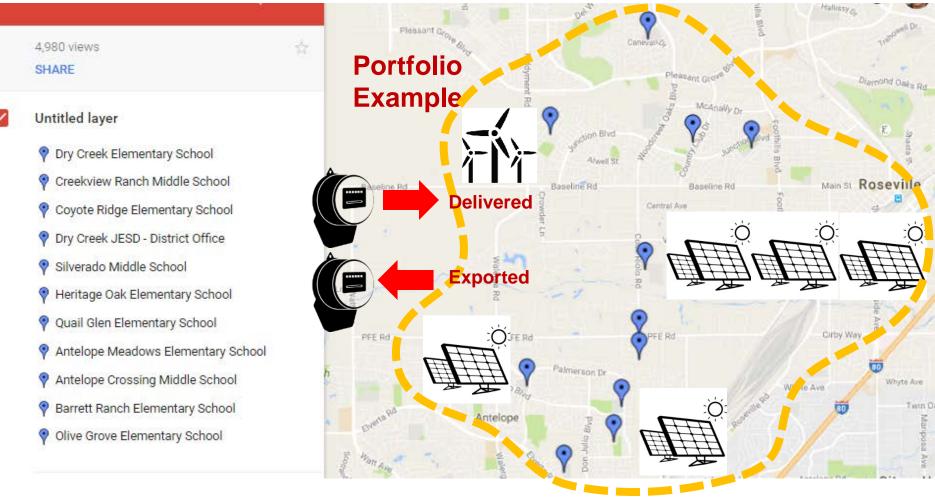

usually the same owner

Image: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

ASHRA

Advanced Designs for Net Zero Buildings – Slide 15

Single owner or manager, noncontiguous boundary


Image: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

ASHRA

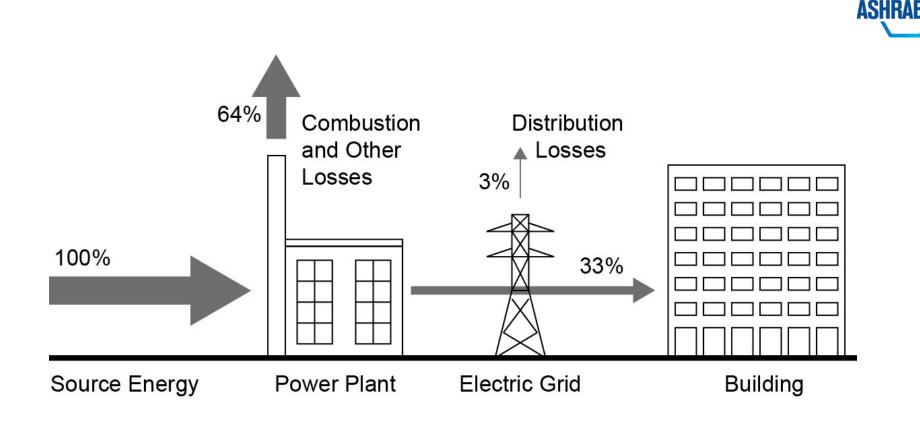
Advanced Designs for Net Zero Buildings - Slide 16

Dry Creek Elementary School District

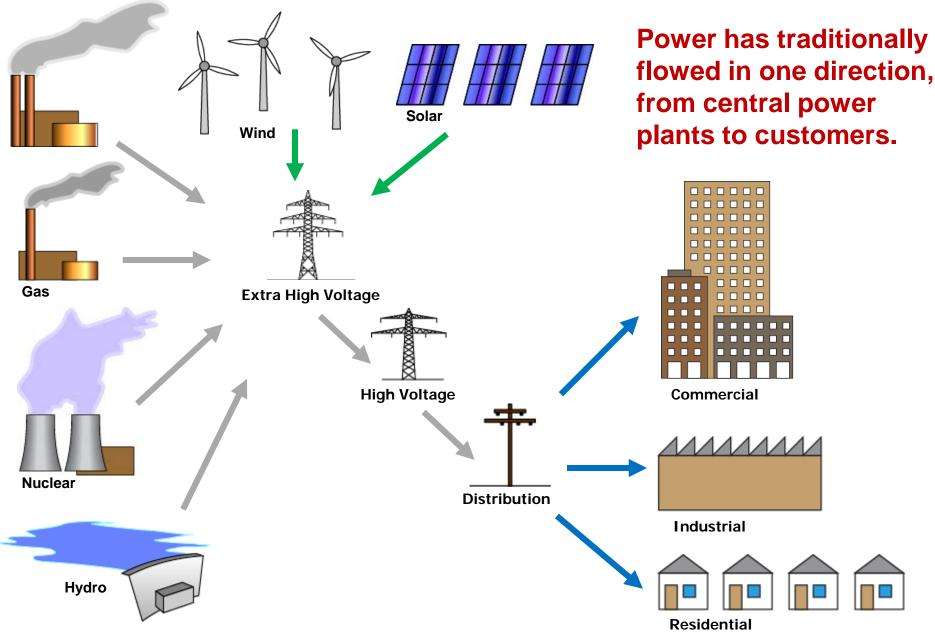
Advanced Designs for Net Zero Buildings - Slide 17

Portfolio Example

Advanced Designs for Net Zero Buildings - Slide 18


Energy Accounting

Advanced Designs for Net Zero Buildings - Slide 19


British Thermal Unit (Btu)		kiloWatt-hour (kWh)		kiloJoule (kJ)
1 Btu	=	.000293 kWh	=	1.055 kJ
3,412 Btu	=	1 kWh	=	3,600 kJ
0.948 Btu	=	.000278 kWh	=	1 kJ

Advanced Designs for Net Zero Buildings - Slide 20

Advanced Designs for Net Zero Buildings - Slide 21

Energy Accounting

Energy Type	Source Multiplier	Common Energy Units	Site Btu/unit	Source Btu/unit
Imported Electricity	3.15	kWh	3412	10,751
Exported Renewable Electricity	3.15	kWh	3412 3412 6	10,751
Natural Gas	1.09	Therms	100,000	109,000
Fuel Oil (1,2,4,5,6,Diesel, Kerosene)	1.19	Gallons	65 188 ROO	164,220
Propane & Liquid Propane	1.15	Gallons	JE 89,000	104,650
Steam	1.45	lb dl	1000	1450
Hot Water	1.35	milito s BtuO	1,000,000	1,350,000
Chilled Water	1.04	Athlice Stu	1,000,000	1,040,000
Coal or Other	1.05	Wirt ton	19,210,000	20,170,000

Notes: The Btu per lb of steam will vary depending on how much the steam is superheated.

Source: DOE Common Definition and ASHRAE Standard 105

Example calculation for mixed fuel building: Source Energy (Btu) = kWh × 10,751 + Therms ×109,000

Advanced Designs for Net Zero Buildings – Slide 23

All Electric Buildings

Site Energy

Source Energy (recommended)

Energy Cost (flat rate)

Equal difficulty in achieving ZNE

Advanced Designs for Net Zero Buildings - Slide 24

California BEES 1975–2005

- For three decades, California used flat source energy multipliers:
 - **3.0 for electricity** (1 kWh = 10,236 Btu)
 - 1.0 for gas

 (1 therm = 100,000 Btu)
- Replaced by timedependent valued (TDV) energy in 2005

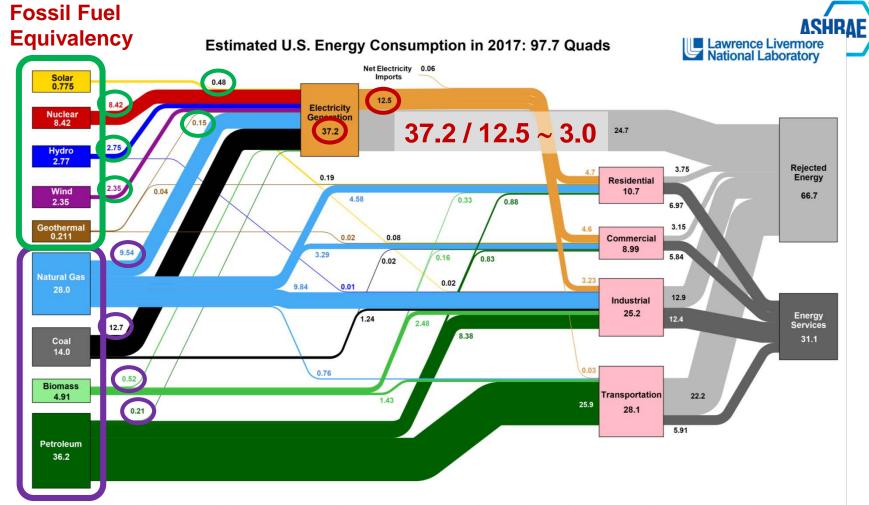
Advanced Designs for Net Zero Buildings - Slide 26

Μ	eg	a	w	a	Ħs
				-	

TOTAL	21,893
Storage battery	134*
🗘 Biofuels	997
🗍 Geothermal	1,790
🟁 Small hydro	1,238
🚔 Wind	6,295
🔆 Solar	11,439

Source: CalSO.com

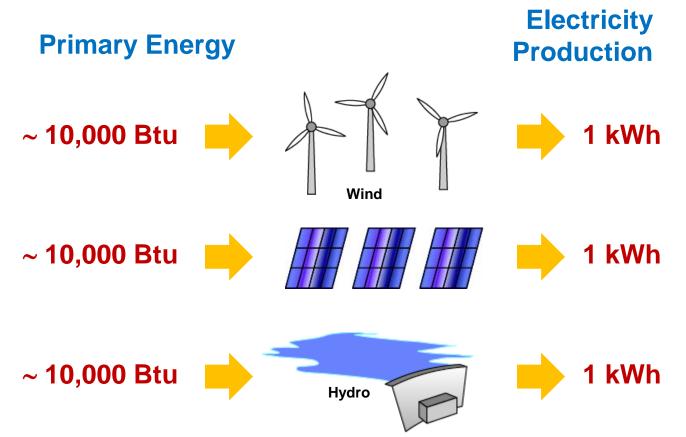
Advanced Designs for Net Zero Buildings - Slide 27


Fuel Type	California In-State Generation (GWh)	Percent of California In-State Generation	Northwest Imports (GWh)	Southwest Imports (GWh)	California Energy Mix (GWh)	California Power Mix
Coal	302	0.15%	409	11,364	12,075	1.10%
Large Hydro	36,920	17.89%	4,531	1,536	42,987	14.72%
Natural Gas	89,564	43.40%	46	8,705	98,315	23 67%
Nuclear	17,925	8.69%	0	8,594	26,519	9.08%
Oil	33	0.02%	0	0	33	0.01%
Other	409	0.20%	0	0	409	0.14%
Renewables	61,183	29.65%	12,502	10,999	84,684	29.00%
Biomass	5,827	2.82%	1,015	32	6,874	2 35%
Geothermal	11,745	5.69%	23	937	12,705	4.35%
Small Hydro	6,413	3.11%	1,449	5	7,867	2.70%
Solar	24,331	11.79%	0	5,465	29,796	10.20%
Wind	12,867	6.24%	10,015	4,560	27,442	9.40%
Unspecified	N/A	N/A	22,385	4,632	27,017	9.25%
Total	206,336	100.00%	39,873	45,830	292,039	100.00%

Source: http://www.energy.ca.gov/almanac/electricity_data/total_system_power.html

Senate Bill 100	33%	50%	60%	100%
(recently signed by	2020	2026	2030	2045
Governor Brown)				

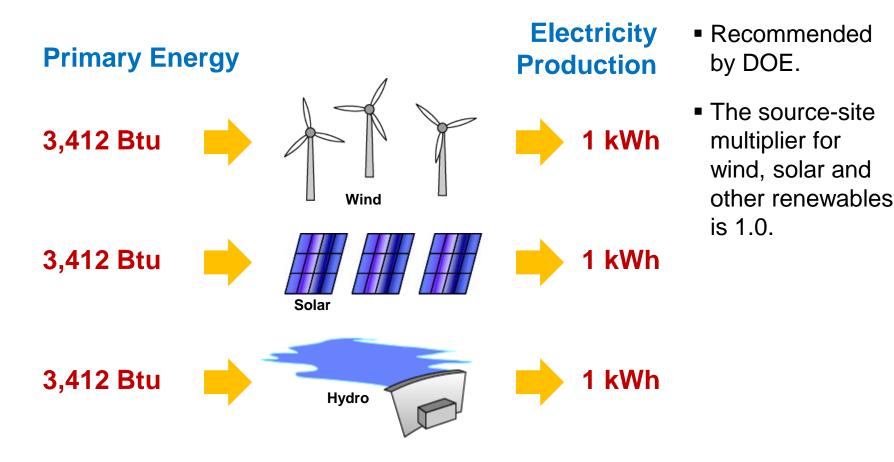
Advanced Designs for Net Zero Buildings – Slide 28


Source: LLNL April, 2018. Data is based on DOE/EIA MER (2017). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auglices the work was performed. This chart was revised in 2017 to reflect changes made in mid-2016 to the Energy Information Administration's analysis methodology and reporting. The efficiency of electricity production is calculated as the total related lectricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector, and 49% for the industrial sector which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MT-410527

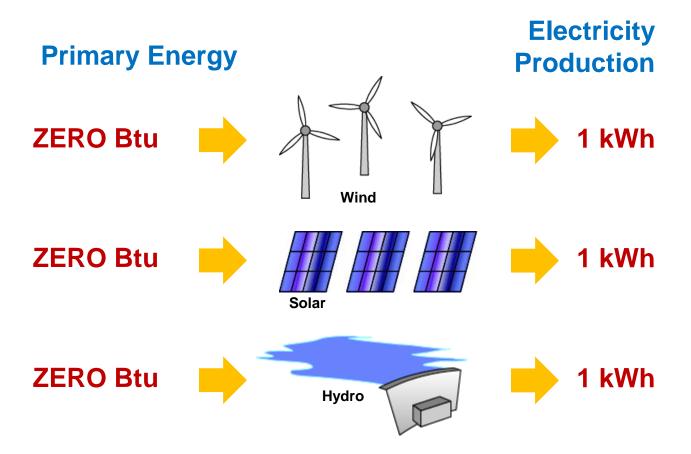
Fossil Fuel Generators

Advanced Designs for Net Zero Buildings – Slide 29

Fossil Fuel Equivalency Approach



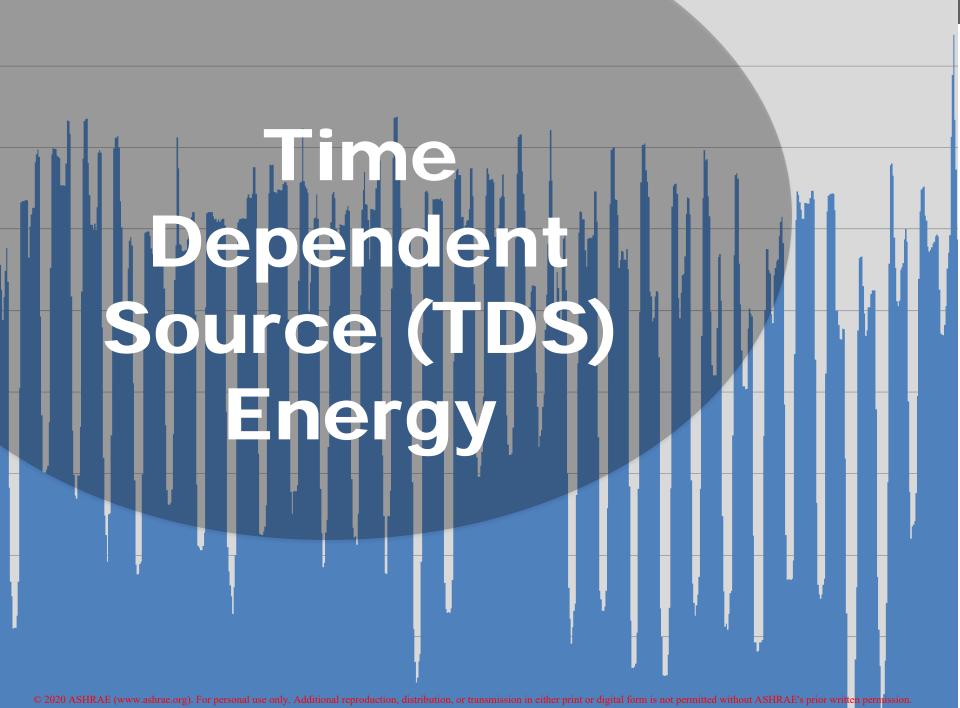
- Source energy is unaffected as more clean generators are added to the grid.
- The source-site multiplier for wind, solar and other renewables is the same as fossil generators.

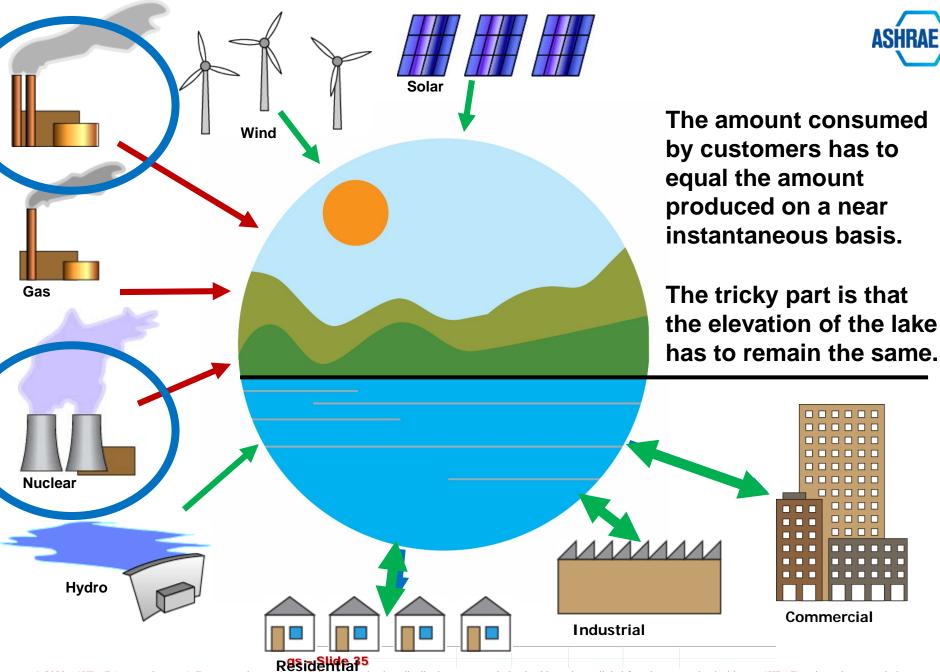

Advanced Designs for Net Zero Buildings - Slide 30

Advanced Designs for Net Zero Buildings – Slide 31

- Wind, solar and gravity are free.
- The source-site multiplier for wind, solar and other renewables is ZERO.
- Source energy and carbon emissions track each other exactly.

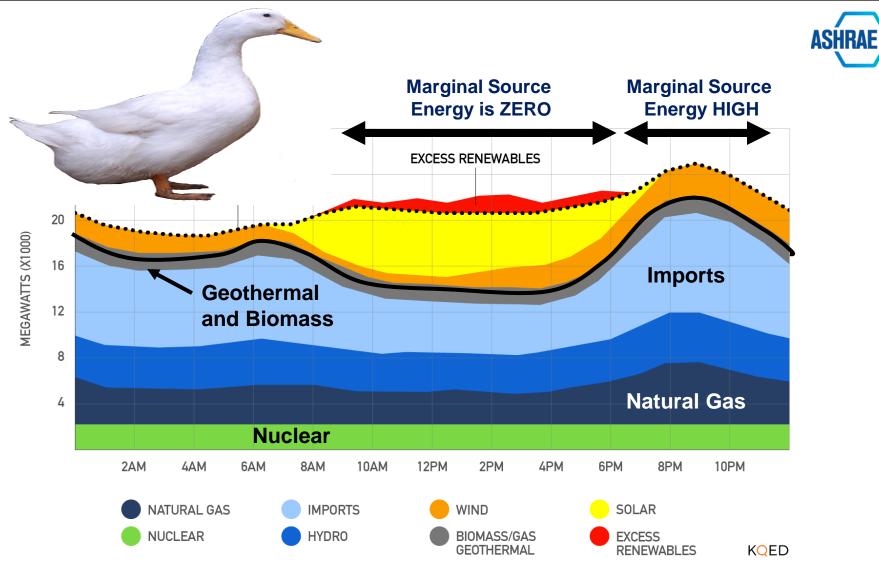
Advanced Designs for Net Zero Buildings – Slide 32


ASCC Alaska Grid 2.52 ASCC Miscellaneous (not a grid, delete) 1.21 WECC Southwest 2.75 WECC California 2.75 WECC California 2.75 FRCC All 2.97 HICC Miscellaneous 2.86 HICC Oahu 3.83 MRO East 3.08 MRO West 2.50 NPCC New England 2.87 WECC Northwest 2.50 NPCC Northwest 2.50 NPCC Long Island 2.90 NPCC Upstate NY 2.92 NPCC Upstate NY 2.92 NPCC Upstate NY 3.05 RFC Michigan 3.06 RFC West 3.14 WECC Rockies 2.33 SPP North 2.67 SPP South 2.46 SERC Mississippi Valley 2.95 SERC Midwest 3.02 SERC South 3.04 SERC Tennessee Valley 3.02 SERC Virginia/Carolina 3.11 United States as a Whole 2.64		
WECC Southwest2.75WECC California1.94ERCOT All2.58FRCC All2.97HICC Miscellaneous2.86HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley3.02SERC South3.04SERC Virginia/Carolina3.11	ASCC Alaska Grid	2.52
WECC California1.94ERCOT All2.58FRCC All2.97HICC Miscellaneous2.86HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	ASCC Miscellaneous (not a grid, delete)	1.21
ERCOT All2.58FRCC All2.97HICC Miscellaneous2.86HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.06RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	WECC Southwest	2.75
FRCC All2.97HICC Miscellaneous2.86HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	WECC California	1.94
HICC Miscellaneous2.86HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	ERCOT All	2.58
HICC Oahu3.83MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.67SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	FRCC All	2.97
MRO East3.08MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley3.20SERC Midwest3.20SERC South3.02SERC Virginia/Carolina3.11	HICC Miscellaneous	2.86
MRO West2.50NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	HICC Oahu	3.83
NPCC New England2.87WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley3.02SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	MRO East	3.08
WECC Northwest1.39NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	MRO West	2.50
NPCC NYC/Westchester2.92NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	NPCC New England	2.87
NPCC Long Island2.90NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	WECC Northwest	1.39
NPCC Upstate NY1.97RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	NPCC NYC/Westchester	2.92
RFC East3.05RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	NPCC Long Island	2.90
RFC Michigan3.06RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	NPCC Upstate NY	1.97
RFC West3.14WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	RFC East	3.05
WECC Rockies2.33SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	RFC Michigan	3.06
SPP North2.67SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	RFC West	3.14
SPP South2.46SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	WECC Rockies	2.33
SERC Mississippi Valley2.95SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	SPP North	2.67
SERC Midwest3.20SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	SPP South	2.46
SERC South3.04SERC Tennessee Valley3.02SERC Virginia/Carolina3.11	SERC Mississippi Valley	2.95
SERC Tennessee Valley3.02SERC Virginia/Carolina3.11		3.20
SERC Virginia/Carolina 3.11	SERC South	3.04
	•	3.02
United States as a Whole 2.64	SERC Virginia/Carolina	3.11
United States as a Whole 2.64		
	United States as a Whole	2.64

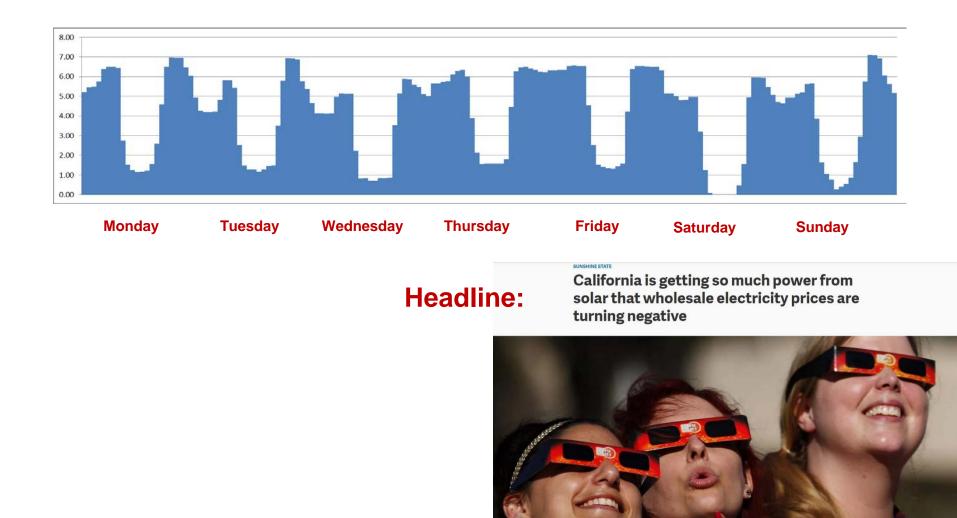

Source : Standard 189.1-2020

Assumes zero heat rate for non-combustible renewable energy.

Advanced Designs for Net Zero Buildings - Slide 33

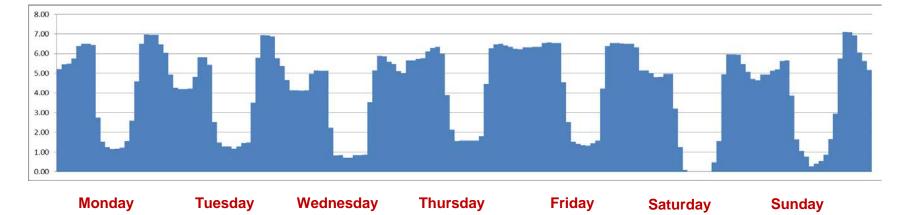

Time Dependent Source (TDS) Energy

ASHRA

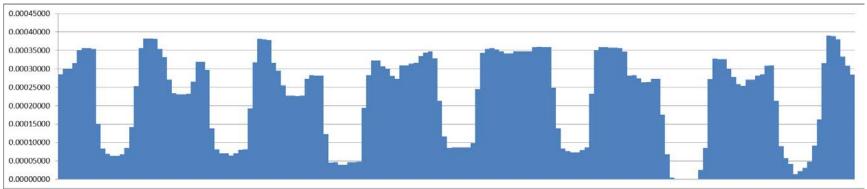

Time Dependent Source (TDS) Energy

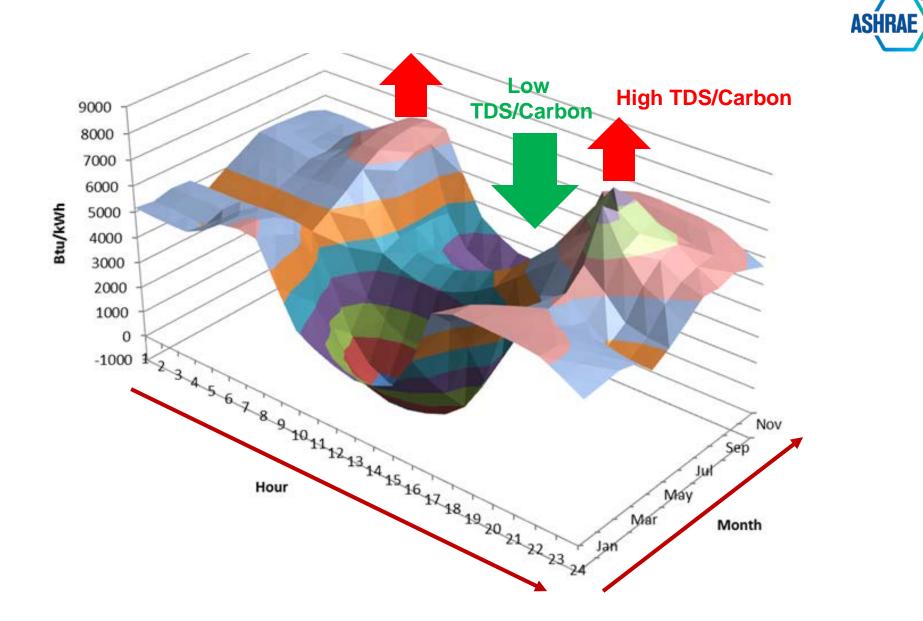
Advanced Designs for Net Zero Buildings - Slide 36

Week Beginning March 23 (on the official weather files)

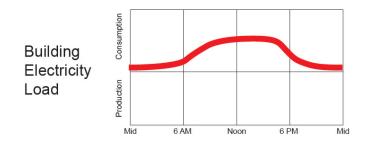


Advanced Designs for Net Zero Buildings - Slide 37


© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission

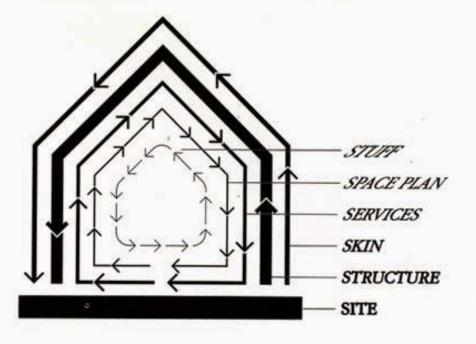

Time-Dependent Source Energy (kBtu/kWh)

Hourly Carbon Emissions (tons/kWh)



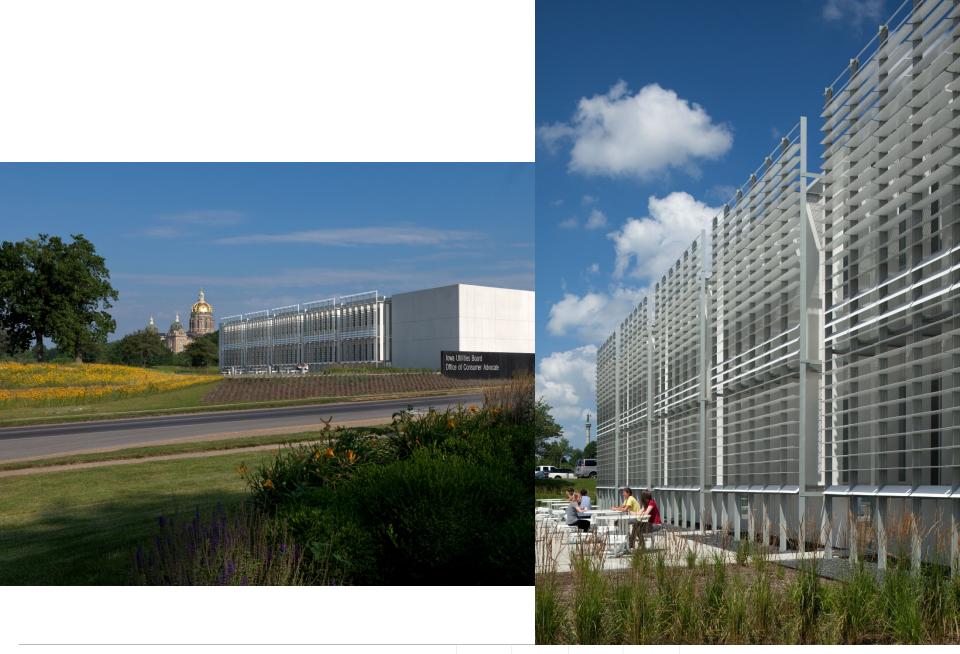
Advanced Designs for Net Zero Buildings - Slide 38

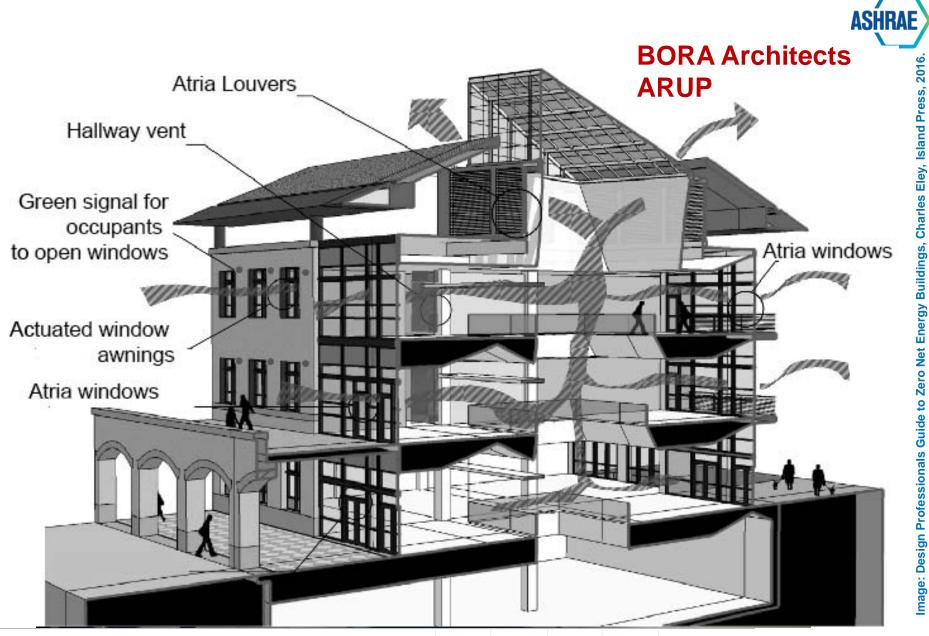
Advanced Designs for Net Zero Buildings - Slide 39



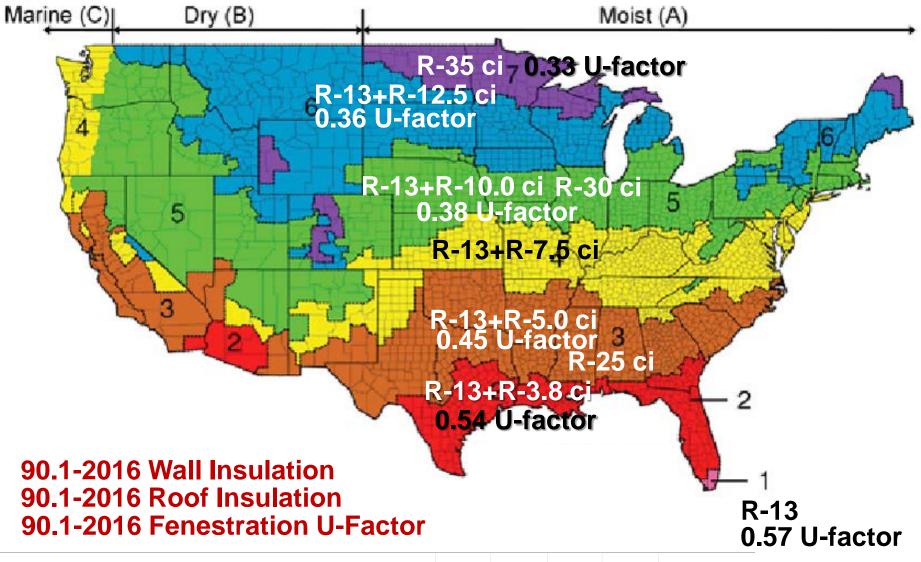
Advanced Designs for Net Zero Buildings - Slide 40

Advanced Designs for Net Zero Buildings - Slide 41


SHEARING LAYERS OF CHANGE. Because of the different rates of change of its components, a building is always tearing itself apart.


Advanced Designs for Net Zero Buildings - Slide 42

Advanced Designs for Net Zero Buildings - Slide 43



Advanced Designs for Net Zero Buildings - Slide 44

Advanced Designs for Net Zero Buildings - Slide 45

Advanced Designs for Net Zero Buildings – Slide 46

Two Tabor Center—Denver CO

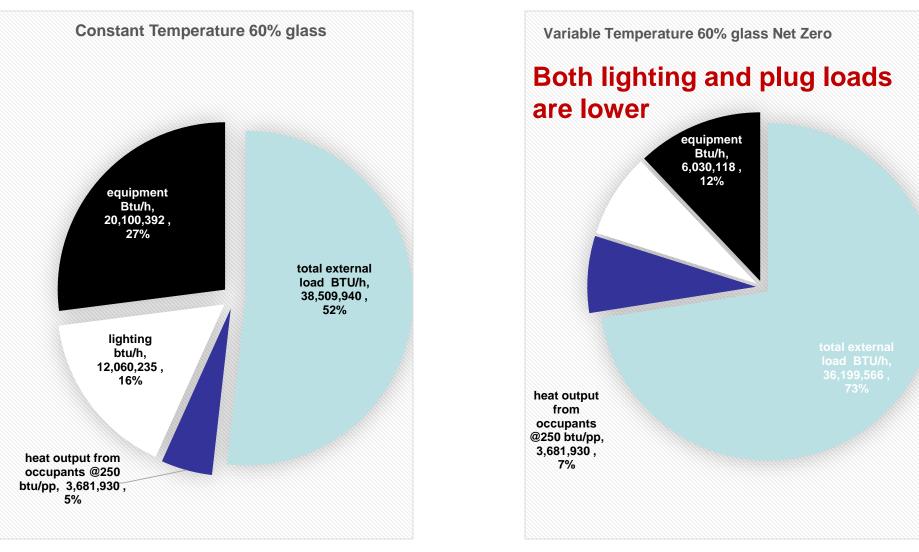
- The new 30- to 33-story Two Tabor Center has been designed with a focus on providing tenants a productive and healthy work environment that is employee-centric and provides easy access to the many amenities of Tabor Center and the 16th Street Mall.
- Two Tabor Center will add approximately 637,000 to 692,000 rentable square feet of class AA office space to Tabor Center, creating one of the largest office complexes in Denver with over 1,217,000 rentable square feet of office space. Retail space occupies the ground level of Two Tabor Center along 17 St. and Larimer Street. Entrances to a 1700-space underground parking garage.

Advanced Designs for Net Zero Buildings – Slide 47

Glazing Comparison

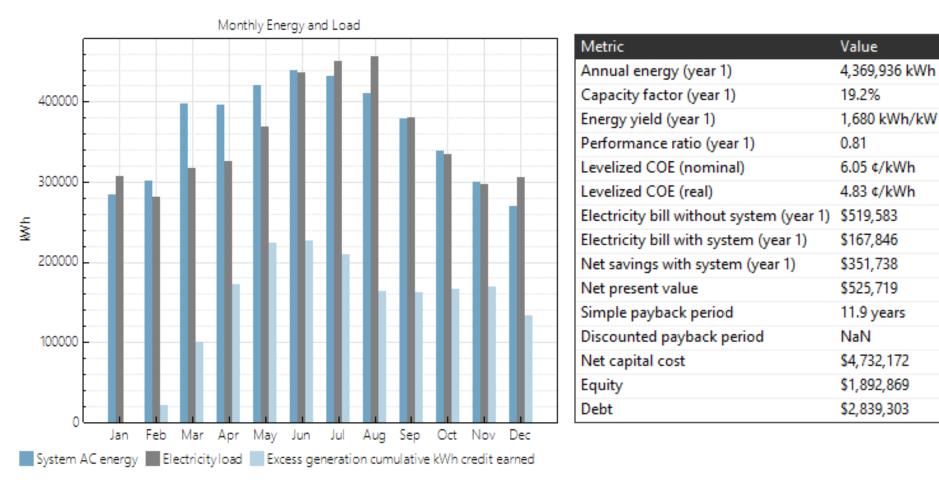
Name	Cavity	U factor	SC	SHGC	Tvis
VNE 1-53	Air (10%)/ Argon (90%)	0.201	0.256	0.223	0.587
VNE 1-53	Air (100%)	0.289	0.264	0.23	0.487
VNE 1-63	Air (10%)/ Argon (90%)	0.209	0.327	0.284	0.619
VP 1-13	Air (10%)/ Argon (90%)	0.404	0.228	0.198	0.128
VRE 1-38	Air (10%)/ Argon (90%)	0.213	0.26	0.226	0.361
VUE 1-30	Air (10%)/ Argon (90%)	0.204	0.195	0.169	0.307
90.1		0.420	0.450	0.400	

Advanced Designs for Net Zero Buildings - Slide 48


Comparison of glass types

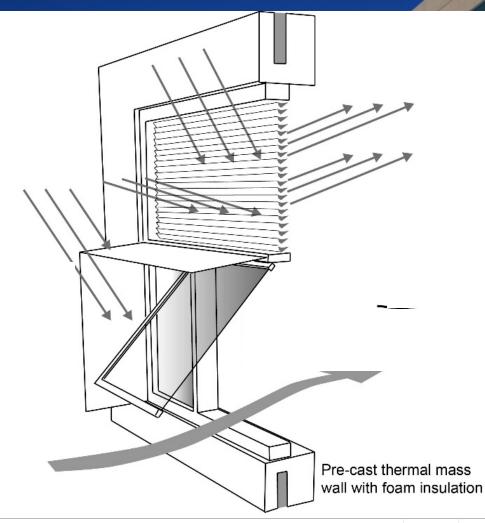
		Cavity	floor area	Solar Radiation (Btu/h)	Transmission (Btu/h)	total	Envelope load per SF floor area (Btuh/sf)
	VUE1-30 (40%)	Air(10%)/Argon (90%)	765,272	1,133,853	629,567	1,763,420	2.30
	VNE4-53 (40%)	Air(10%)/Argon (90%)	765,272	1,496,149	623,118	2,119,268	2.77
	VRE1-38 (40%)	Air(10%)/Argon (90%)	765,272	1,516,277	648,914	2,165,191	2.83
	VP1-13 (40%)	Air(10%)/Argon (90%)	765,272	1,328,420	1,059,492	2,387,911	3.12
	VNE1-63 (40%)	Air(10%)/Argon (90%)	765,272	1,905,410	640,315	2,545,725	3.33
	VUE1-30 (65%)	Air(10%)/Argon (90%)	765,272	1,842,511	824,042	2,666,553	3.48
	VNE1-53 (65%)	Air(10%)/Argon (90%)	765,272	2,431,243	788,959	3,220,201	4.21
	VNE4-53 (65%)	Air(10%)/Argon (90%)	765,272	2,431,243	813,563	3,244,805	4.24
	VRE1-38 (65%)	Air(10%)/Argon (90%)	765,272	2,463,950	855,480	3,319,430	4.34
	VP1-13 (65%)	Air(10%)/Argon (90%)	765,272	2,158,682	1,522,669	3,681,351	4.81
ļ	ASHRAE 90.1 (40%)	Air(10%)/Argon (90%)	765,272	2,683,676	1,093,886	3,777,561	4.94
	VNE1-63 (65%)	Air(10%)/Argon (90%)	765,272	3,096,291	841,508	3,937,799	5.15
4	ASHRAE 90.1 (65%)		765,272	4,360,973	1,578,560	5,939,533	7.76
	VNE1-53 Air (65%)	Air (100%)	765,272	2,507,560	995,206	3,502,765	4.58

Advanced Designs for Net Zero Buildings - Slide 49

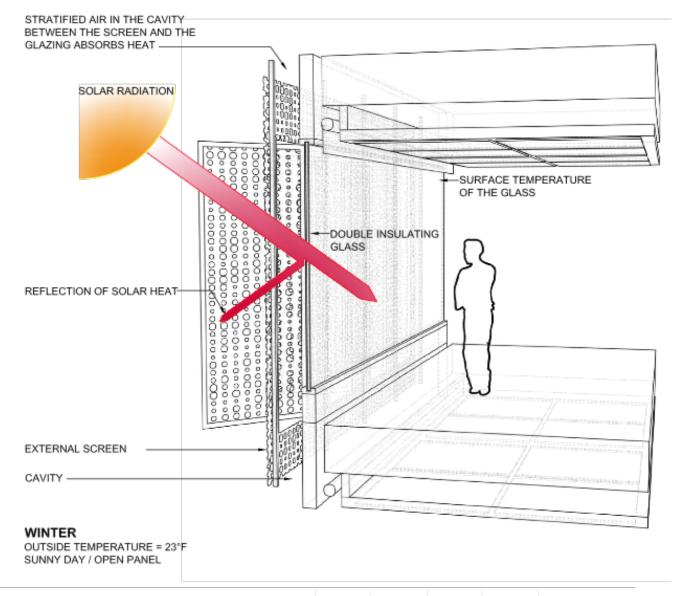


Advanced Designs for Net Zero Buildings – Slide 50

Using Photovoltaics to Take Tabor II to Net Zero

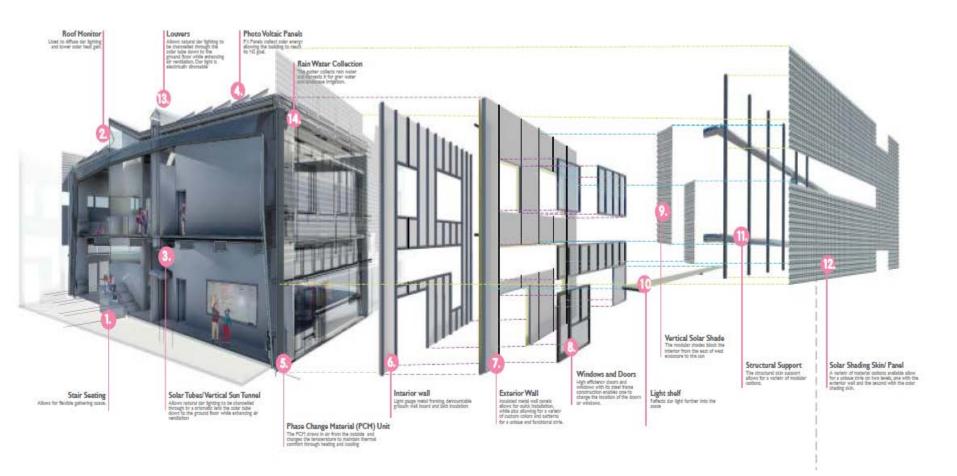


Advanced Designs for Net Zero Buildings – Slide 51


Advanced Designs for Net Zero Buildings – Slide 52

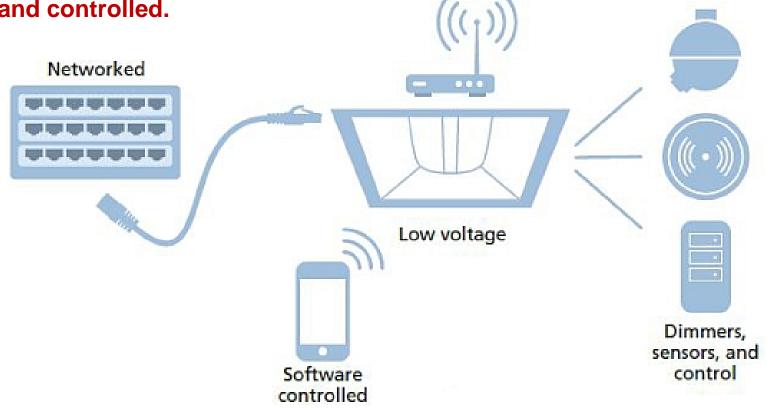
RNL Architects Stantec

Advanced Designs for Net Zero Buildings – Slide 53


Advanced Designs for Net Zero Buildings - Slide 54

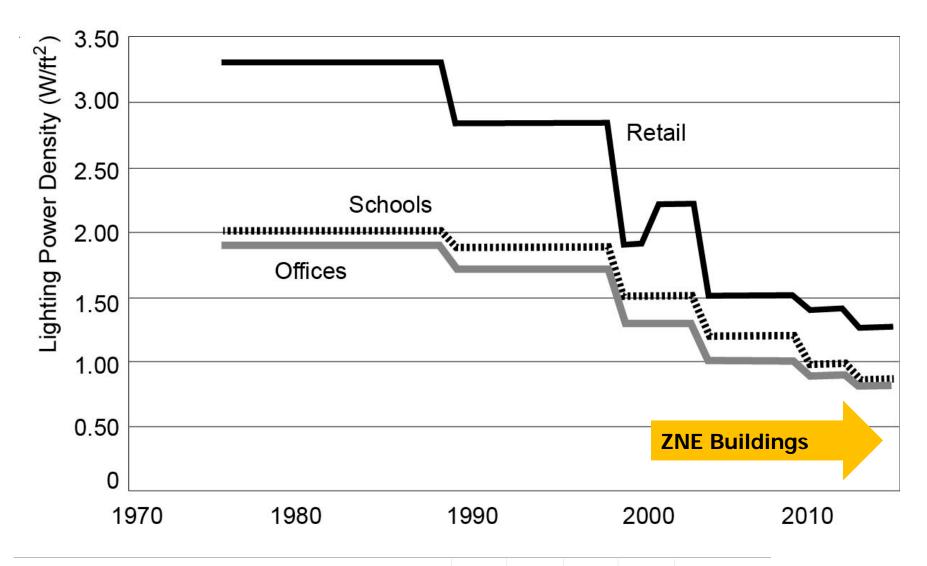
Advanced Designs for Net Zero Buildings - Slide 55

Advanced Designs for Net Zero Buildings - Slide 56



Lighting and Daylighting

Advanced Designs for Net Zero Buildings – Slide 57


Power over Ethernet (PoE) allows individual LED lighting fixtures to be directly addressed and controlled.

Source: Maxim Integrated; published in LEDs Magazine, September 2015.

Advanced Designs for Net Zero Buildings - Slide 58

Lighting and Daylighting

ASHRAE

Image: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

Advanced Designs for Net Zero Buildings – Slide 59

Lighting and Daylighting

Notice the bright ceiling illuminated by the reflecting light louvers

Advanced Designs for Net Zero Buildings - Slide 60

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

North side

Dynamic Daylighting Metrics

Advanced Designs for Net Zero Buildings – Slide 61

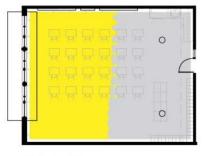
Dynamic Daylighting Metrics

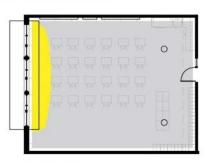
Spatial Daylight Autonomy (sDA)

Figure 1. Spatial Daylight Autonomy (sDA) Evaluation

- The percent of the space where daylight illumination is above 300 lux for 50% or more of the time during standard operating hours.
- These pass/fail examples are for attempting to achieve an sDA of 55%.
- See IES LM-83 for more details.

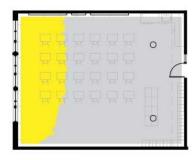
Advanced Designs for Net Zero Buildings – Slide 62


SDA_{300, 50%} 51%-100% 0-50%


Dynamic Daylighting Metrics

Annual Sunlight Exposure (ASE)

Figure 2a. Classroom with Exterior Overhang and Light Shelf



54.3% sDA300 lux, 50%

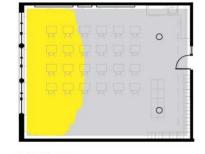
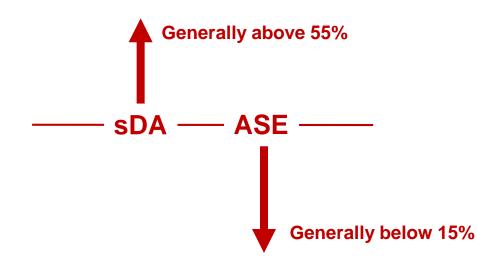

10.1% ASE_{1,000 lux, 250 hours} 604 average hours

Figure 2b. Classroom without Exterior Overhang or Light Shelf

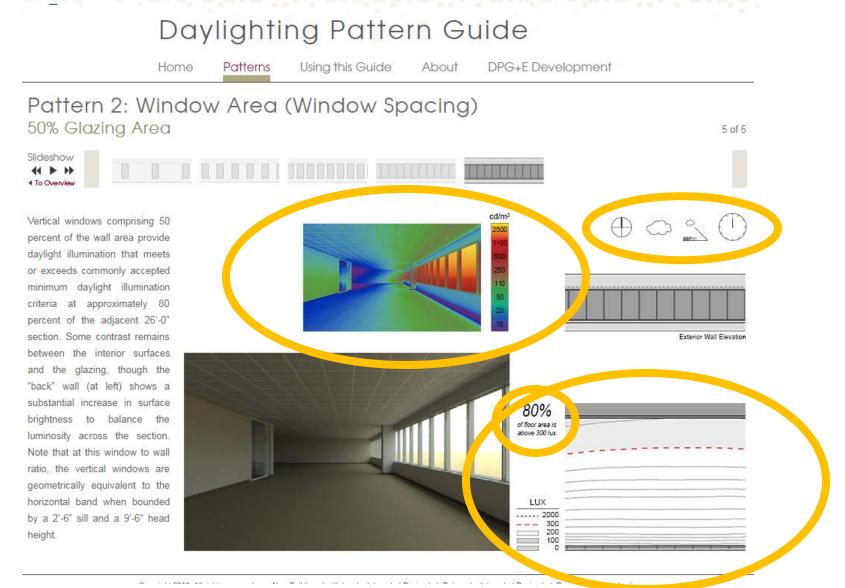
28.1% sDA300 lux, 50%



31.3% ASE_{1,000 lux, 250 hours} 669 average hours

- Represents the percent of the space when illumination exceeds 1000 lux for more than 250 hours per year.
- Recommended criteria for regularly occupied spaces is from 15% to 25%.
- ASE is a proxy for glare and overheating
- See IES LM-83 for more details.

Advanced Designs for Net Zero Buildings – Slide 63

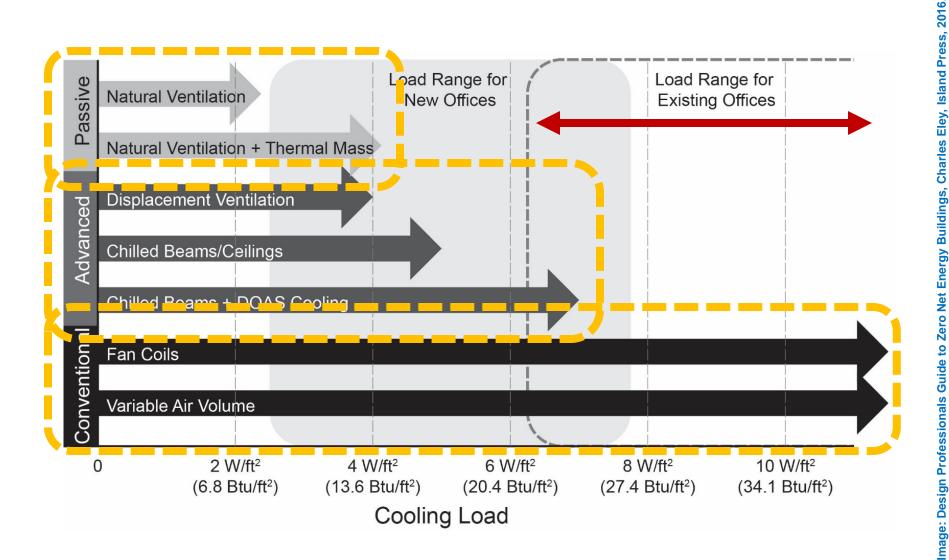

IES LM-83 Recommendations

	Minimum sDA _{300,50%}	Maximum ASE _{1000,250}		
Classrooms	75%	15%		
Gymnasiums/Multipurpose Rooms	55%	25%		
Library Reading Area	55%	25%		
Administrative Offices	55%	15%		

Advanced Designs for Net Zero Buildings - Slide 64

Dynamic Daylighting Metrics

https://patternguide.advancedbuildings.net



Advanced Designs for Net Zero Buildings – Slide 65

HVAC and Thermal Comfort

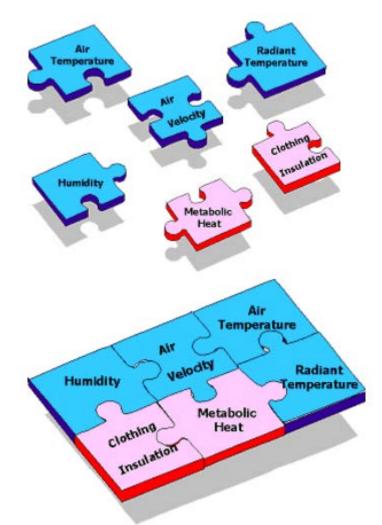
Advanced Designs for Net Zero Buildings - Slide 66

ASHRAE

HVAC and Thermal Comfort

A comparisons of systems for New York and Los Angeles Locations

	al Electric Energy by										
End Use		A		Amounal Cit		Lighting				De	alı
Los Angeles			Annual Source Annu Energy		nnual Site Energy		HVAC Energy			Peak	
		total	EUI	Electric	Electric Nat Gas	Electric	Electric	Nat Gas	total	Electric Coolir	
Annual Energy Use (kWh)		MBtu	kBtu/sf/yr	kWh	Therms	kWh	kWh	Therms	MBtu	kW	tons
0	Base Design - VAV	29,779	165	2,679,658	23,422	599,160	796,725	124	2732	938	391
1	0+Fan Coils	31,813	177	2,879,748	23,276	599,160	996,816	7	3403	948	389
2	0+Radiant Ceiling	26,668	148	2,376,977	23,301	599,160	494,044	35	1690	795	330
3	0+Active Beams	26,824	149	2,392,191	23,309	599,160	509,257	37	1742	818	346
New Y	ſork										
0	Base Design - VAV	29,992	167	2,594,809	34,236	599,160	711,876	8412	3271	1025	456
1	0+Fan Coils	31,795	177	2,814,940	29,727	599,160	932,006	3924	3573	1031	513
2	0+Radiant Ceiling	27,349	152	2,336,119	34,295	599,160	453 <i>,</i> 185	8482	2395	862	426
3	0+Active Beams	27,564	153	2,356,092	34,400	599,160	473,158	8585	2473	873	461


Advanced Designs for Net Zero Buildings - Slide 68

HVAC and Thermal Comfort

What is Thermal Comfort

- Space dry-bulb temperature
- Space humidity content
- Space air movement
- Space mean radiant temperature (MRT)
- Occupants are seated
- Clothing may vary
- Percent persons dissatisfied (PPD)Predicted mean vote (PMV)

Natural Ventilation Points

- Natural ventilation can be used under certain conditions
- Natural ventilation air movement is dependent upon buoyancy, wind, or buoyancy and wind driven air outside air.
- There are presently no limitations on space humidity when utilizing natural ventilation; however, space humidity limits must be taken into account.
- The occurrence of natural ventilation is not predictable.
- If the openings are manual, then natural ventilation could be operated outside of recommended conditions.
- In a mixed-mode system there is a chance of surface condensation when switching from conditioning the space to naturally ventilating the space.

Energy Modeling in the Design Process

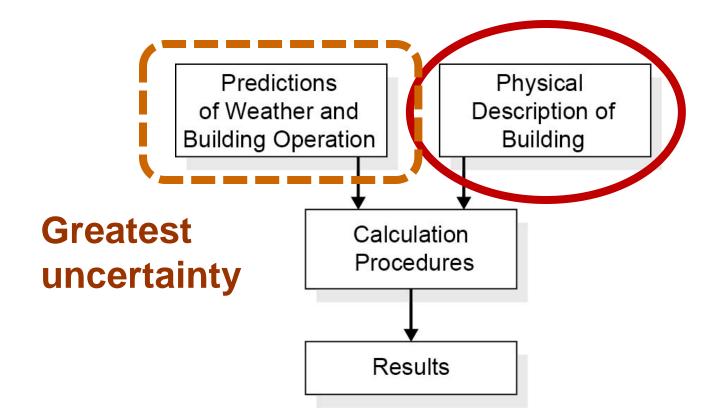
Advanced Designs for Net Zero Buildings – Slide 71

Energy Modeling in the Design Process

Methods of Assessing ZNE

Operational Assessment

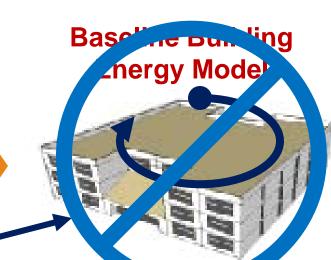
- Based on utility bills
- Actual building operation
- Based on actual weather


Asset Assessment

- Based on energy model
- Standard modeling assumptions
- Standard weather file

Advanced Designs for Net Zero Buildings – Slide 72

Energy Modeling in the Design Process

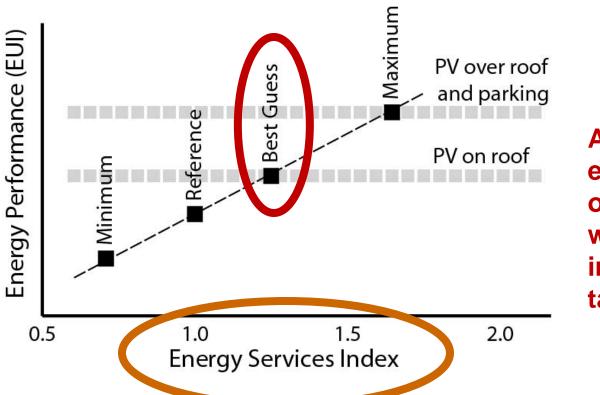


Advanced Designs for Net Zero Buildings - Slide 73

Proposed Design Energy Model

Both models use the same:

- Energy simulation software
- Temperature Set points
- Hours of operation
- Plug loads
- Occupants
- etc.


Same form and computation but upgraded or downgraded to meet roughly Standard 90.1-2004 Insulation 4 Factors

- Fenestration area, SHGC, and U-factor
- Lighting power and controls
- Standard HVAC system and equipment efficiencies

PCI = Performance Cost Index

Advanced Designs for Net Zero Buildings - Slide 74

Energy Modeling in the Design Process

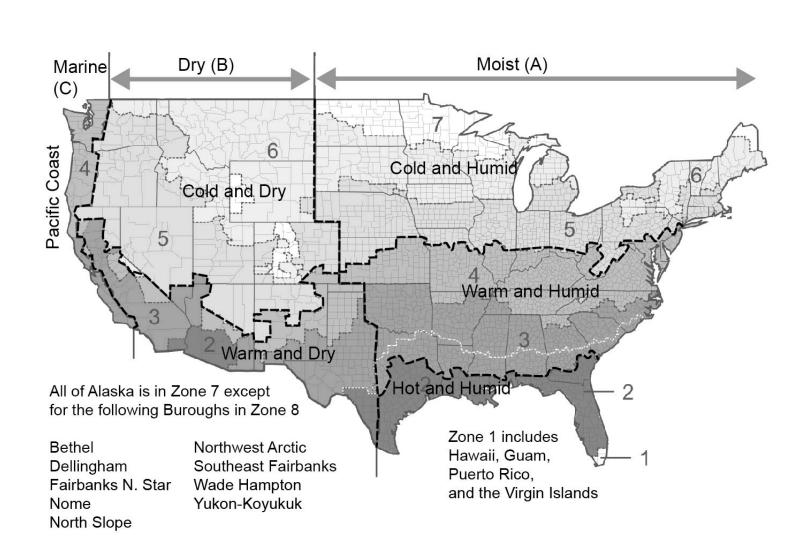
Accurately estimating building operation and weather is critically important when the target is ZNE.

Goldstein, David, and Charles Eley. A Classification of Building Energy Performance Indices, *Energy Efficiency*, Volume 7, Issue 1, February 2014. See Eley.com.

Advanced Designs for Net Zero Buildings - Slide 75

Break

Advanced Designs for Net Zero Buildings - Slide 76


EUI Targets and Potential

Advanced Designs for Net Zero Buildings – Slide 77

60 kBtu/ft²-y **Typical EUIs for Offices** 30 kBtu/ft²· y 15 kBtu/ft²·y **Average Buildings Technical Potential** 2000 Median **Latest Codes**

Advanced Designs for Net Zero Buildings – Slide 78

EUI Targets and Potential

	Pacific Coast	Warm and Dry	Hot and Humid	Warm and Humid	Cold and Dry	Cold and Humid	Artic
CZ->	(3c, 4c)	(2b, 3b, 4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Warehouses	34	20	23	40	53	65	161
Offices	58	62	69	69	69	11	126
Ketall	101	ØØ	99	114	122	142	249
Schools	70	59	71	78	77	91	165
Apartments	62	42	52	69	73	86	153
Hotels	122	99	119	126	126	134	151
Healthcare	232	202	232	242	218	238	281
Restaurants	558	497	522	569	598	660	965

Source: EnergyPlus simulations of prototype buildings modified to match characteristics of pre-2000 buildings, NREL.

From: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

Advanced Designs for Net Zero Buildings – Slide 80

Pacific Warm and Hot and Warm and Cold and Cold and Coast Dry Humid Humid Drv Humid Artic (2b, 3b, (3c, 4c)4b) (1a, 2a)(3a, 4a) (5b, 6b) (5a, 6a, 7)(8) Warehouses Offices - -Schools Apartments **Office w/ Data Center** Hotels Healthcare Restaurants

Source: EnergyPlus simulations of prototype buildings in minimum compliance with Standard 90.1-2013, PNNL.

Source: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

Advanced Designs for Net Zero Buildings – Slide 81

	Pacific	Warm and	Hot and	Warm and	Cold and	Cold and	
	Coast	Dry	Humid	Humid	Dry	Humid	Artic
		(2b, 3b,					
	(3c, 4c)	4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Warehouses	6	6	5	6	7	8	7
Offices	8	10	11	11	11	11	12
Retail	13	18	18	17	18	19	27
Schools	16	21	23	22	21	23	26
Apartments	24	30	29	31	32	34	35
Offices/Data Center	43	47	47	44	47	46	47
Hotels	40	49	49	51	51	54	58
		• :		07			
Restaurants	265	323	324	336	343	353	377

Study did not look at comprehensive measures to reduce cooking and refrigeration energy.

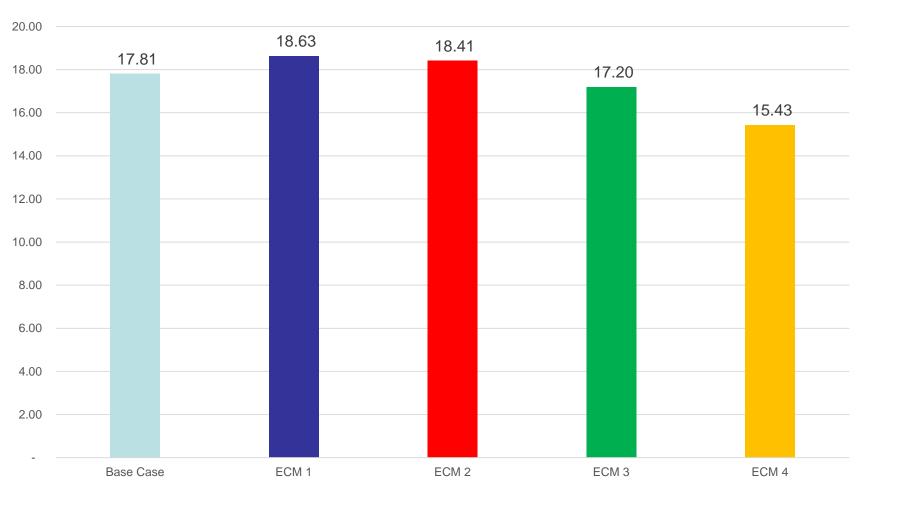
Source: ASHRAE Research Project 1651-RP, Glazer.

From: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

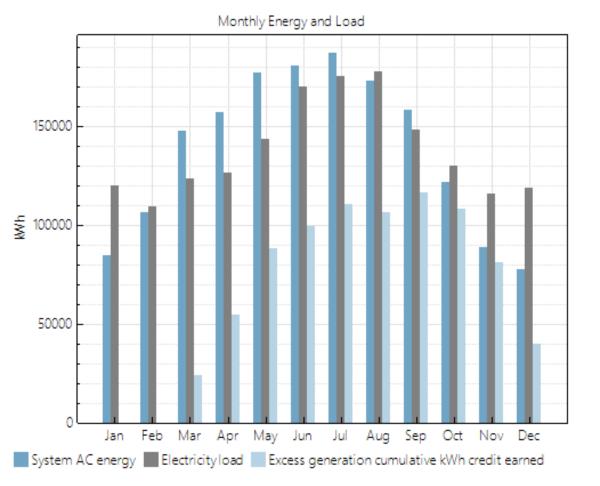
Advanced Designs for Net Zero Buildings – Slide 82

EUI Examples

Advanced Designs for Net Zero Buildings - Slide 83



EUI Examples

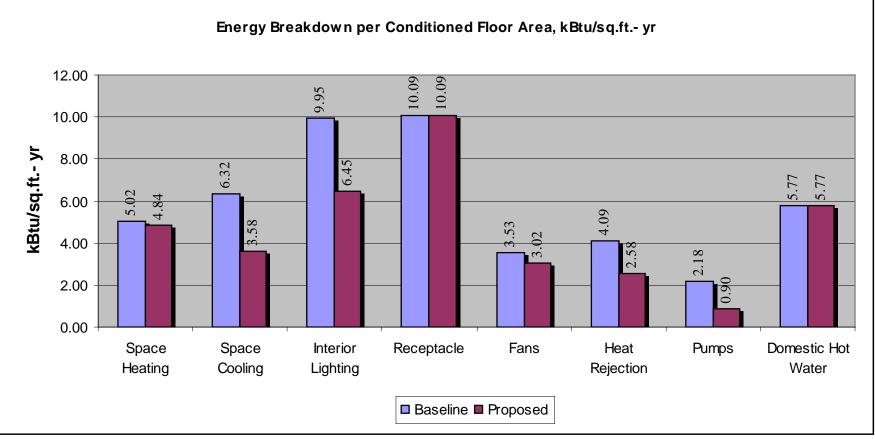


Advanced Designs for Net Zero Buildings - Slide 85

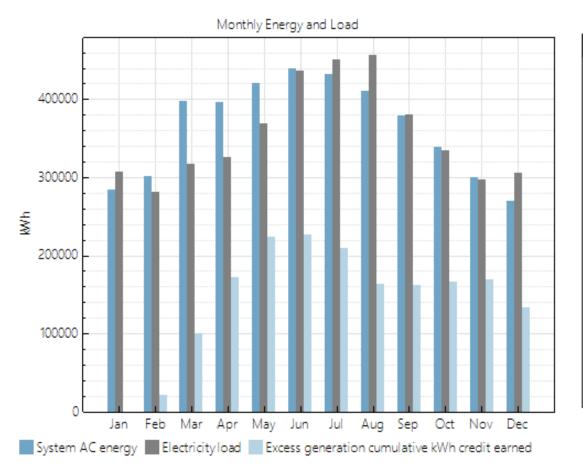
EUI Examples

Taking Will County Courthouse to Net Zero

Metric	Value
Annual energy (year 1)	1,661,297 kWh
Capacity factor (year 1)	15.8%
Energy yield (year 1)	1,386 kWh/kW
Performance ratio (year 1)	0.83
Levelized COE (nominal)	7.34 ¢/kWh
Levelized COE (real)	5.86 ¢/kWh
Electricity bill without system (year 1)	\$202,787
Electricity bill with system (year 1)	\$68,061
Net savings with system (year 1)	\$134,726
Net present value	\$4,616
Simple payback period	15.5 years
Discounted payback period	NaN
Net capital cost	\$2,179,913
Equity	\$871,965
Debt	\$1,307,948


Advanced Designs for Net Zero Buildings - Slide 86

		Energy Breakdow n per Conditioned Floor Area, kBtu/sq.ftyr									
	Description	Space Heating	Space Cooling	Interior Lighting	Receptacle	Fans	Heat Rejection	Pumps	Domestic Hot Water	Total	% better N/A
Baseline	2008 Title-24 Standard System Type 4, Overhead VAV w/ Reheat	5.02	6.32	9.95	10.09	3.53	4.09	2.18	5.77	46.95	N/A
Proposed	Overhead VAV w / Reheat, Thermal Storage	4.84	3.58	6.45	10.09	3.02	2.58	0.90	5.77	37.23	20.7%



EUI Examples

Taking San Bernardino Courthouse to Net Zero

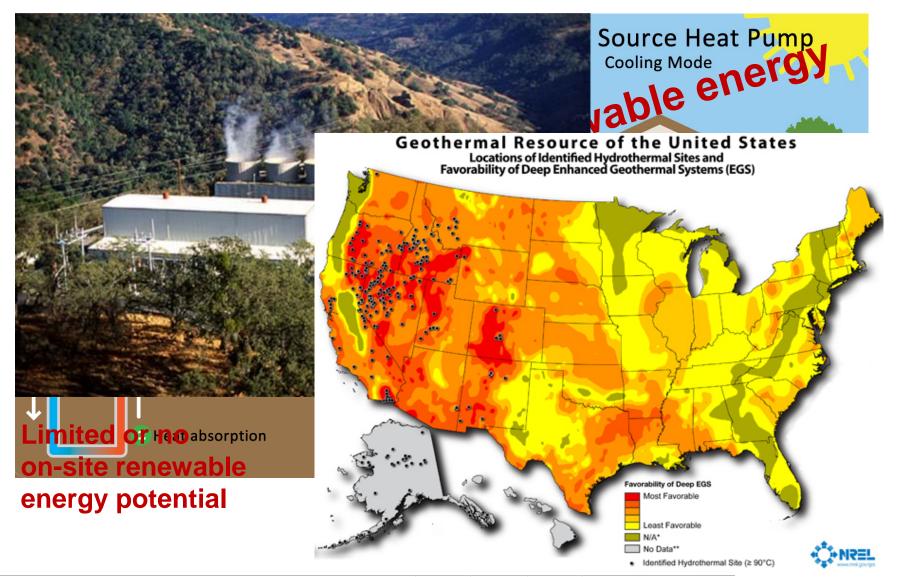
Metric	Value
Annual energy (year 1)	4,369,936 kWh
Capacity factor (year 1)	19.2%
Energy yield (year 1)	1,680 kWh/kW
Performance ratio (year 1)	0.81
Levelized COE (nominal)	6.05 ¢/kWh
Levelized COE (real)	4.83 ¢/kWh
Electricity bill without system (year 1)	\$519,583
Electricity bill with system (year 1)	\$167,846
Net savings with system (year 1)	\$351,738
Net present value	\$525,719
Simple payback period	11.9 years
Discounted payback period	NaN
Net capital cost	\$4,732,172
Equity	\$1,892,869
Debt	\$2,839,303

Advanced Designs for Net Zero Buildings - Slide 90

Advanced Designs for Net Zero Buildings – Slide 91

Advanced Designs for Net Zero Buildings - Slide 92

- Limited on-site potential for ZNE buildings
- More potential is at the utility scale

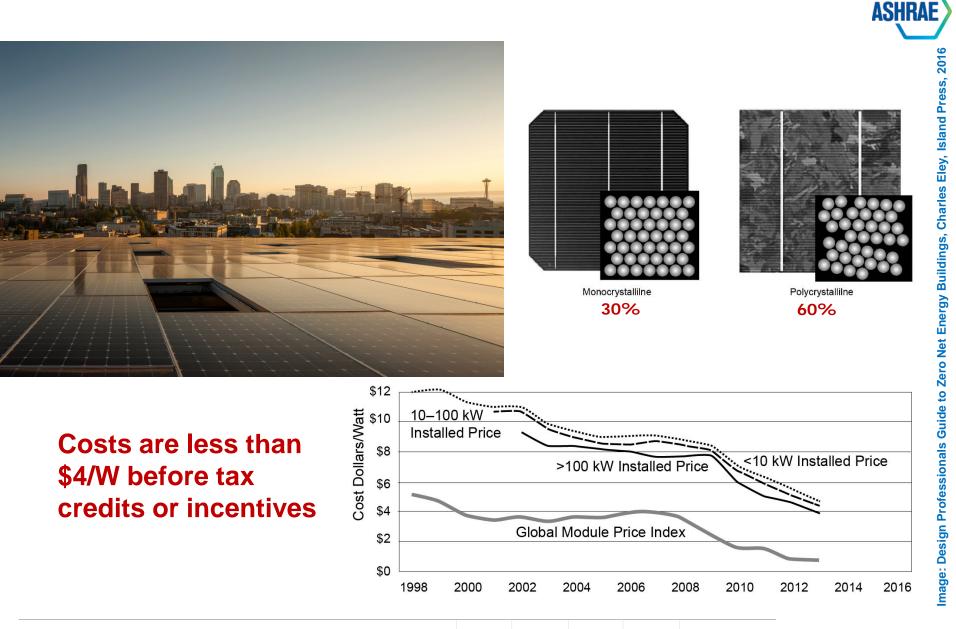

Advanced Designs for Net Zero Buildings – Slide 93

Advanced Designs for Net Zero Buildings - Slide 94

Advanced Designs for Net Zero Buildings – Slide 95

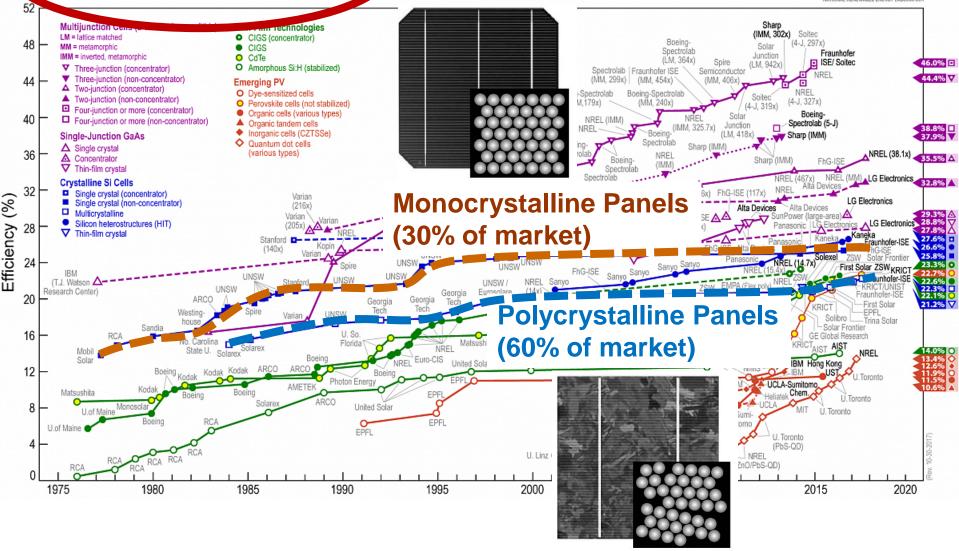
Regenerative but not renewable in the same sense as wind and solar.

SCIENTIFIC AMERICAN.

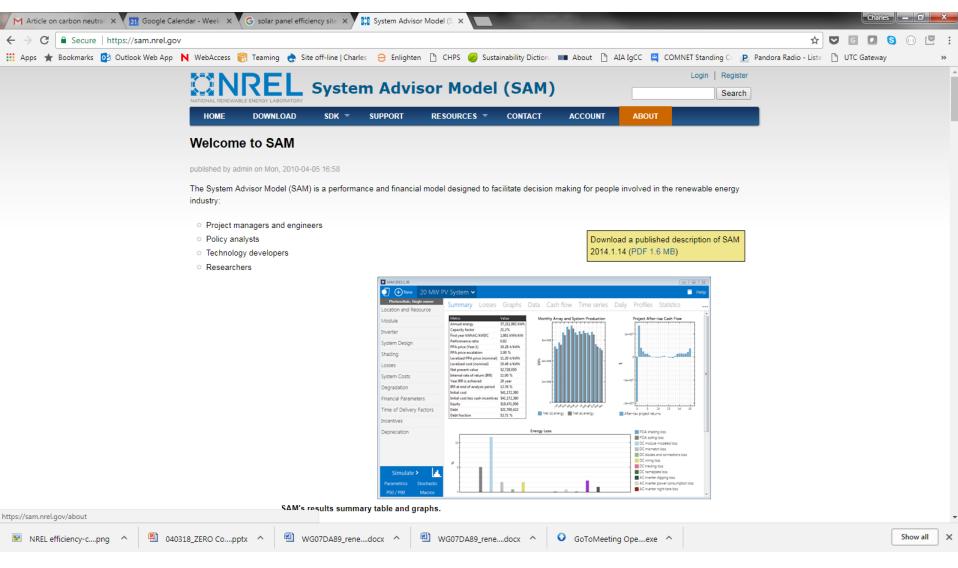

Congress Says Biomass Is Carbon-Neutral, but Scientists Disagree

Using wood as fuel source could actually increase CO2 emissions

By Chelsea Harvey, Niina Heikkinen, E&E News on March 23, 2018


Advanced Designs for Net Zero Buildings - Slide 96

Advanced Designs for Net Zero Buildings - Slide 97


Advanced Designs for Net Zero Buildings – Slide 98

					AOIIIIAL		
 M Article on carbon neutral × 33 Goog ← → C ① pvwatts.nrel.gov/pvwatt Apps ★ Bookmarks 03 Outlook Web 	SYSTEM INFO	Charles – D					
	Modify the inputs below to run the simulation.						
	DC System Size (kW):	Calculate System Losses B	Breakdown				
	Module Type:	Modify the parameters below to ch	nange the overall System		-		
	Array Type:	Shading (%): Snow (%):	3 () 0 ()		d System Losses:		
	System Losses (%):	Mismatch (%): Wiring (%):	2 1 2 1 0.5 1		incident solar radiation		
	Tilt (deg):	Connections (%): Light-Induced Degradation (%): Nameplate Rating (%):		array such as bui shading for fixed axis tracking. PV	used by objects near the ldings or trees, or by self- arrays or arrays with two- Watts [®] calculates self- or one-axis trackers, so		
	Azimuth (deg):	Age (%): Availability (%):	0 1 3 1	you should not us	se the shading loss to hading with the one-axis		
				Click for more in	nformation		
NREL efficiency-cpng へ 創	+ Advanced Param	eters			Show all		

AQUDAE

Advanced Designs for Net Zero Buildings – Slide 99

SAM includes performance models for the following technologies

- Photovoltaic systems (flat-plate and concentrating)
- Battery storage model for photovoltaic systems
- Parabolic trough concentrating solar power
- Power tower concentrating solar power (molten salt and direct steam)
- Linear Fresnel concentrating solar power
- Dish-Stirling concentrating solar power
- Process heat parabolic trough and linear direct steam
- A simple "generic model" for conventional thermal
- Solar water heating for residential or commercial buildings
- Wind power (large and small)
- Geothermal power and geothermal co-production

Diomass power

Advanced Designs for Net Zero Buildings – Slide 101

Climate	Orientation	0• Tilt	10• Tilt	20• Tilt	30• Tilt	40• Tilt	50• Tilt	60• Tilt
Warm and Dry	East	1,414	1,385	1,336	1,269	1,191	1,105	1,013
(Los Angeles)	Southeast	1,414	1.470	1,493	1,486	1,450	1,383	1,292
	South	1,414	1,518	1,581	1,605	1,594	1,540	1,451
	Southwest	1,414	1,100	1,545	1,560	1,537	1,483	1,399
	West	1,414	1,425	1,409	1,368	1,310	1,236	1,149
Pacific Coast	East	1,378	1,353	1,304	1,244	1,172	1,092	1,010
(San Francisco)	Southeast	1,378	1,437	1,467	1,466	1,434	1,373	1,289
	South	1,378	1,485	1,553	1,582	1,571	1,523	1,436
	Southwest	1,378	1.464	1,518	1,534	1,518	1,466	1,389
	West	1,378	1,389	1,372	1,336	1,282	1,213	1,132

Source: PV Watt Calculations.

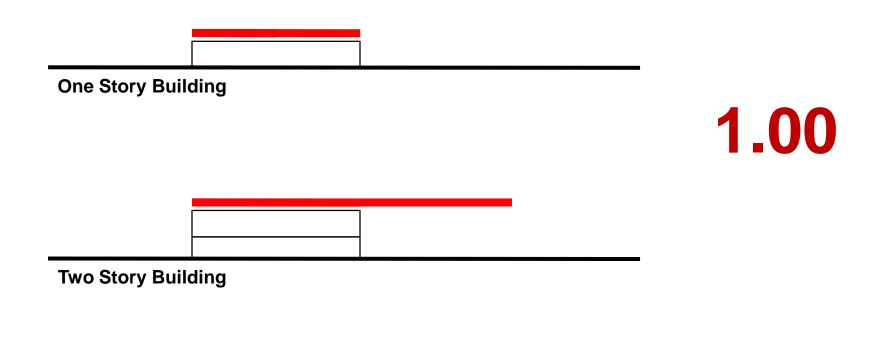
Source: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

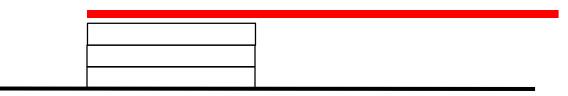
Advanced Designs for Net Zero Buildings - Slide 102

	Pacific Coast	Warm and Dry	Hot and Humid	Warm and Humid	Cold and Dry	Cold and Humid	Artic
	(3c, 4c)	(2b, 3b, 4b)	(1a, 2a)	(3a, 4a)	(5b, 6b)	(5a, 6a, 7)	(8)
Horizontal Production (kWh/y)/kW (stc)	1,378	1,414	1,359	1,316	1,311	1,138	748
Horizontal Production	4,702	4,825	4,637	4,490	4,473	3,883	2,552
kBtu/ft²-y of Collector Area	72	74	71	69	69	60	39

Maximum site EUI to achieve ZNE for a one-story building with the roof covered with PVs.

Source: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.


Advanced Designs for Net Zero Buildings - Slide 103


Challenging Building Types and Climates

Advanced Designs for Net Zero Buildings – Slide 104

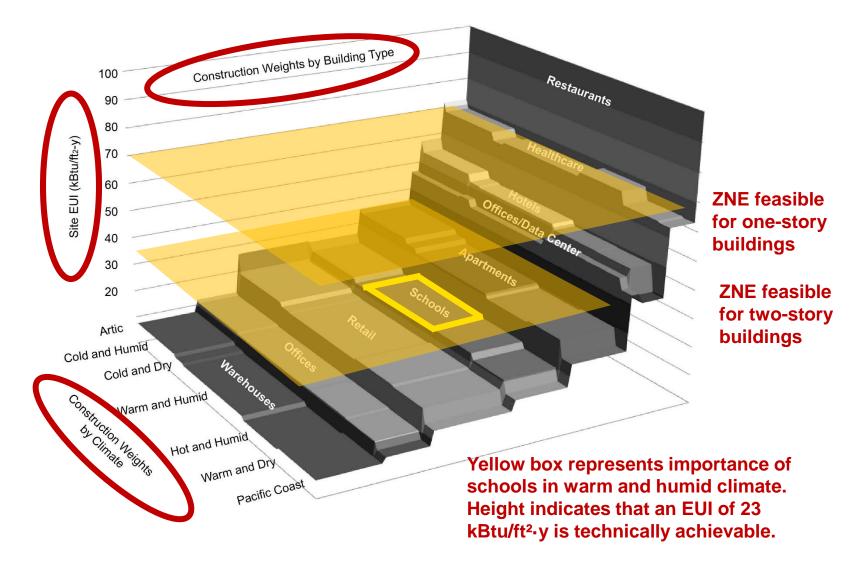
Challenging Building Types and Climates

ASHR

Three Story Building

Advanced Designs for Net Zero Buildings - Slide 105

Challenging Building Types and Climates


	Pacific Coast	Warm and Dry	Hot and Humid	Warm and Humid	Cold and Dry	Cold and Humid	Artic
Warehouses	0.08	NE feasik	$10^{0.07}$ for f	0.09 Our Stori	os 0.10	0.13 ore	0.19
Offices	0.11	0.14	0.15	0.15	0.15	0.18	0.30
Retail	0.18	0.24	⁰ 7 815	foasible	for ^{0.26}	0.32	0.67
Schools	0.22	0.28	0.32	0.32	0.31	0.38	0.66
Apartments	0.33	0.40	10.41	story ₄ bui	laings	0.57	0.90
Off/Data Center	0.59	0.63 🏹			0.68	0.77	1.19
Hotels	0.55	0.66		0.74	0.75	<u> </u>	1.48
Healthcare	0.87	0.86	0.96	0.96	<u>9</u> 5 0.95	PV _{.1} @n i	00 <mark>1</mark> .83
Restaurants	3.66	4.35	4.53	4.87	4.99	nopenc	u <mark>g</mark> h ₁

Source: Design Professionals Guide to Zero Net Energy Buildings, Charles Eley, Island Press, 2016.

Advanced Designs for Net Zero Buildings - Slide 106

Challenging Building Types and Climates

Advanced Designs for Net Zero Buildings - Slide 107

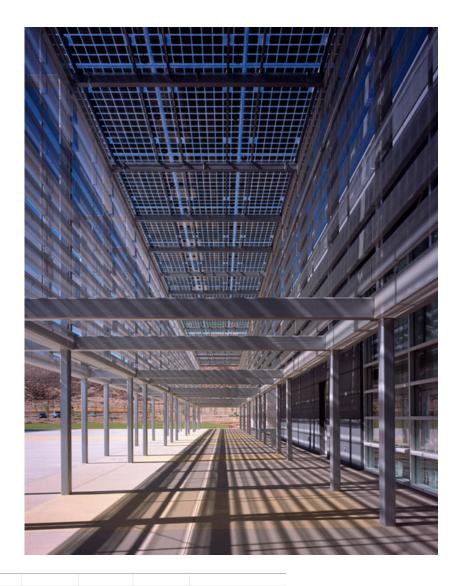
PV Examples

Advanced Designs for Net Zero Buildings - Slide 108

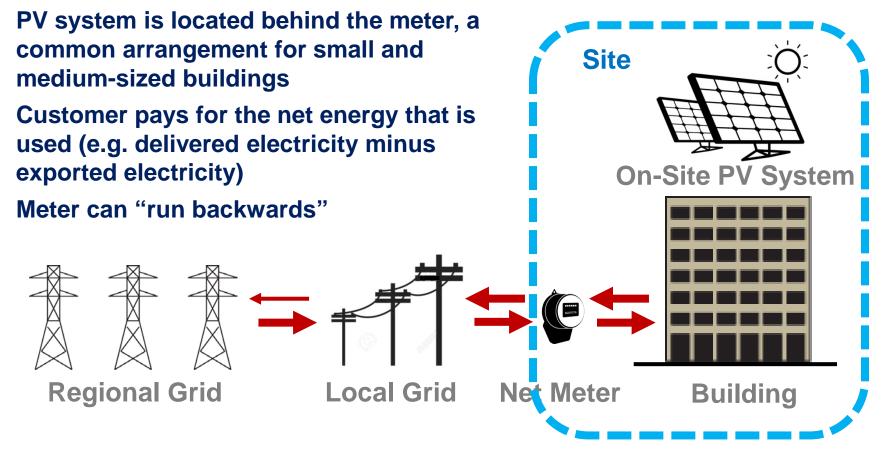
PV Examples

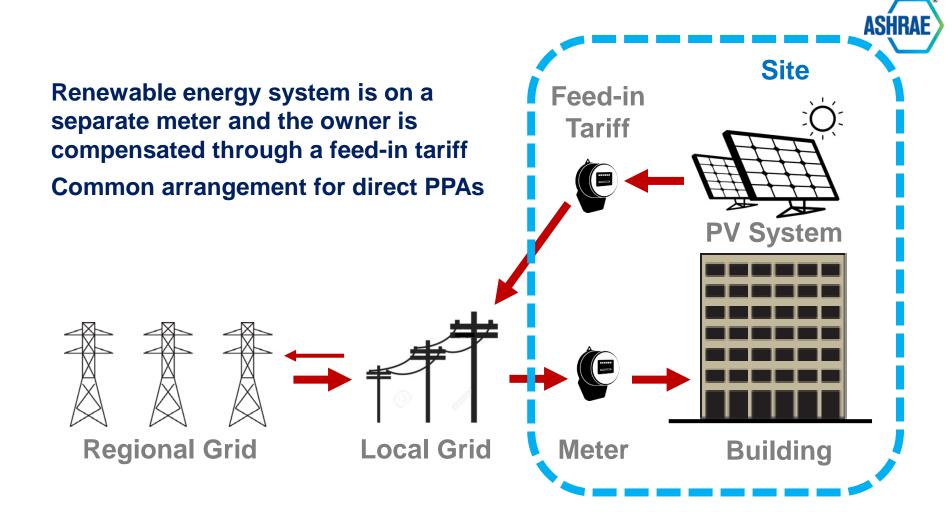
Water and Life Museum, Hemet

- 50,000 ft² PV panels
- Daily production 2550 kWh (based on 5.5 hour/day FTE)
- Power consumed by building in 12 hours (3729 kWh)
- 68% solar power contribution

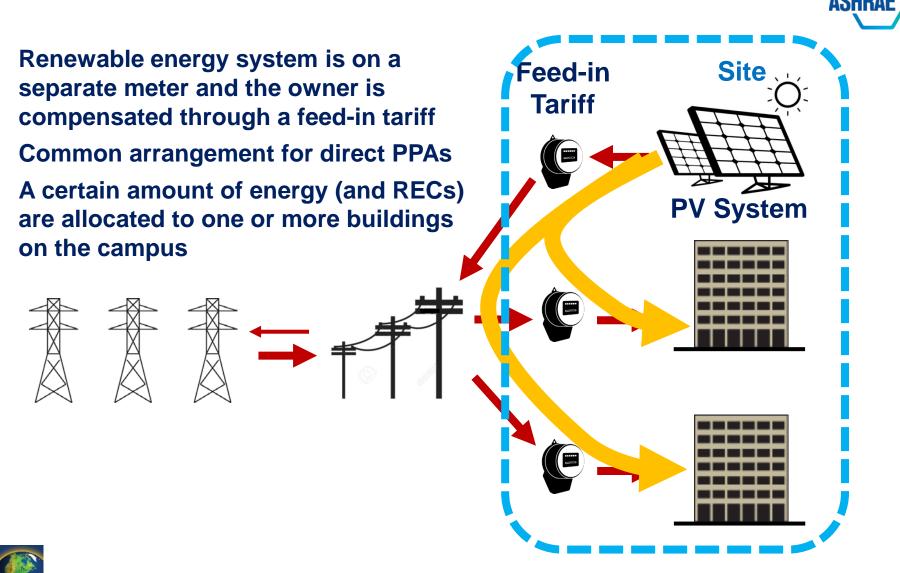


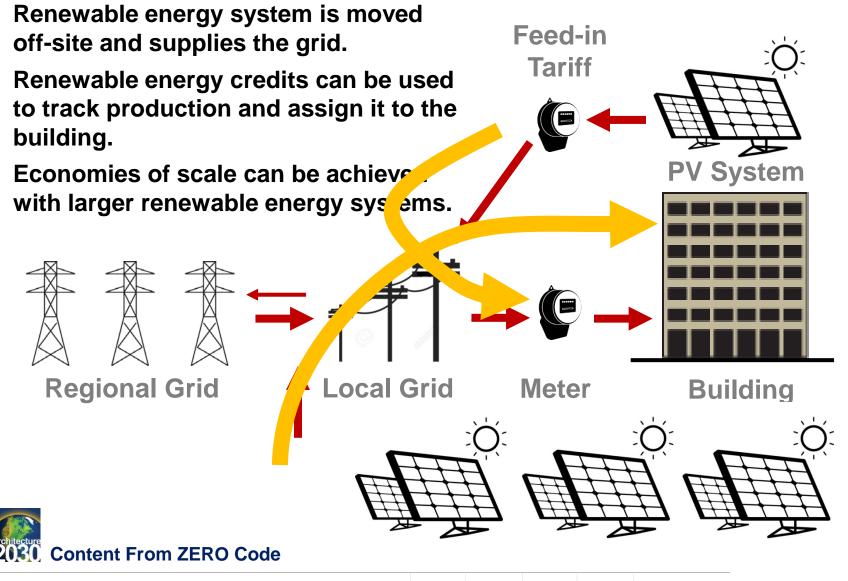
Advanced Designs for Net Zero Buildings - Slide 109





Advanced Designs for Net Zero Buildings – Slide 112





Off-Site Renewable Energy Procurement Options

Class One

- Self Owned
- Community Solar
- Virtual PPA
- Renewable Energy Investment Trust

Class Two

- Direct Access to Wholesale Market
- Green Tariffs

Class Three

Unbundled RECs

High probability of additionality
 Long-term commitment

- Medium probability of additionality
- Customers can easily opt out
- □ Little chance of additionality
- Least desirable option

See <u>zero-code.org</u> for more details.

Advanced Designs for Net Zero Buildings - Slide 117

Palo Alto Campus

73 MW Solar System ASHRAE in California Desert

Advanced Designs for Net Zero Buildings - Slide 119

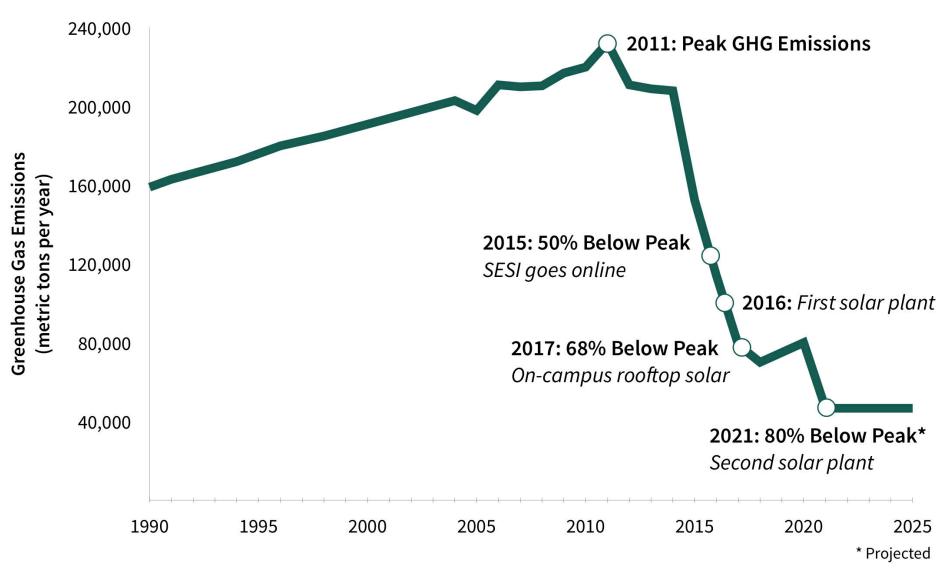
Stanford to go 100 percent solar by 2021

A second solar-generating plant, to be built in the next three years, will complete the university's transition to clean power and further shrink campus greenhouse gas emissions.

BY CHRIS PEACOCK

Stanford's solar future is growing even brighter.

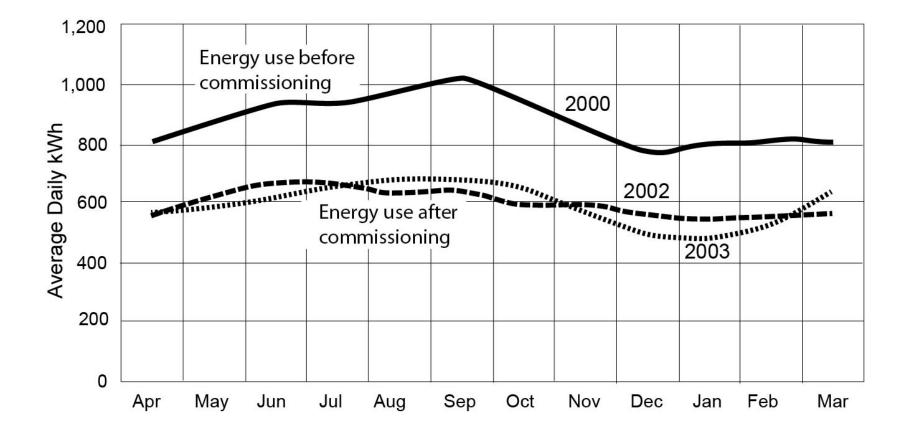
A new solar generating plant – Stanford's second – announced today, will enable the university to use 100 percent renewable electricity in three years, more than two decades ahead of California's goal of a carbon-free grid by 2045.

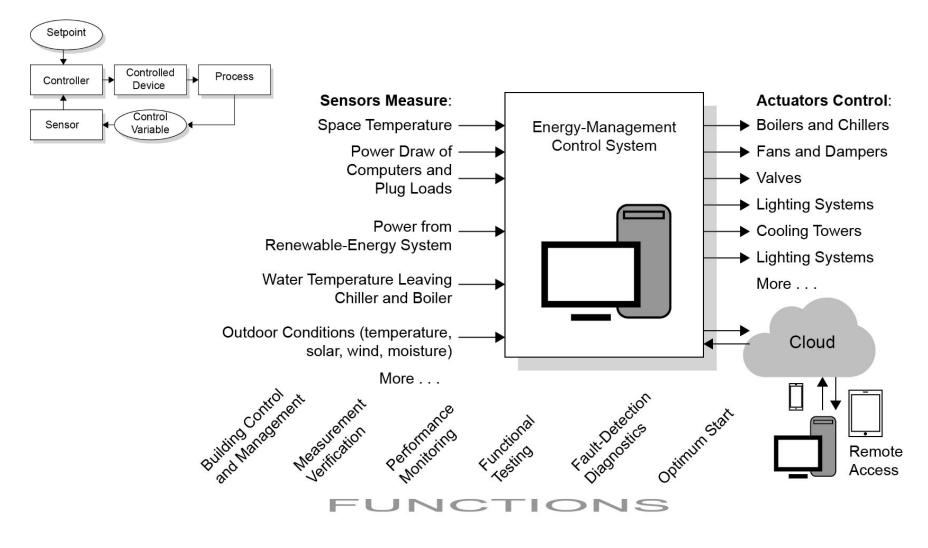

Completing the university's transition to clean power, Stanford finalized an agreement to collaborate with Recurrent Energy on an 88-megawatt solar photovoltaic plant to be constructed in central California, near Lemoore. The plant is scheduled to go online

On-campus rooftop solar power and two solar generating stations together will produce enough clean renewable electricity each year to equal the university's annual electricity consumption. (*Image credit: M. Scott Gould*)

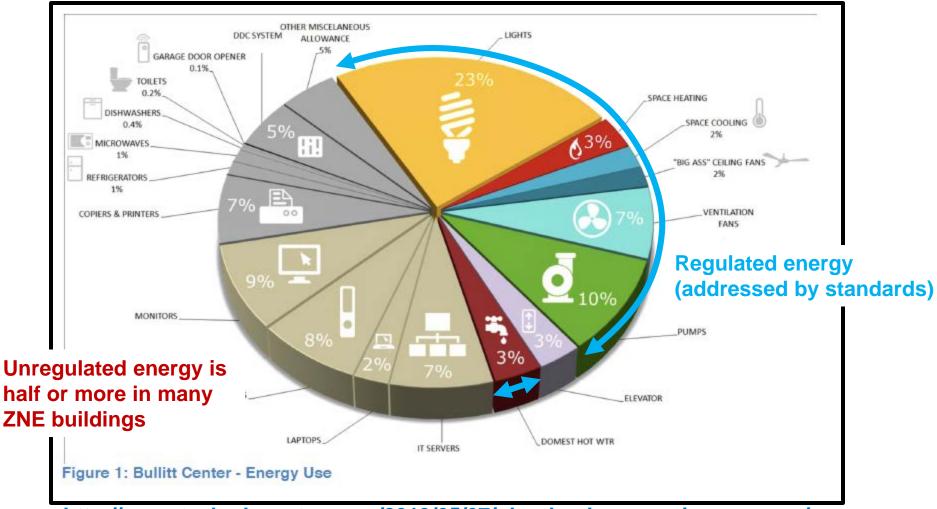
Advanced Designs for Net Zero Buildings – Slide 120

Stanford's Path to Reduced Emissions

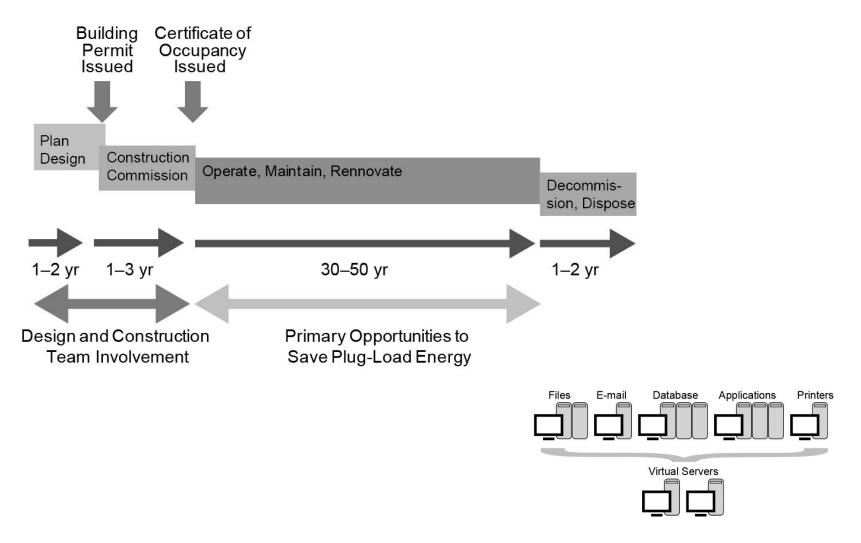

Advanced Designs for Net Zero Buildings - Slide 121


Making It All Work

Advanced Designs for Net Zero Buildings - Slide 122



1	ə — •
≡	
-	Your Current Zone Northwest Conference Room
	74° F COOLING
	△ Warm My Space
	○ I am Comfy
	▽ Cool My Space



http://greentechadvocates.com/2013/05/07/plug-loads-a-growing-concern/

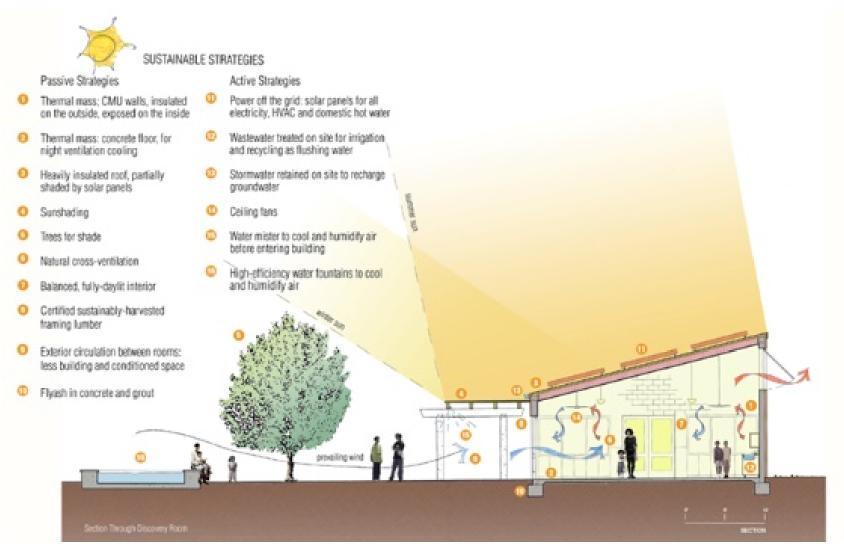
Advanced Designs for Net Zero Buildings - Slide 126

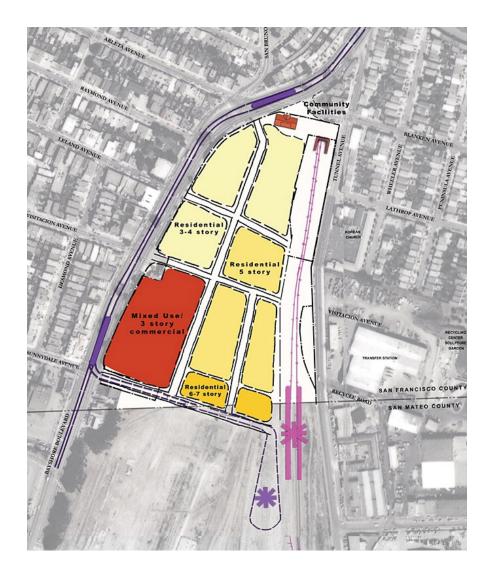
Carbon Emissions Reports

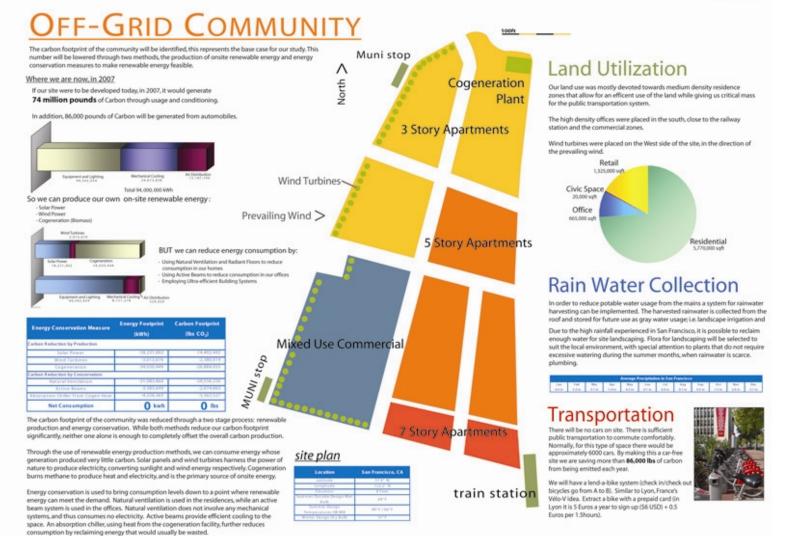
Advanced Designs for Net Zero Buildings - Slide 128

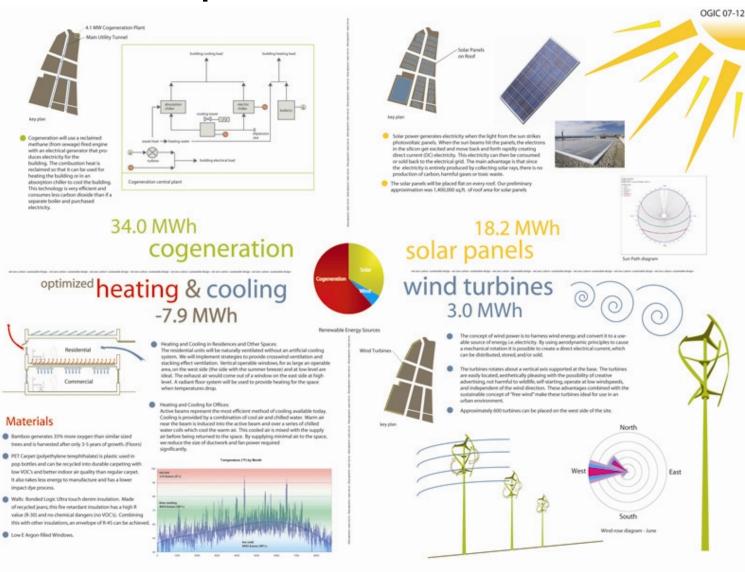
Practical Examples

Advanced Designs for Net Zero Buildings - Slide 129



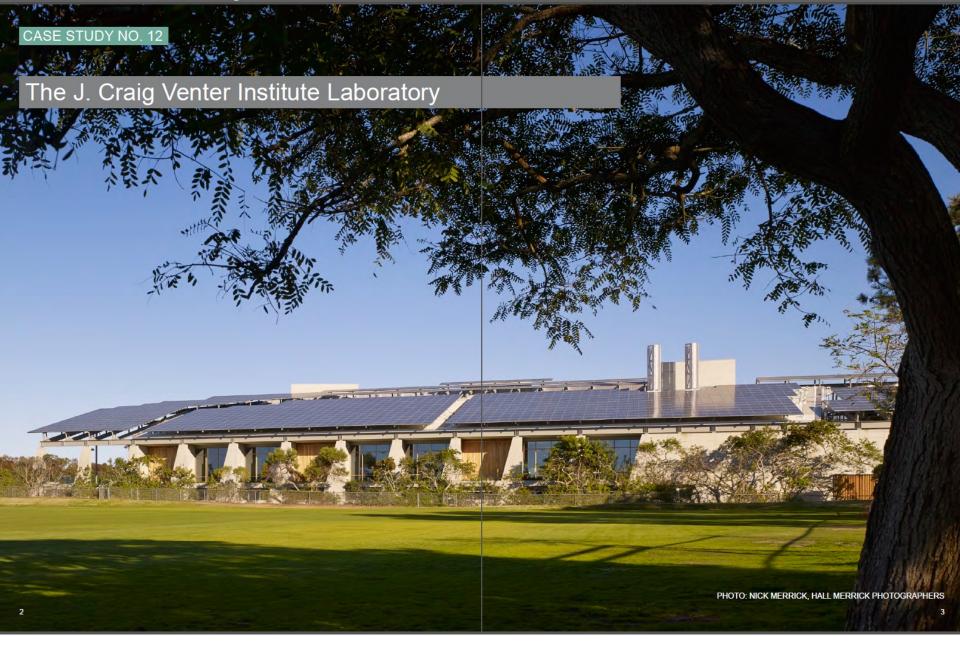






Off-Grid Competition

Advanced Designs for Net Zero Buildings - Slide 136

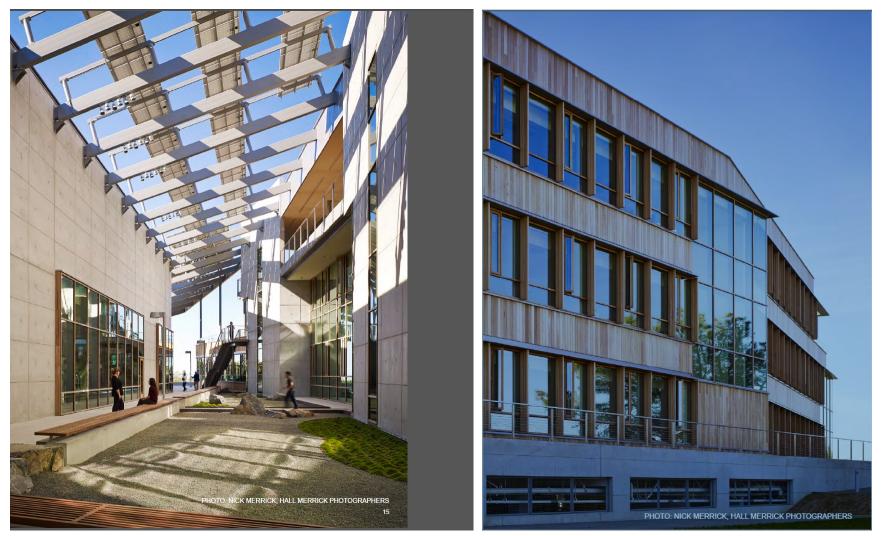


Stevens Library IDeAS Office Watsonville Water Resources U.C. Merced DPR Office (SF) IBEW-NECA JATC Training 435 Indio Way West Berkeley Library SF Exploratorium J. Craig Venter Institute Lab La Escuelita Education Center California DMV Field Office Butte College LACCD Harbor College Science Stanford University

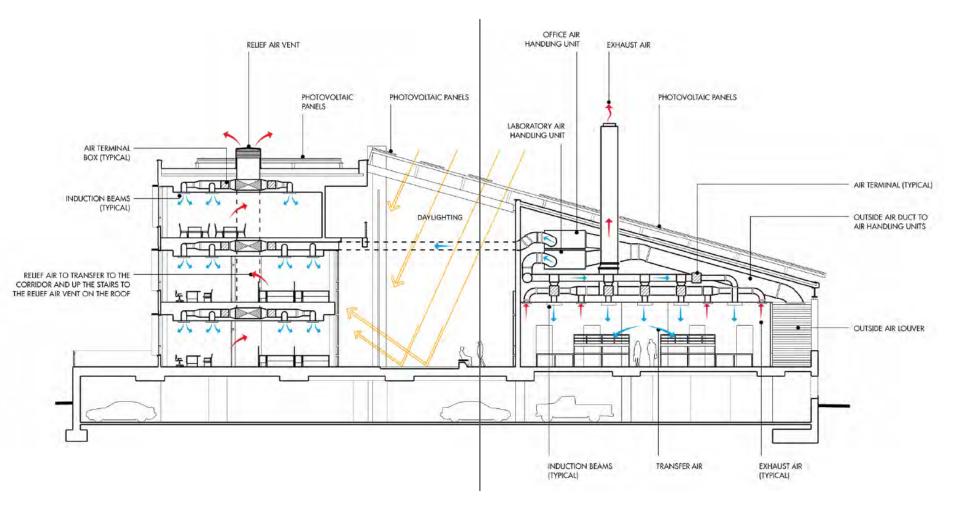
https://www.pge.com/pge_global/common/pdfs/save-energy-money/savings-programs/zero-net-energy-program/ZNE-Case-Study-Buildings-Vol1.pdf https://www.pge.com/pge_global/common/pdfs/save-energy-money/savings-programs/zero-net-energy-program/ZNE-Case-Study-Buildings-Vol2.pdf https://www.pge.com/pge_global/common/pdfs/save-energy-money/savings-programs/zero-net-energy-program/ZNE-Case-Study-Buildings-Vol2.pdf

Advanced Designs for Net Zero Buildings – Slide 137

Practical Examples


Advanced Designs for Net Zero Buildings - Slide 138

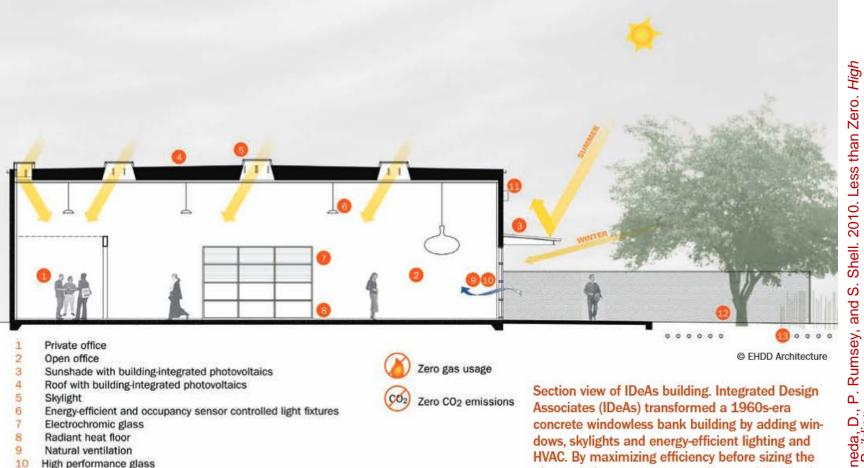
Practical Examples



Advanced Designs for Net Zero Buildings - Slide 139



ENERGY USE AND PV PRODUCTION (2009)



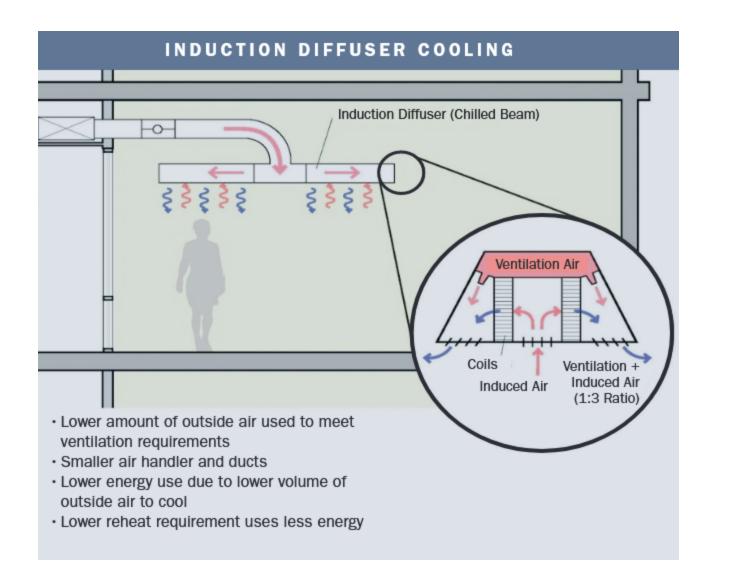
org/attachments/article/12143/10F-IDeAs-Z2-Design-Shell. 2010. Less than Zero. High akely. Graphic © EHDD Architecture. Rumsey, and S. ٦ avid ²hotographs

Advanced Designs for Net Zero Buildings - Slide 144

- 11 Reduction of outdoor light pollution
- 12 Water-efficient landscaping
- 13 Ground-source heat pump

photovoltaic system to cover the remaining loads, costs were kept to a minimum. In 2009, the building used less energy than it produced, achieving the goal of net zero energy and carbon emissions.

Advanced Designs for Net Zero Buildings - Slide 145



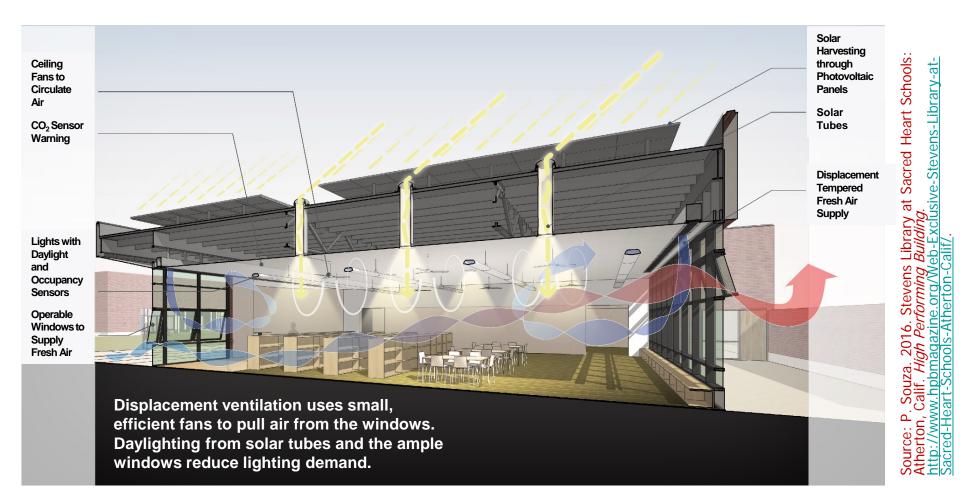
∞' 5W-Davi a. A. Murphree. 2015. Graceful forni a 52 tos 2 \triangleleft <u>/article/ ss%20</u>P ents/ and solada σ Source nspi

Advanced Designs for Net Zero Buildings - Slide 146

5W-Dav Graceful C Murphree. 2015. Φ articl 0 our

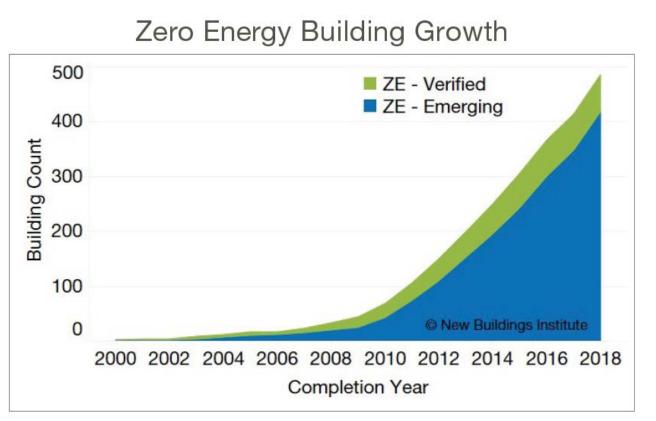
Advanced Designs for Net Zero Buildings - Slide 147

Practical Examples


Stevens Library at Sacred Heart Schools, Atherton

Advanced Designs for Net Zero Buildings - Slide 148

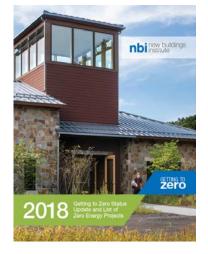
Advanced Designs for Net Zero Buildings - Slide 149

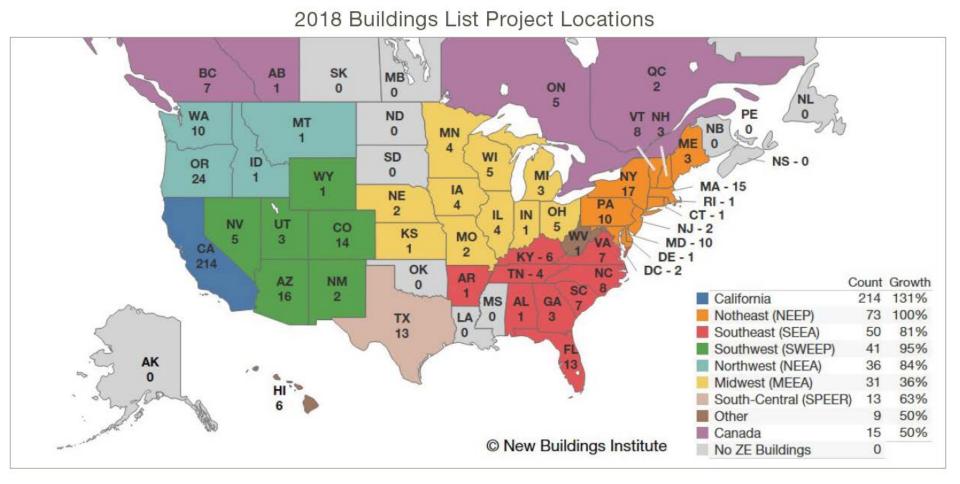

Closing Comments

Advanced Designs for Net Zero Buildings - Slide 150

Closing Comments

Growth in ZNE Buildings

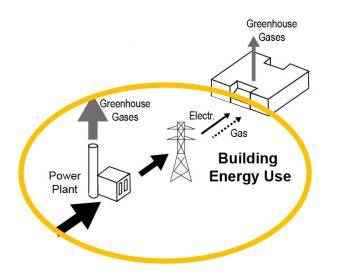



Fig 1. The Buildings List includes nearly 500 projects and is on a steep curve upward, having increased over 700% since 2012.

Advanced Designs for Net Zero Buildings – Slide 151

Closing Comments

North American ZNE Locations – 2018



nbi new buildings institute

Advanced Designs for Net Zero Buildings – Slide 152

Sustainability—The Big Picture

- Transportation
- Water
- Materials and products

Advanced Designs for Net Zero Buildings - Slide 153

Wrap-Up

Advanced Designs for Net Zero Buildings - Slide 154

CHARLES ELEY

DESIGN PROFESSIONAL'S GUIDE to ZERO NET ENERGY BUILDINGS

charles@eley.com

Advanced Designs for Net Zero Buildings - Slide 155

Evaluation and Certificate

- ASHRAE values your comments about this course. All course registrants will receive a separate email from ALI-Education (<u>edu@ashrae.org</u>) allowing access to the course survey and certificate of attendance. Once you have completed the survey, you will be redirected to the attendance certificate. Questions concerning this process should be sent to <u>edu@ashrae.org</u>.
- A copy of the course presentation is available at: <u>https://www.ashrae.org/2020nov17</u>
- If you have any questions about ASHRAE Certificates, please contact Kelly Arnold, Coordinator Professional Development at <u>karnold@ashrae.org</u>.
- If you have any questions about ASHRAE courses, please contact Tiffany Cox, Professional Development Course Administrator, at <u>tcox@ashrae.org</u>.

Advanced Designs for Net Zero Buildings - Slide 156

Explore ASHRAE Learning Institute Courses

https://www.ashrae.org/instructor-led-courses

Find a Topic that Fits You:

- Commissioning
- Energy Efficiency
- Environmental Quality
- HVAC&R Applications
- Standards and Guidelines

See all the ways to learn and grow with ASHRAE at: <u>https://www.ashrae.org/professional-development/learning-portal</u>

Advanced Designs for Net Zero Buildings – Slide 157

ASHRAE Certification

- More than 3,000 certifications earned to-date
- ✓ Elevate your reputation among peers, in the workplace and among clients
- **NEW!** Digital Badging:

- Embedded <u>metadata</u> uniquely linked to you
- Shareable in electronic media, including LinkedIn and email
- > Instant recognition, with real-time, third-part verification

Visit www.ashrae.org/certification to learn more

