Kinetic Sculpture

OBJECT
This activity will demonstrate the design process. Every day, engineers define problems, design solutions, build, test, redesign, and retest them, and then share the results.

GRADE LEVEL
Middle school.

THE CHALLENGE!
Make a sculpture that is at least six inches tall and has two parts that move in the wind. That’s what makes it kinetic—it moves. But watch out…the wind might also knock it over.

MATERIALS (for each student or group)
• Electric Fan (you only need one)
• Ruler
• Cardboard
• Markers
• Ping Pong balls
• Poster putty
• Paper cups (various sizes)
• Scissors
• Wooden skewers
• Strips of colored paper or fabric
• String
• Masking tape
• Metal washers

BRAINSTORM AND DESIGN
Distribute the materials. Encourage students to first think about what they could build, and then to make simple sketches or drawings.

BUILD
An artist usually gives his or her sculpture a name. Naming a sculpture can add meaning. Name your sculpture. Try for a name that’s accurate, funny, poetic, or mysterious.

TEST
As students complete their sculptures, place each in front of the fan. Does the sculpture get blown away or fall over? If it does, it’s probably because of the force, the push, of wind from the fan. Ask students to think how they can redesign their sculpture. (Tip: try giving it a wide or heavy base.) But wind isn’t the only force acting on the sculpture. Where the sculpture’s weight is located affects how it stands. If most of the weight is at the top it may tip over. If most is at the bottom, it may stand better.

REDESIGN
When the sculpture is standing tall and secure, ask the students if they can…
- add another moving part?
- make their sculpture taller?
- make it work in a different amount of wind?

CONNECT TO ENGINEERING
What if a sculpture had to stand up in typhoon-strength winds (74 miles per hour or greater)? That’s one of the things the engineers who built the Taipei 101 Tower of Taiwan (one of the tallest buildings in the world) were worried about—very worried. Typhoons regularly blow into Taiwan, so they designed a building that is much wider at the bottom than at the top to help it resist being blown over. They also used special materials, including strong, flexible steel to make the building sturdy enough to withstand those typhoons.

This activity is adapted from the Design Squad Event Guide. http://pbskids.org/designsquad/engineers

All rights reserved. Design Squad is produced by WGBH Boston.

Major funding for Design Squad is provided by the National Science Foundation and the Intel Foundation.

Additional funding is provided by Tyco Electronics, National Council of Examiners for Engineering and Surveying, The Harold and Esther Edgerton Family Foundation, the Noyce Foundation, Intel Corporation, the American Society of Civil Engineers, and the IEEE. This Design Squad material is based upon work supported by the National Science Foundation under Grant No. ESI-0515526. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.