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ABSTRACT 
We develop an integrated solution for incorporating “digi- tal 
twins” of real buildings into existing SCADA systems, which 
enables real-time prediction and advanced control. These 
digital twins are either EnergyPlus (E+) or data- driven (D+) 
building models, whose input and output vari- ables are mapped 
to analogous real building OPC tags and track the real-time 
operation of the building. An E+ dig- ital twin can be used to 
provide predictions of the build- ing’s performance in 
different weather, usage, and energy pricing scenarios, which 
allows for accurate assessment of different control strategies. 
However, it is not suitable for optimization and predictive 
control due to its complexity. We develop scalable D+ digital 
twin based on Gaussian Processes (GP) for accurate 
prediction and advanced con- trol. A D+ digital twin is much 
easier, faster, and less ex- pensive to train than developing and 
tuning an E+ model, while still providing accurate power 
forecasts and being suitable for control. Data-driven Model 
Predictive Con- trol (MPC) optimizes control inputs of the 
predictive D+ model for energy curtailment with thermal 
comfort guar- antees in demand response applications. The 
MPC con- troller is integrated into the SCADA environment, 
demon- strating real-time in-the-loop control of D+ digital 
twins. 

INTRODUCTION 
Efficient control of buildings requires high fidelity models that 
capture the evolution of the state of the building with time, for 
example, how the power consumption and zone temperature 
are affected when the chilled water or the supply air 
temperature set-points are changed with time or when outside 
weather conditions are different. Model Predictive Control 
(MPC) uses such models to predict the state of the building over 
a finite horizon and optimize the performance with a given 
objective like load curtailment while meeting thermal comfort 
and operation constraints. 
To this end, the classes of models that are most widely 
studied in the literature use first principles based on 
physics. These include the white box models typically 
based on high fidelity simulation software like EnergyPlus (E+) 
(Deru et al. 2011) and TRNSYS (University of Wis- consin 
Madison 1975), and the grey box models based on Resistor-
Capacitance (RC) networks (Deng et al. 2010). The user 
expertise, time, and associated sensor costs re- quired to 
develop such models of a single building are 

very high. This is because such models require detailed 
information about the geometry of a building, design and 
equipment layout plans, material properties, and equip- ment 
and operational schedules. Moreover, the model- ing 
process also varies from building to building with the 
construction and types of installed equipment. Af- ter 
several years of work on using first principles based models 
for peak power reduction and energy optimization 
for buildings, multiple authors (Sturzenegger et al. 2016; Ž 
áčeková, Váňa, and Cigler 2014) have concluded that the 
biggest hurdle to mass adoption of intelligent building 
control is the cost and effort required to capture accurate 
dynamical models of the buildings. 
We take an alternative route to the physics-based ap- 
proach, i.e. black box modeling based on machine learn- ing 
algorithms to learn a digital twin of the underlying physical 
system – a building in this case. Our approach re- duces the cost 
and time to model the buildings by an order of magnitude (Jain 
et al. 2018a; Smarra et al. 2018; Jain et al. 2018b; Jain, 
Smarra, and Mangharam 2017; Jain, Behl, and 
Mangharam 2017; Nghiem and Jones 2017; Behl, 
Nghiem, and Mangharam 2015). We learn data- driven (D+) 
models using only historical data available via sensors already 
installed in the buildings – thermostats, multimeters – and 
historical weather data. The D+ models can not only be used 
for prediction but also for real-time MPC. These models are 
scalable and integrate seamlessly to the existing Supervisory 
Control and Data Acquisition (SCADA) systems or the 
Building Energy Management Systems (BEMS). 
Although expensive to build, the E+ models are useful to 
simulate the behavior of the building. For example, build- ing 
operators use E+ as an isolated testbed to analyze dif- ferent 
control strategies and receive immediate feedback without 
having to implement the strategies on the real building. The 
drawback of E+ models is that they can- not be used for 
advanced control like MPC. On the other hand, as we will 
show later, the D+ models are much less expensive to build and 
they can be used for simulating the response of the real building 
as well as for real-time MPC. While the D+ models for 
control is a novel approach in its own right, the use of D+ 
and E+ models as real-time digital twins is limited in 
practice because of lack of inte- gration with existing SCADA 
systems. 
In this paper, we present an end-to-end architecture 
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Figure 1: A typical architecture of a SCADA system work- 
ing with a real building is shown in black, and our contri- 
butions in blue. 

 

for efficient modeling and HVAC control of large scale 
buildings using machine learning, see Figure 1. We 
explain and demonstrate with examples our complete 
pipeline starting from tools for data acquisition from 
existing SCADA/BEMS to learning accurate control- 
oriented data-driven D+ models using Gaussian Processes (GP) 
to using D+ models for real-time predictive con- trol with 
high confidence. We use an EnergyPlus-OPC bridge that 
connects E+ models to the SCADA system through a 
simulated OPC server. We design a predictive controller 
using D+ models learned from the historical data obtained 
from a Historian database. For testing the controller with E+ 
models, the controller communicates via the OPC server. 
For testing the controller on a real building, secure and direct 
communication with SCADA is possible. 

DATA ACQUISITION & COMMUNICATION 
 

In a building automation system, a Supervisory Control and 
Data Acquisition (SCADA) system is commonly used by the 
operators to manage individual buildings or a cam- pus of 
buildings. It interfaces directly with building sen- sors and 
controllers through open source protocols like BACNet or 
OPC. SCADA software also provides a dash- board interface 
for operators to view live or historical data feeds from 
sensors and an easy way for operators to change control 
setpoints remotely. Additionally, it may also offer a Historian 
database to store historical data val- ues for future reference or 
data analysis. See Figure 1 for an illustration of a typical 
SCADA system. 
There are two main limiting factors in bridging digital 
twins with existing SCADA software. First, most SCADA 
software are self-contained and the features are limited to those 
provided by the vendor. Building operators cannot 

 
 
 
 
 
 

 
 MPC with D+ model 
 

 
Figure 2: The MPC controller runs in Python using the 
D+ models and applies the optimal inputs to the E+ 
model. The communication is made possible using the 
pyEp library and the OPC connection. 

 
 
 

view the results from E+/D+ models on the same SCADA 
software used for real-time monitoring because it is not clear 
how we can communicate between the E+/D+ mod- els and 
existing SCADA software to acquire the data tags required by 
E+/D+ models for simulation and control, and to show the 
generated results on the dashboards. Second, if the digital twin 
is an E+ model, we need an external li- brary like MLE+ 
(Bernal et al. 2012) to design a controller in a scripting 
language such as MATLAB. This is because EnergyPlus only 
allows manually coded rule-based con- trol strategies. Since 
Python is a popular programming language for data science 
and machine learning, we need an alternative to MLE+ for 
Python. 

In this work, we use the open interface OPC to connect 
EnergyPlus with any existing SCADA software that sup- ports 
OPC for real-time data communication. We call this the 
EnergyPlus-OPC bridge. By representing inputs to and 
outputs from EnergyPlus as OPC tag structures, we make the 
integration into existing SCADA software sig- nificantly 
easier since the simulated building will appear as a real 
building to the SCADA software. Furthermore, since our 
machine learning models are written in Python, we develop a 
library to interface Python and EnergyPlus called pyEp, an 
equivalent to MLE+ for Python. We show how this library 
allows for intelligent control of buildings using D+ models 
and testing on E+ models. The transi- tion from testing on E+ 
models to testing on real buildings can be made seamlessly 
through the SCADA system. 

The case studies presented later in this paper use the setup shown 
in Figure 2, in which a data-driven controller based on a D+ 
model acts on an E+ model as a plant. The EnergyPlus-
OPC bridge allows us to interface an E+/D+ model to the 
OPC server and thus to the SCADA software for real-time 
monitoring and closed-loop control of the building. The 
setpoints obtained from the controller and the corresponding 
responses from the digital twin can be viewed in real time in a 
commercial SCADA dashboard. 
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EnergyPlus-OPC Bridge 

 
Our EnergyPlus-OPC bridge provides the EnergyPlus in- put 
and output variables as OPC tags to be read by any OPC 
client. The user is able to configure the simulation for any 
number or type of buildings and can run each in- dividually on 
different schedules. To see the simulation in progress, the 
operators only need to view the tag using an OPC client, as 
they would for any other data source. By writing to one of the 
input tags, the operators can change the input setpoints to 
EnergyPlus and see the response of the building. For more 
advanced control of the building, operators can use our MPC 
controller based on D+ mod- els. The service supports the 
running of multiple Ener- 
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Bridge reads E+ 
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gyPlus instances, creating a campus of isolated buildings. The 
buildings are simulated synchronously, so that their 
simulations are always kept at the same time. This ca- 
pability can be useful when looking at aggregate power 
consumption and synthesizing control strategies involv- ing 
multiple-building curtailment. For communication be- tween 
EnergyPlus and Python we use pyEp. 

pyEp: A Python EnergyPlus Interface 

Currently, EnergyPlus supports external programs through 
the Building Controls Virtual Testbed (BCVTB), built on top 
of Ptolemy II, and the Functional Mockup Interface (FMI) 
standard. Using BCVTB, the users can couple and define 
data flows between various modeling and simulation 
programs, such as TRNSYS or Simulink. These simulation 
environments, while comprehensive, are still constrained by 
the capabilities of the software. MLE+ provides a solution 
to this problem, allowing the end-users to directly 
control the progress of an EnergyPlus simulation by 
writing MATLAB code. In recent years, Python has 
become a popular language for data science and machine 
learning, in academia and especially in industry. The pyEp 
library connects the myriad of Python libraries with existing 
technologies in the building modeling and simulation 
communities. For example, in our case studies depicted in 
Figure 2, we obtain data from EnergyPlus to learn D+ 
models, which are used for synthesizing building control 
strategies, then evaluate these strategies in closed-loop 
simulation with EnergyPlus. These steps are made possible 
by pyEp. 
The pyEp library is designed to be lightweight and 
flexible. The core class is ep process, which  pro- vides 
simple read and write capabilities with EnergyPlus. Each ep 
process instance corresponds to one Energy- Plus building, 
and is independent of all other ep process instances. This 
allows for multiple EnergyPlus models being run together 
in a campus-like co-simulation. An example using the 
Department of Energy (DoE) provided LargeOffice building 
model is included in the installation. For an EnergyPlus IDF 
model file to be used with pyEp, it 

Figure 3: Communication sequence for data exchange. 
 
 

must have the ExternalInterface configured, as well as an 
associated variables.cfg, specifying the inputs and outputs to 
the ExternalInterface. pyEp is available on the Python Package 
Index (PyPI) and can be installed with the command pip install 
pyEp. Its documentation can be found at 
https://github.com/mlab-upenn/pyEp. 

 
System Architecture 

The EnergyPlus-OPC bridge requires two processes to start 
and control a simulation over OPC. The first is the bridge 
itself, which can be started once and left in the background 
indefinitely. The second is a controller, which determines which 
setpoints to write to the bridge at what time during the 
simulation. The role of the bridge is to handle 
communication between EnergyPlus and the OPC server. The 
role of the controller is to control the inputs at every time step 
of the EnergyPlus co-simulation by writ- ing to the OPC 
server. The communication sequence for data exchange is 
shown in Figure 3. The same process fol- lows for the next 
building, until all have been incremented forward by one time 
step. The communication protocol ensures that every input 
and output are read to the cor- rect EnergyPlus building, and 
that delays in the network communications do not cause the 
controller and bridge to become out-of-sync with each other. 
The exchange of information is not real-time dependent, so 
human opera- tors can change the inputs time step by time 
step at any pace. The controller can also preemptively stop a 
simula- tion by terminating the controller process. Changes 
to a prescribed schedule can also be made, and the simulation 
restarted again without needing to restart the bridge pro- cess. 
This allows for faster and easier changes with less time 
overhead between simulation runs. Specific syntax can be 
found in the documentation. The bridge should only be 
restarted if different EnergyPlus buildings need to be used. 

E+ model 

E+-OPC Bridge 

OPC Server 

D+ controller 

6 1 

5 2 

4 3 
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This bridge-controller design provides great flexibility in how 
the user can make use of EnergyPlus. Users can freely 
modify the controller to customize the simulation 
parameters. A simple schedule based controller can be 
made with basic knowledge of Python. Alternatively, more 
complex model-based controllers like MPC as in Section 
can also be implemented and evaluated. Two ex- ample 
controllers are included in the pyEp library. The first 
controller implements a setpoint schedule in Python and 
shows how to read/write from the controller to En- ergyPlus. 
The second controller implements a setpoint 
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prior μ  ± 2σ prior μ posterior μ  ± 2σ posterior μ 

schedule based on a formatted csv file. 
 

Requirements 

The provided controllers use the OpenOPC library to con- nect 
to an OPC server, but other methodologies may be used if 
the communications paradigm is followed. See pyEp 
documentation for more details. Additionally, the free 
Matrikon OPC Server Simulator is used as the de- fault 
server. Included with pyEp is a server configuration XML 
generator that automatically creates the correct OPC Tree Tag 
structure for the Matrikon Server. The pyEp core module, 
linking EnergyPlus to Python, is supported for Python 2.7 
and 3.x, while the EnergyPlus-OPC bridge re- quires Python 
2.7. 

MODELING WITH GAUSSIAN PROCESSES 

Figure 4: Example of priors calculated using (1) and pos- 
teriors using (2) for predicting power consumption of a 
building for 12 hrs. Initially the mean is constant because 
μ(x) is constant, and we observe a high variance. The 
posterior agrees with the actual power consumption with 
high confidence. 

 
 

through the covariance function, rather than a fixed struc- tural 
input–output relationship from x to y. 
Given the regression vectors X = [x1,..., xN ]T and their 
corresponding observed outputs Y = [y1,..., yN ]T , the dis- 
tribution of the output y corresponding to a new input 
vector x is a Gaussian distribution N 

(
ȳ  , σ 2

)
, 

ȳ   = gm(x ) := μ(x ) + K K−1(Y − μ(X )) (2a) 

As discussed in the Introduction section, conventional 
building modeling methods based on first principles are 

   = gv(x ) := K   − K K −1KT , (2b) 

time-consuming and cost-prohibitive. Data-driven mod- eling 
approaches, based on machine learning techniques, have been 
shown to be fast, economical, and accurate al- ternatives. 
This section presents a building modeling ap- proach with 
Gaussian Process (GP), starting with a brief introduction to 
GP and its application in controls, and is adapted from (Jain et 
al. 2018a). 

Introduction to Gaussian Process 
Definition 1 A Gaussian Process is a collection of ran- 
dom variables, any finite number of which have a joint 
Gaussian distribution. 

 
Consider an unknown function f : Rn 1→ R with noisy ob- 
servations y = f (x) + N 

(
0, σ 2

)
. A GP of y is specified 

by its mean function μ(x) and covariance function k(x, xt), 

μ(x; θ ) = E[ f (x)] (1) 
k(x, xt; θ ) = E[( f (x)−μ(x))( f (xt)−μ(xt))] + σ 2δ (x, xt) 

where δ (x, xt) is the Kronecker delta function. These 
functions are parameterized by the hyperparameter vector θ . 
The covariance function k(x, xt) specifies how the out- puts at 
x and xt are correlated. In other words, a GP model 
of y specifies the relationship between the input variables, 

where K  = [k(x , x1),..., k(x , xN )], K   = k(x , x ), and 
K is the covariance matrix with elements Kij = k(xi, x j ). The 
hyperparameters θ can be learned by maximizing the 
likelihood: argmaxθ Pr(Y |X, θ ). An example of GP prior and 
posterior is shown in Fig. 4. 
GP models have several advantages over other machine 
learning models, that make them more suitable for identi- 
fication of dynamical systems. 

1. GPs provide predictive variances, which carry uncer- 
tainty information of the predictions. The full predic- tive 
distribution, which includes both the mean and variance, 
can be used in a meaningful way, e.g., to estimate a 
95% confidence bound for the prediction. 

2. GPs work well with small data sets due to its stochas- tic 
nature, which is generally useful for any modeling 
application. 

3. GPs allow incorporating domain knowledge of the 
system into the model to improve its accuracy, by 
defining priors on the hyperparameters or using a 
particular structure of the covariance function. 

More details on GPs and their applications can be found in 
(Rasmussen and Williams 2006). 
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Gaussian Processes for Dynamical Systems 
Consider a nonlinear dynamical system with control input u, 
exogenous disturbance input w, and output y. At a cur- rent 
time step t, time-delayed input and output signals are called 
autoregressive, for example: yt−1, ut−1, wt−1. By feeding 
autoregressive inputs and outputs to a GP as re- gressors, we 
can model the dynamic behavior of the sys- tem (Kocijan 
2016). Specifically, the regressor vector xt at time step t 
would be 

xt =[yt− l,..., yt−1, ut−m,..., ut , wt−p,..., wt−1, wt ]. 

1,500 
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where l, m, and p are respectively the lags for autoregres- sive 
outputs, control inputs, and disturbances. Note that ut and wt are 
the current control and disturbance inputs. The dynamical GP 
yt = f (xt ) can then be trained from data in the same way as any 
other GPs. 
In a multistep simulation of a dynamical GP, the autore- 
gressive outputs fed to the model beyond the first step are 
random variables, resulting in more and more complex 
output distributions as we go further. Therefore, it in- 
volves uncertainty propagation through the model, which 
would complicate the computation of the model signifi- 
cantly. (Nghiem and Jones 2017) showed that a simple 
simulation method called zero-variance method, which re- 
places the autoregressive signals with their corresponding 
expected values, could achieve sufficient prediction accu- racy 
while benefitting from computational simplicity. In this paper, 
the zero-variance method was selected for pre- dicting future 
outputs in optimization formulations. 

Modeling Building’s Power Demand and Zone Tem- 
peratures with Gaussian Processes 
We use a U.S. Department of Energy’s Commercial Refer- 
ence Building (DoE CRB) simulated in EnergyPlus as the 
virtual test-bed building. It is a large 12-story office build- ing 
consisting of 19 zones with a total area of 498,588 sq.ft. 
Under peak load conditions the office can consume up to 1.4 
MW of power. Our aim is to model the build- ing’s power 
demand and zone temperature behavior from data that can be 
measured directly from installed sensors such as thermostats, 
multimeters and weather forecast. We learn two GP models: 
M1 for predicting the power demand and M2 for predicting the 
temperature of a partic- ular zone in the building. The 
following feature variables are used for training: 

• Weather variables dw: such as outside tempera- 
ture and humidity, which are derived from historical 
weather data. 

• Proxy variables dp: such as time of day and day of 
week, which indicate occupancy and periodic trends. 

• Control variables u: such as cooling, supply air tem- 
perature and chilled water setpoints – these variables 

Figure 5: Rolling forecast of the power demand for one 
particular day using GP model M1. The actual demand 
is almost always within the 95% confidence interval. 

 

will be optimized in MPC. 

• Output variable y: total power consumption forM1 
and zone temperature for M2 – this is the output of 
interest which we will predict using all the above fea- tures 
in the model. 

Using these measurement data, we learn autoregressive GP 
models  M1 and M2, and  use the  zero-variance method to 
predict the future output yt+τ , where t is the current time and 
τ ≥ 0. Specifically, 

yt+τ ∼ N 
(
ȳ t+τ = gm(xt+τ ), σ 2 = gv(xt+τ )

) 
, (3) 

xt+τ  = [ȳ t+τ−l , . . . , ȳ t+τ−1, ut+τ−m,. . . , ut+τ , 
wt+τ−p,..., wt+τ−1, wt+τ ], 

in which w := [dw, dp]. It is assumed that at time t, wt+τ are 
available ∀τ from forecasts or fixed rules as applica- ble. For 
the GP, we use a constant mean function and the special 
covariance function proposed in our previous work (Nghiem 
and Jones 2017) to capture both the temporal pattern of the 
energy usage and the effect of non-temporal 
features, such as weather conditions and temperature set- 
points, on the power demand. We optimize the hyperpa- 
rameters θ of the GP model using GPML (Rasmussen and 
Nickisch 2010). 
The mean prediction ȳ  with 95% confidence interval ȳ  ± 2σy 
for a particular day are shown in Figure 5. With only 3 weeks 
of training data, we obtain a prediction accuracy of 94% in 
terms of normalized root mean square error (NRMSE) and 
an RMSE of 47kW for a building with peak demand 1400kW 
and mean power demand 816kW. 
MPC WITH GAUSSIAN PROCESSES 
This section presents a data-driven predictive control ap- 
proach for buildings using GPs. Suppose that GP mod- els 
of a building’s power demand and zone temperatures are 
already developed, as discussed in the previous sec- tion. The 
predicted power demand at any future time t + τ 
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Figure 6: Status of the LargeOffice as seen on SCADA system during Demand Tracking Control. The blue vertical line 
shows the current time of operation. Power consumption: the baseline power consumption is shown in dashed line, the 
curtailment is shown in solid green and the 95% confidence bounds are shown in solid red. Since a fixed curtailment is 
tracked without thermal comfort constraints in problem (4), the zone temperature shoots up by 2◦C. 

 
in a window of N time steps starting from the current time 
t, for τ ∈ {0,..., N − 1}, is given by Equation (3). The 
output at time t + τ depends upon the control inputs ut+τ−m,..., 
ut+τ .  We next show the flexibility of using 

of at least 1 − ε. For instance, this constraint can control the 
quality of tracking the reference yref. 

 
We solve the optimization problem (4) to compute opti- 

these models in different applications. mal ut
∗ , . . . , u∗ , apply ut

∗ to the system and proceed 

Demand Tracking Control 
This predictive control formulation fits demand response 
applications where a customer – a building in this case – must 
curtail its power demand by a certain amount from its 
baseline, or must track an Area Control Signal (ACS) sent 
from the grid operator. For Demand Tracking Con- trol we 
only require GP model M1. We are interested in solving the 
following optimization problem 

N−1 

to time t + 1. Although all the constraints in (4) are of 
analytical forms, the optimization can be computation- ally 
hard to solve due to the high nonlinearity and com- 
putational burden of the GP. We use the nonlinear solver 
IPOPT (Wächter and Biegler 2009) and the optimization 
modeling framework CasADi (Andersson 2013) to solve (4). 

 
We show the real-time results on the SCADA system in 
Figure 6. The dashboard is configured to show the current 

minimize ∑ (ȳ t+τ − yref,t+τ )2 + λσ 2 
τ=0 

subject to ȳ t+τ = μ(xt+τ ) + K K−1(Y − μ(X )) 

(4) power consumption, current setpoints, current weather 
conditions, a 12 hour history of the temperature of one of the 
zones (CoreMid), a 12 hour history of the setpoints – 

y,t+τ  = K    − K K 
ut+τ ∈ U 

−1   T 
  

cooling temperature (red), supply air temperature (green), 
chiller water temperature (blue) – and a 12 hour history of the 
power consumption (solid green) along with a 12 hour 

Pr(yt+τ ∈ Y ) ≥ 1 − ε 

where the constraints hold for all τ ∈ {0,..., N − 1}. Here, K  = 
[k(xt+τ , x1),..., k(xt+τ , xN )],  K   = k(xt+τ , xt+τ ). The signal 
yref is a reference power demand trajectory the building should 
follow as closely as possible. The last constraint is 
probabilistic, which states that the building’s power demand 
must stay inside a set Y with a probability 

forecast of the baseline consumption (dashed). In this ex- 
ample, the controller follows a rule-based strategy until 3 pm. 
A Demand Response is scheduled between 3-5 pm when D+ 
controller based on (4) is used. The controller provides a 
sustained curtailment of 100kW from the base- line. Since a 
fixed curtailment is desired without thermal comfort 
constraints, the zone temperature shoots up by 2◦C. 
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Figure 7: Status of the LargeOffice as seen on SCADA system during Climate Control with Minimum Energy Usage. The 
blue vertical line shows the current time of operation. Power consumption: the baseline power consumption is shown 
in dashed line, the curtailment is shown in solid green and the 95% confidence bounds are shown in solid red. Zone 
temperature: the thermal comfort constraint keeps the temperature between a desired range 23 − 25◦C defined in the 
optimization problem (5). 

 
Climate Control with Minimum Energy Usage 
Other interesting objective for energy management is of 

solve the optimization problem (5) to compute optimal ut
∗, . . . , u∗ 

N−1, apply u∗ 

minimizing energy usage while meeting thermal comfort t+ 
t + 1. t to the system and proceed to time 

and operation constaints. This is always desired since the 
consumers want to minimize their electricity bills. When the 
real-time price of electricity peaks, the utilities may also ask 
their customers to minimize their consumption between a 
specified time based on the available flexibility. In this 
example, we require both GP models M1 and M2. 
Specifically, the model M2 is used to enforce thermal 
comfort constraints in the optimization problem below: 

 
N−1 

We consider a Demand Response scenario when the util- 
ity company notifies this building to minimize the power 
consumption between 11am - 2pm. Between 2pm - 3pm, the 
controller switches to tracking the baseline consump- tion 
based on (4) to prevent a sudden kickback. The sta- tus of 
the SCADA system at 3pm is shown in Figure 7. The 
controller exploits the available energy flexibility in 
providing maximum curtailment while ensuring that the zone 
temperature is always between the prescribed range 
23 − 25◦C. 

minimize 
 

subject to 

∑ ȳ t+τ + λσ 2 
τ=0 

ȳ t+τ  = μ(xt+τ ) + K K−1(Y − μ(X ))
 

 

(5) 
 
GP M1 

CONCLUSION 
This paper presented a set of methods and tools to in- 

y,t+τ  = K    − K K −1   T 
  

corporate “digital twins” of real buildings into existing 
SCADA systems. We proposed a data-driven modeling 

T̄ t+τ = μ(xt+τ ) + K K−1(Y − μ(X ))
⎫

 
⎪⎬ approach using Gaussian Process to quickly and inexpen- 

T,t+τ  = K    − K K −1   T 
  GP M2 sively capture a model of a building solely from its mea- 

Pr(Tt+τ ∈ T ) ≥ 1 − ε 
ut+τ ∈ U 

⎭⎪ surement data. This type of models, called D+ models, 
together with EnergyPlus (E+) models of buildings serve as 
“digital twins” of the buildings. In addition to requiring 
significantly lower cost and effort to develop, compared to 

Here, ȳ , σ 2 denote the mean and variance of the GP M1, 
and T̄  , σ 2 of the GP M2. The goal is to optimize the in- 
puts u that minimize the power consumption while main- 
taining thermal comfort with high probability. We again 

E+ models, D+ models are more suitable for Model Pre- 
dictive Control (MPC) and more adaptive to changes in the 
buildings. Two applications of MPC with D+ models were 
formulated for demand-tracking control and climate 
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control with minimum energy. 
We developed an EnergyPlus-Python bridge, called pyEp, to 
interface Python code with EnergyPlus to perform co-
simulations, which is useful for implementing ad- vanced 
algorithms such as machine-learning-based mod- eling and 
optimization-based control. We also devel- oped an 
EnergyPlus-OPC bridge, which completes our toolchain for 
integrating E+ and D+ models into SCADA systems. Through 
OPC tag mappings, these digital twins can directly exchange 
data with a SCADA system, receiv- ing control commands 
and returning measurement val- ues as if they were real 
buildings. For the first time, our toolchain has enabled 
seamless real-time in-the-loop pre- diction and advanced 
control of both software buildings and physical buildings 
within the same SCADA environ- ment. The toolchain was 
demonstrated in a case study, which showed the 
effectiveness of both our software and our proposed data-
driven MPC approach for buildings. 
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