COMPOSITE INDEX
ASHRAE HANDBOOK SERIES

This index covers the current Handbook series published by ASHRAE. The four volumes in the series are identified as follows:

A = 2015 HVAC Applications
S = 2016 HVAC Systems and Equipment
F = 2017 Fundamentals
R = 2018 Refrigeration

The page reference for an index entry includes the book letter and the chapter number, which may be followed by a decimal point and the beginning page in the chapter. For example, the page number S31.4 means the information may be found in the 2016 HVAC Systems and Equipment volume, Chapter 31, beginning on page 4.

Each Handbook volume is revised and updated on a four-year cycle. Because technology and the interests of ASHRAE members change, some topics are not included in the current Handbook series but may be found in earlier Handbook editions cited in the index.

Alphabetization of the index is letter by letter; for example, Heaters precedes Heat exchangers, and Floors precedes Floor slabs.

14Abbreviations, F38
Absorbers, liquid, F2.14; F32.3
Absorption, ammonia/water, F30.71 hydrogen cycle, R18.14 technology, R18.12 chillers, S3.5 turbines, S8.6
Coefficient of performance (COP), F2.14
dehumidification, S24.12 equipment, R18.1 evolving technologies, R18.15 ideal thermal, F2.13
Industrial exhaust gas cleaning, S30.17
Refrigeration cycles, F2.13
Ammonia/water, F30.71 Calculations, F2.19 cascaded, F2.17
Coupling, F2.16
Double-effect, F2.17
Lithium bromide/water, F2.17; F30.71
Modeling analysis and performance, F2.17
Phase constraints, F2.14
Representations, F2.16
Solar cooling, A35.18, 27; S37.4, 10
Water/lithium bromide technology components, R18.1
Control, R18.11
Double-effect chillers, R18.5
Maintenance, R18.12
Operation, R18.10
Single-effect chillers, R18.3
Terminology, R18.1
Working fluids, F2.15
Acoustics, See Sound
Activated alumina, S24.1, 4, 12
Activated carbon adsorption, A46.7
Adaptation, environmental, F9.17
ADPI. See Air diffusion performance index (ADPI)
Adsorbents, impregnated, S30.24
Solid, A46.7, F32.4
Adsorption, dehumidification, S24.1, 12
Indoor air cleaning, A46.7
Industrial exhaust gas cleaning, S30.23
Moisture, F32.1
Solid-vapor sorption, F2.20
Aeration, of farm crops, A25
Aerosols, S29.1
AFDD. See Automated fault detection and diagnostics (AFDD)
Affinity laws for centrifugal pumps, S44.8
AFUE. See Annual fuel utilization efficiency (AFUE)
AHU. See Air handlers
Air age of, and ventilation, F16.5
Changes per hour (ACH), F16.4
Drying, S24.13
Flux, F25.2
Liquefaction, R47.8
Permeability, F25.2
Permeance, F25.2
Separation, R47.17
Transfer, F25.2
Air barriers, F25.9; F26.5
Airborne infectious diseases, F10.7
Air cleaners. (See also Filters, air; Industrial exhaust gas cleaning)
Gaseous (indoor air)
Adsorbents, A46.7
Chemisorbers, A46.9
Economics, A46.15
Energy consumption, A46.15
Environmental effects on, A46.17
Installation, A46.16
Media selection, A46.11
Operation and maintenance, A46.17
Safety, A46.16
Sizing, A46.12
Terminology, A46.1
Testing, A46.17
Types, A46.11
Industrial exhaust systems, A32.8
Particulate contaminants, S29.1
Industrial ventilation, S29.2
Particle collection mechanisms, S29.2
Penetration, S29.3
Residential, S29.10
Safety requirements, S29.11
Selection, S29.8
Standards, S29.3, 5
Test methods, S29.2
Types, S29.9
Air washers, S41.9
Combination, S29.5
Electronic, S10.2, S29.5, 7; S33.2
Evaporative coolers, S41.9
Maintenance, S29.8
Media filters, S29.5
Air conditioners. (See also Central air conditioning)
Packaged terminal (PTAC), S50.5
Design, S50.6
Heavy-duty commercial grade, S2.3
Sizes and classifications, S50.5
Testing, S50.7
Residential, A1
Split systems, S2.6
Through-the-wall room units, A1.7
Unitary, A1.4
Retail stores, A2.1
Roof top units, S2.9
Room codes and standards, S50.4
Design, S50.1
Features, S50.3
Filters, S50.4
Installation and service, S50.5
Noise, S50.4
Performance, S50.2
Sizes and classifications, S50.1
Split systems, S49.1
Coil placement, S49.9
Residential and light-commercial, S2.6
Unitary air handlers, S49.8
Application, S49.1
Capacity control, S49.8
Certification, S49.7
Circuit components, S49.7
Codes and standards, S49.6, 7
Desuperheaters, S49.4
Efficiency, S49.6
Electrical design, S49.8
Installation, S49.2
Mechanical design, S49.9
Piping, S49.7
Refrigerant circuit control, S49.7
Service, S49.2
Space conditioning/water heating, S49.5
Types, S49.2
Unit ventilators, S28.1
Window-mounted, S2.3
Air conditioning. (See also Central air conditioning)

- Airports, A3.6
- Animal buildings, A24.4
- Arenas, A5.4
- Atriums, A5.9
- Auditoriums, A5.3
- Automobiles, A10.1
- Bakeries, R41
- Buses, A11.2
- Bus terminals, A3.7
- Changeover temperature, S5.12, 13
- Clean spaces, A18
- Commercial buildings, A3.1; S2.7
- Computer rooms, A19
- Concert halls, A5.4
- Convention centers, A5.5
- Data centers, A19
- Dormitories, A6.1, 8
- Desiccant dehumidification and, S24.11
- Educational facilities, A7.1
- Engine test facilities, A17.1
- Expiration centers, A5.5
- Fairs, A5.8
- Fixed-guideway vehicles, A11.7
- Gymnasiums, A5.5
- Health care facilities, A8
- Hospitals, A8.2
- Nursing facilities, A8.15
- Outpatient, A8.14
- Hotels and motels, A6
- Houses of worship, A5.3
- Ice rinks, A5.5
- Industrial environments, A14; A31
- Kitchens, A33
- Laboratories, A16.1
- Mass transit, A11.2
- Mines, A29
- Natatoriums, A5.6
- Nuclear facilities, A28
- Office buildings, A3.1
- Paper products facilities, A26.2
- Photographic processing and storage areas, A22.1
- Places of assembly, A5
- Plant growth chambers, A24.17
- Power plants, A27.11
- Printing plants, A20
- Public buildings, A3.1
- Rail cars, A11.5
- Retrofitting, contaminant control, R7.9
- Solar energy systems, A35.15, 18, 27
- Subway stations, A15.14
- Swimming areas, A5.6
- Systems
decentralized, S2.1
floor-by-floor, S2.7
forced-air, small, S10.1
packaged, S2.9
radiant panel S6.1
selection, S1.1, 9
self-contained, S2.7
space requirements, S1.6
split, S2.6
telecommunication facilities, A19
temporary exhibits, A5.8
textile processing plants, A21.4
theaters, A5.3
transportation centers, A3.6
warehouses, A3.8
wood products facilities, A26.1

Air contaminants, F11. (See also Contaminants)

Aircraft, A12
air conditioning, A12.10
air distribution, A12.12
air filters, A12.9, 14
air quality, A12.13
cabin pressurization control, A12.11, 13
performance, A12.9, 15
carbon dioxide concentration, A12.14
environmental control system (ECS), A12.11, 13, 15
air-conditioning packs, A12.9
air-cycle machine, A12.10
cabin pressure control, A12.9, 11, 13, 15
design conditions, A12.1
engine bleed air system, A12.9
load determination, A12.1
outdoor air, A12.9
pneumatic system, A12.9
regulations, A12.14
heating, A12.6
humidity, A12.12
oxygen levels, A12.1, 9
ozone concentration, A12.12, 14, 15
ventilation, A12.6, 15

Air curtains
display cases, R15.6
units, S20.12

Air diffusers, S20
sound control, A48.14
testing, A38.2

Air diffusion, F20
air jets, F20.2, 3
Archimedes number, F20.6
attached, F20.2, 7
axial, F20.2, 3
behavior, F20.3
centerline velocity, F20.4
Coanda effect, F20.2, 7
drop, F20.2
entrainment ratios, F20.6
expansion zones, F20.4
free, F20.2, 3
fundamentals, F20.3
isothermal, F20.2, 3
multiple, F20.7
nonisothermal, F20.2, 3
spread, F20.2
surface (wall and ceiling), F20.7
throw, F20.2, 5
velocity profile, F20.6
velocity, terminal, F20.2
vena contracta, F20.2
applications, A57
aspect ratio, F20.2
core area, F20.2
diffuser, F20.1
discharge, coefficient of, F20.2
distribution, F20.2
draft, F20.2
effective area, F20.2, 5
free area, F20.2
induction, F20.2
induction ratio, F20.2
neck area, F20.2
occupied zone, F20.2
outlets, F20.2
primary air, F20.2
space, F20.1
stratification height, F20.2
stratified zone, F20.2
terminalogy, F20.2
thermal plumes, F20.7
total air, F20.2

Air diffusion performance index (ADPI), A57.5

Air dispersion systems, fabric, S19.11

Air distribution, A57; F20; S4; S20
aircraft cabins, A12.12
air terminals, A57.1
animal environments, A24.3, 6
applications, A57
buildings, S4.1
central system, A42.1
core area, F20.2
draft, F20.2
effective area, F20.2, 5
free area, F20.2
induction, F20.2
induction ratio, F20.2
neck area, F20.2
occupied zone, F20.2
outlets, F20.2
primary air, F20.2
space, F20.1
stratification height, F20.2
stratified zone, F20.2
terminalogy, F20.2
thermal plumes, F20.7
total air, F20.2

Air exchange rate
air changes per hour (ACH), F16.4
modeling, F16.23
multizone measurement, F16.7
time constants, F16.4
tracer gas measurement method, F16.6

Air filters, See Filters, air
Airflow retarders

1.3

Air inlets

Air handlers

Air terminal units (ATUs)

Air quality

Air jets

Air leakages

Air mixers

Air outlets

Airports

Altitude

Animal environments

Ammonia

Anemometers
Annual fuel utilization efficiency (AFUE), S34.2
Antifreeze coolants, secondary, F31.4 ethylene glycol, F31.4 hydronic systems, S13.24 propylene glycol, F31.4 Antisweat heaters (ASH), R15.5
Apartment buildings service water heating, A50.11, 18 ventilation, A1.8 Aquifers, thermal storage, S51.7 Archimedes number, F20.6 Archives. See Museums, galleries, archives, and libraries Arenas air conditioning, A5.4 smoke control, A53.16 Argon, recovery, R47.17 Asbestos, F10.5 ASH. See Antisweat heaters (ASH) Atriums air conditioning, A5.9 smoke control, A53.16 Attics, unconditioned, F27.2 Automated fault detection and diagnostics (AFDD), A39.5; A61.1 benefits, A61.3, 5 controller-embedded, A61.4 detection, A61.1, 5 diagnosis, A61.1 evaluation, A61.2 methods, A61.2 tools, A61.4 Automotives engine test facilities, A17.1 HVAC, A10 design factors, A10.1 subsystems, A10.3 Autopsy rooms, A8.9; A9.6, 7 Avogadro’s law, and fuel combustion, F28.11 Backflow-prevention devices, S47.14 BACNet®, A40.18; F7.18 Bacteria control, A49.11 food, growth in, R22.1 humidifiers, growth in, S22.1 pathogens, F10.8 Bakery products, R41 air conditioning, R41.1 bread, R41 cooling, R41.4 dough production, R41.2 freezing, R41.5 ingredient storage, R41.1 refrigeration, R16.3; R41.1 slicing, R41.5 wrapping, R41.5 Balance point, heat pumps, S49.9 Balancing. See also Testing, adjusting, and balancing air distribution systems, A38.3 dual-duct systems, A38.4 HVAC systems, A38.1 hydronic systems, A38.6 induction systems, A38.6 kitchen ventilation systems, A33.2 refrigeration systems, R5.1 steam distribution systems, A38.15 temperature controls, A38.16 variable-air-volume (VAV) systems, A38.4 BAS. See Building automation systems (BAS) Baseboard units application, S36.5 design, S36.3 finned-tube, S36.2 nonstandard condition corrections, S36.3 radiant, S36.2 rating, S36.3 Basements conditioned, A44.11 heat loss, F17.11; F18.37 heat transfer, F27.2 moisture control, A44.11 unconditioned, A44.11 Bayesian analysis, F19.37 Beer’s law, F4.16 BEMP. See Building energy modeling professional (BEMP) Bernoulli equation, F21.1 generalized, F3.2, 6 kinetic energy factor, F3.2 steady flow, F3.12 wind velocity pressure, F24.4 Best efficiency point (BEP), S44.8 Beverages, R39 beer, R39.1 storage requirements, R21.11 carbonated, R39.10 coolers, R39.10 fruit juice, R38.1 liquid carbon dioxide storage, R39.12 refrigeration systems, R39.11 refrigerators for, R16.3 thermal properties, R19.1 time calculations cooling, R20.1 freezing, R20.7 wine production, R39.8 storage temperature, R39.10 BIM. See Building information modeling (BIM) Bioaerosols airborne bacteria, F11.2, 6 fungus spores, F11.2 microbiological particulate, F11.6 mold, F11.7 pollen, F11.2 sampling, F11.7 testing, F11.8 viruses, F11.2 origins, F11.1 particles, F10.5 Biocides, control, A49.13 Biodiesel, F28.8 Biological safety cabinets, A16.5 Biomanufacturing cleanrooms, A18.9 Bioterrorism. See Chemical, biological, radiological, and explosive (CBRE) incidents Boilers, F19.21; S32 air supply, S32.28 burners, S31.1 burner types, S32.7 carbonic acid, S11.2 central multifamily, A1.7 classifications, S32.1 codes, S32.6 combination, S32.4 condensing, S32.3 construction materials, S32.1 controls, A42.39; A47.1; S22.7 flame safeguard, S32.8 draft types, S32.3 dry-base, S32.2 efficiency, S32.6 electric, S32.5 equipment, S3.5 gas-fired, S31.5, 11 venting, S35.20 integrated, S32.4 modeling, F19.21 noncondensing, S32.3 oil-fired venting, S35.21 piping, S11.3 rating, S32.6 residential, A1.3 scotch marine, S32.3 selection, S32.5 service water heating, A50.25 sizing, S32.6 standards, S32.6 steam, S32.1 systems, S11.3 stokers, S31.17 venting, S35.20, 21 wall-hung, S32.4 waste heat, S11.3 water, S32.1 water treatment, A49.15 blowdown, A49.17 wet-base, S32.2 wet-leg, S32.2 working pressure, S32.1 Boiling critical heat flux, F5.4 evaporators flow mechanics, F5.4 heat transfer, F5.6 film, F5.2 natural convection systems, F5.1 nucleate, F5.1, 2 pool, F5.1 Brake horse power, S44.8 Brayton cycle cryogenics, R47.11 gas turbine, S7.19 Bread, R41 Breweries carbon dioxide production, R39.6 refrigeration fermenting cellar, R39.4 Kraeusen cellar, R39.5 stock cellar, R39.5 systems, R39.8 wort cooler, R39.3 storage tanks, R39.6 wine production, R39.8 Brines. See Coolants, secondary Building automation systems (BAS), A40.18; A61.1; F7.14
<table>
<thead>
<tr>
<th>Building energy modeling professional (BEMP), F19.5</th>
<th>Building energy monitoring, A41. (See also Energy, monitoring)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building envelopes</td>
<td></td>
</tr>
<tr>
<td>air barrier, A44.1</td>
<td></td>
</tr>
<tr>
<td>requirements, A44.5</td>
<td></td>
</tr>
<tr>
<td>air intrusion, A44.2</td>
<td></td>
</tr>
<tr>
<td>air leakag control, A44.4</td>
<td></td>
</tr>
<tr>
<td>attics, A44.8</td>
<td></td>
</tr>
<tr>
<td>bound water, A44.2</td>
<td></td>
</tr>
<tr>
<td>building assembly, A44.1</td>
<td></td>
</tr>
<tr>
<td>building enclosure, A44.1</td>
<td></td>
</tr>
<tr>
<td>component, A44.1</td>
<td></td>
</tr>
<tr>
<td>condensation, A44.1</td>
<td></td>
</tr>
<tr>
<td>convective loop, A44.2</td>
<td></td>
</tr>
<tr>
<td>driving rain load, F25.4</td>
<td></td>
</tr>
<tr>
<td>dropped ceiling, A44.7</td>
<td></td>
</tr>
<tr>
<td>energy conservation, A44.1</td>
<td></td>
</tr>
<tr>
<td>exfiltration, A44.2</td>
<td></td>
</tr>
<tr>
<td>existing buildings</td>
<td></td>
</tr>
<tr>
<td>changing HVAC equipment in, A44.11</td>
<td></td>
</tr>
<tr>
<td>enevelope modifications in, A44.12</td>
<td></td>
</tr>
<tr>
<td>face-sealed systems, A44.9</td>
<td></td>
</tr>
<tr>
<td>fenestration, A44.2</td>
<td></td>
</tr>
<tr>
<td>foundations, A44.11</td>
<td></td>
</tr>
<tr>
<td>heat transfer through, A44.11</td>
<td></td>
</tr>
<tr>
<td>moisture effects, A44.11</td>
<td></td>
</tr>
<tr>
<td>historic buildings, A44.11</td>
<td></td>
</tr>
<tr>
<td>hygrothermal design analysis, A44.2</td>
<td></td>
</tr>
<tr>
<td>infiltration, A44.2</td>
<td></td>
</tr>
<tr>
<td>insulation, F26.1</td>
<td></td>
</tr>
<tr>
<td>interstitial spaces, A44.7</td>
<td></td>
</tr>
<tr>
<td>interzonal environmental loads, A44.7</td>
<td></td>
</tr>
<tr>
<td>material properties, F26</td>
<td></td>
</tr>
<tr>
<td>moisture content, A44.2</td>
<td></td>
</tr>
<tr>
<td>moisture control, A44.5</td>
<td></td>
</tr>
<tr>
<td>museums, galleries, archives, and libraries, A23.13</td>
<td></td>
</tr>
<tr>
<td>plenum, A44.2</td>
<td></td>
</tr>
<tr>
<td>return air, A44.7</td>
<td></td>
</tr>
<tr>
<td>rain screen designs, A44.9</td>
<td></td>
</tr>
<tr>
<td>roofs, A44.8</td>
<td></td>
</tr>
<tr>
<td>insulated sloped assemblies, A44.8</td>
<td></td>
</tr>
<tr>
<td>low-slope assemblies, A44.8</td>
<td></td>
</tr>
<tr>
<td>steep-roof assemblies, A44.8</td>
<td></td>
</tr>
<tr>
<td>vegetated roofing, A44.8</td>
<td></td>
</tr>
<tr>
<td>R-value, A44.2</td>
<td></td>
</tr>
<tr>
<td>clear-wall, A44.4</td>
<td></td>
</tr>
<tr>
<td>material, A44.2</td>
<td></td>
</tr>
<tr>
<td>system, A44.2</td>
<td></td>
</tr>
<tr>
<td>total, A44.2</td>
<td></td>
</tr>
<tr>
<td>sorption, A44.2</td>
<td></td>
</tr>
<tr>
<td>structural failure, from moisture, F25.16</td>
<td></td>
</tr>
<tr>
<td>surface condensation, A44.7</td>
<td></td>
</tr>
<tr>
<td>terminology, A44.1</td>
<td></td>
</tr>
<tr>
<td>thermal</td>
<td></td>
</tr>
<tr>
<td>break, A44.2</td>
<td></td>
</tr>
<tr>
<td>bridges, A44.2; F25.8</td>
<td></td>
</tr>
<tr>
<td>insulation, A44.2</td>
<td></td>
</tr>
<tr>
<td>mass, A44.4</td>
<td></td>
</tr>
<tr>
<td>performance, A44.4</td>
<td></td>
</tr>
<tr>
<td>transmittance, A44.2</td>
<td></td>
</tr>
<tr>
<td>vapor barrier, continuous, A44.5</td>
<td></td>
</tr>
<tr>
<td>diffusion control, A44.2</td>
<td></td>
</tr>
<tr>
<td>retarder (vapor barrier), A44.2</td>
<td></td>
</tr>
<tr>
<td>wall/window interface, A44.6</td>
<td></td>
</tr>
<tr>
<td>walls, A44.9</td>
<td></td>
</tr>
<tr>
<td>curtain, A44.9</td>
<td></td>
</tr>
<tr>
<td>precast concrete panels, A44.9</td>
<td></td>
</tr>
<tr>
<td>steel-stud, A44.10</td>
<td></td>
</tr>
<tr>
<td>water-resistant barrier (WRB), A44.2</td>
<td></td>
</tr>
<tr>
<td>wind washing, A44.2</td>
<td></td>
</tr>
<tr>
<td>zone method, A44.4</td>
<td></td>
</tr>
<tr>
<td>Building information modeling (BIM), A40.15</td>
<td></td>
</tr>
<tr>
<td>Building materials, properties, F26</td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td></td>
</tr>
<tr>
<td>air barrier, A62.6</td>
<td></td>
</tr>
<tr>
<td>airtight duct connections, A62.9</td>
<td></td>
</tr>
<tr>
<td>damp, A62.1</td>
<td></td>
</tr>
<tr>
<td>human health, A62.1</td>
<td></td>
</tr>
<tr>
<td>dampness risk, A62.3</td>
<td></td>
</tr>
<tr>
<td>dew point, A62.8</td>
<td></td>
</tr>
<tr>
<td>drainage plane, A62.6</td>
<td></td>
</tr>
<tr>
<td>flashing, A62.6</td>
<td></td>
</tr>
<tr>
<td>moisture, A62.2</td>
<td></td>
</tr>
<tr>
<td>content, A62.11</td>
<td></td>
</tr>
<tr>
<td>risk, A62.3</td>
<td></td>
</tr>
<tr>
<td>mold, A62.1</td>
<td></td>
</tr>
<tr>
<td>mold-resistant gypsum board, A62.7</td>
<td></td>
</tr>
<tr>
<td>positive pressure, A62.9</td>
<td></td>
</tr>
<tr>
<td>problems</td>
<td></td>
</tr>
<tr>
<td>causes, A62.1</td>
<td></td>
</tr>
<tr>
<td>dampness A62.1</td>
<td></td>
</tr>
<tr>
<td>roof overhang, A62.7</td>
<td></td>
</tr>
<tr>
<td>sill pans, A62.6</td>
<td></td>
</tr>
<tr>
<td>vinyl wall covering, A62.7</td>
<td></td>
</tr>
<tr>
<td>water barrier, A62.6</td>
<td></td>
</tr>
<tr>
<td>Building thermal mass</td>
<td></td>
</tr>
<tr>
<td>charging and discharging, S51.20</td>
<td></td>
</tr>
<tr>
<td>effects of, S51.19</td>
<td></td>
</tr>
<tr>
<td>precooling, A42.45</td>
<td></td>
</tr>
<tr>
<td>Burners</td>
<td></td>
</tr>
<tr>
<td>air supply, S35.28</td>
<td></td>
</tr>
<tr>
<td>controls, S31.20</td>
<td></td>
</tr>
<tr>
<td>conversion, S31.4; 6</td>
<td></td>
</tr>
<tr>
<td>dual-fuel gas/oil, S31.14</td>
<td></td>
</tr>
<tr>
<td>gas-fired, S31.3</td>
<td></td>
</tr>
<tr>
<td>altitude compensation, S31.10</td>
<td></td>
</tr>
<tr>
<td>combustion and adjustments, S31.20</td>
<td></td>
</tr>
<tr>
<td>commercial, S31.6</td>
<td></td>
</tr>
<tr>
<td>industrial, S31.6</td>
<td></td>
</tr>
<tr>
<td>residential, S31.5</td>
<td></td>
</tr>
<tr>
<td>venting, S35.20</td>
<td></td>
</tr>
<tr>
<td>oil-fired, S31.11</td>
<td></td>
</tr>
<tr>
<td>commercial, S31.12</td>
<td></td>
</tr>
<tr>
<td>fuel handling, S31.15</td>
<td></td>
</tr>
<tr>
<td>industrial, S31.12</td>
<td></td>
</tr>
<tr>
<td>residential, S31.11</td>
<td></td>
</tr>
<tr>
<td>venting, S35.21</td>
<td></td>
</tr>
<tr>
<td>venting, S35.20; 21</td>
<td></td>
</tr>
<tr>
<td>Buses</td>
<td></td>
</tr>
<tr>
<td>air conditioning, A11.2</td>
<td></td>
</tr>
<tr>
<td>garage ventilation, A15.22</td>
<td></td>
</tr>
<tr>
<td>Bus terminals</td>
<td></td>
</tr>
<tr>
<td>air conditioning, A3.7</td>
<td></td>
</tr>
<tr>
<td>physical configuration, A15.24</td>
<td></td>
</tr>
<tr>
<td>ventilation</td>
<td></td>
</tr>
<tr>
<td>effects of alternative fuel use, A15.26</td>
<td></td>
</tr>
<tr>
<td>equipment, A15.33</td>
<td></td>
</tr>
<tr>
<td>operation areas, A15.24</td>
<td></td>
</tr>
<tr>
<td>platforms, A15.24</td>
<td></td>
</tr>
<tr>
<td>Butane, commercial, F28.5</td>
<td></td>
</tr>
<tr>
<td>CAD., See Computer-aided design (CAD)</td>
<td></td>
</tr>
<tr>
<td>Cafeterias, service water heating, A50.11, 21</td>
<td></td>
</tr>
<tr>
<td>Calcium chloride brines, F31.1</td>
<td></td>
</tr>
<tr>
<td>Candy</td>
<td></td>
</tr>
<tr>
<td>chocolate, R42.1</td>
<td></td>
</tr>
<tr>
<td>manufacture, R42.1</td>
<td></td>
</tr>
<tr>
<td>storage, R42.6</td>
<td></td>
</tr>
<tr>
<td>Capillary action, and moisture flow, R25.10</td>
<td></td>
</tr>
<tr>
<td>Capillary tubes</td>
<td></td>
</tr>
<tr>
<td>capacity balance, R11.25</td>
<td></td>
</tr>
<tr>
<td>characteristic curve, R11.25</td>
<td></td>
</tr>
<tr>
<td>pressure-reducing device, R11.24</td>
<td></td>
</tr>
<tr>
<td>restrictor orifice, S23.2</td>
<td></td>
</tr>
<tr>
<td>selection, R11.27</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>in aircraft cabins, A12.14</td>
<td></td>
</tr>
<tr>
<td>in animal environments, A24.2</td>
<td></td>
</tr>
<tr>
<td>combustion, F28.1; 13</td>
<td></td>
</tr>
<tr>
<td>greenhouse enrichment, A24.14</td>
<td></td>
</tr>
<tr>
<td>liquefaction, R39.7</td>
<td></td>
</tr>
<tr>
<td>measurement, F37.25</td>
<td></td>
</tr>
<tr>
<td>refrigerant, R3.1</td>
<td></td>
</tr>
<tr>
<td>for retail food stores, R15.17</td>
<td></td>
</tr>
<tr>
<td>storage, R39.12</td>
<td></td>
</tr>
<tr>
<td>Carbon emissions, F34.7</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td></td>
</tr>
<tr>
<td>analyzers, A15.10; 11</td>
<td></td>
</tr>
<tr>
<td>health effects, F10.15</td>
<td></td>
</tr>
<tr>
<td>parking garages, A15.19, 20</td>
<td></td>
</tr>
<tr>
<td>road tunnels, A15.9</td>
<td></td>
</tr>
<tr>
<td>tollbooths, A15.27</td>
<td></td>
</tr>
<tr>
<td>Cargo containers</td>
<td></td>
</tr>
<tr>
<td>airborne sound, R25.8</td>
<td></td>
</tr>
<tr>
<td>air circulation, R25.3</td>
<td></td>
</tr>
<tr>
<td>ambient design factors, R25.7</td>
<td></td>
</tr>
<tr>
<td>commodity precooling, R25.11</td>
<td></td>
</tr>
<tr>
<td>control, R25.6; 12</td>
<td></td>
</tr>
<tr>
<td>controlled atmosphere, R25.6</td>
<td></td>
</tr>
<tr>
<td>costs, owning and operating, R25.11</td>
<td></td>
</tr>
<tr>
<td>design, R25.1</td>
<td></td>
</tr>
<tr>
<td>equipment</td>
<td></td>
</tr>
<tr>
<td>attachment provisions, R25.3</td>
<td></td>
</tr>
<tr>
<td>design and selection factors, R25.7, 10</td>
<td></td>
</tr>
<tr>
<td>operating efficiency, R25.8</td>
<td></td>
</tr>
<tr>
<td>qualification testing, R25.9</td>
<td></td>
</tr>
<tr>
<td>selection, R25.10</td>
<td></td>
</tr>
<tr>
<td>system application factors, R25.10</td>
<td></td>
</tr>
<tr>
<td>types, R25.3</td>
<td></td>
</tr>
<tr>
<td>heating only, R25.6</td>
<td></td>
</tr>
<tr>
<td>insulation barrier, R25.1</td>
<td></td>
</tr>
<tr>
<td>load calculations, R25.10</td>
<td></td>
</tr>
<tr>
<td>maintenance, R25.12</td>
<td></td>
</tr>
<tr>
<td>mechanical cooling and heating, R25.3</td>
<td></td>
</tr>
<tr>
<td>operations, R25.11</td>
<td></td>
</tr>
<tr>
<td>qualification testing, R25.9</td>
<td></td>
</tr>
<tr>
<td>safety, R25.8</td>
<td></td>
</tr>
<tr>
<td>sanitation, R25.3</td>
<td></td>
</tr>
<tr>
<td>shock and vibration, R25.7</td>
<td></td>
</tr>
<tr>
<td>space considerations, R25.12</td>
<td></td>
</tr>
<tr>
<td>system application, R25.10</td>
<td></td>
</tr>
<tr>
<td>temperature-controlled transport, R25.1</td>
<td></td>
</tr>
<tr>
<td>temperature settings, R25.12</td>
<td></td>
</tr>
<tr>
<td>use, R25.11</td>
<td></td>
</tr>
<tr>
<td>vapor barrier, R25.1</td>
<td></td>
</tr>
<tr>
<td>ventilation, R25.6; 12</td>
<td></td>
</tr>
<tr>
<td>Carnot refrigeration cycle, F2.6</td>
<td></td>
</tr>
</tbody>
</table>
Chemical, biological, radiological, and explosive (CBRE) incidents

Charge minimization

Change-point regression models

Central air conditioning, A42. (See also Air conditioning)

Central plants

Central systems

Central air conditioning, A42. (See also Air conditioning)

Central systems

cooling and heating, S3.1
- features, S1.4
- furnaces, S33.1
- humidifiers, S22.6
- residential forced air, S10.1
- space requirements, S1.6
- in tall buildings, A4.14
- acoustical considerations, A4.17
- economic considerations, A4.14
- location, A4.16
- ventilation, with in-room terminal systems, S5.3

Cetane number, engine fuels, F28.9

CFD. See Computational fluid dynamics (CFD)

Charge-point regression models, F19.28

Charge minimization, R1.36

Charging, refrigeration systems, R8.4

Chemical, biological, radiological, and explosive (CBRE) incidents, A59

- biological events, A59.9
- building envelope as protection, F16.11, 20
- chemical agent types, A59.6
- gases and vapors, A59.8
- incapacitating, A59.7
- irritants, A59.7
- toxic, A59.7
- chemical events, A59.6
- commissioning, A59.6
- explosive events, A59.11
- design considerations, A59.11
- loading description, A59.11
- radiological events, A59.10

Chemical plants

- automation, R46.3
- energy recovery, R46.4
- flow sheets, R46.1
- instrumentation and controls, R46.8
- outdoor construction, R46.4
- piping, R46.8
- pumps, R46.8
- refrigeration

compressors, R46.6
- condensers, R46.7
- cooling towers, R46.8
- equipment, R46.3, 6
- evaporators, R46.7
- load, R46.2
- safety requirements, R46.2
- spray ponds, R46.8
- systems, R46.1, 5
- safety requirements, R46.2
- specifications, R46.1
- tanks, R46.8

Chemisorption, A46.9

Chilled beams, S20.10

Chilled water (CW)

- combined heat and power (CHP) distribution, S7.44
- district heating and cooling, S12.9, 27
- optimal temperature, A42.12
- pumping system, A42.13, 24
- pump sequencing, A42.12, 15
- reset, A42.12, 13
- systems, S13.1, 18
- central plant, A38.14
- heat transfer vs. flow, A38.7
- one-pipe, S13.19
- two-pipe, S13.20
- thermal storage, S51.4
- water treatment, A49.18

Chillers

- absorption, S3.5
- ammonia/water, R18.12
- heat-activated, S7.38
- water/lithium bromide, R18.3
- blast, R16.3
- central plants, A47.4; S12.2
- centrifugal
- air-cooled, S43.12
- controls, S43.10
- equipment, S43.7
- fouling, S43.10
- free cooling, S43.11
- hot-gas bypass, S43.9
- maintenance, S43.12
- purge units, S43.11
- rating, S43.10
- refrigerant
- selection, S43.8
- transfer units, S43.11
- selection methods, S43.10
- temperature lift, S43.9
- control, A47.4
- capacity, S43.3, 14
- considerations, S43.10
- regulating, S43.4
- safety, S43.4
- costs, S43.3
- direct expansion, R1.22; S43.1
- economizing, S43.1
- expansion turbines, S43.1
- flash, S43.1
- heat recovery, S43.11
- injection, S43.1
- liquid-chilling systems, S43.1
- liquid heads, S43.3
- load distribution, A42.16
- maintenance, S43.5, 12, 15

- marine water boxes, S43.3
- noise generation, A48.15; S43.10
- optimization, A47.5
- pre-rotation vanes, S43.4, 9
- reciprocating
- components, S43.5
- control, S43.6
- equipment, S43.5
- performance, S43.6
- refrigerant selection, S43.6
- selection methods, S43.6
- refrigeration cycle, S43.1

Chilton-Colburn f-factor analogy, F6.7

Chimneys, S35

- accessories, S35.30
- capacity calculation examples, S35.14
- caps, S35.33
- codes, S35.35
- design equations, S35.3
- draft, S35.1
- altitude effects, S35.7, 32
- available, S35.1, 3
- theoretical, S35.2, 3
- fireplace, S35.1, 23
- flue gas, S35.1
- functions, S35.2
- gas, appliance venting, S35.20
- masonry, S35.20, 22
- materials, S35.28
- standards, S35.30, 35
- terminations, S35.33
- wind effects, S35.3, 33

Chlorinated polyvinyl chloride (CPVC), A34.6

Chocolate, R42.1. (See also Candy)

Choking, F3.13

CHP systems. See Combined heat and power (CHP)

Cinemas, A5.3

CKV. See Commercial kitchen ventilation (CVK)

Claude cycle, R47.8

Cleanrooms. See Clean spaces

Clean spaces, A18

- aerospace, A18.17
- air filters, A18.3, 12, 17
- airflow, A18.4, 5, 17, 18
- applications, A18.2
- biomanufacturing, A18.9
- construction, A18.24
- contaminant control, A18.3, 12
- cooling, A18.19
- energy conservation, A18.22
Composite Index

I.7

- Fire safety, A18.20
- High-bay, A18.17
- Humidity control, A18.20
- Makeup air, A18.19, 23
- Noise control, A18.24
- Operation, A18.24
- Particle sources, A18.3
- Pharmaceutical
 - Aseptic, A18.10
 - Biomanufacturing, A18.9
 - Contaminant control, A18.12
 - Control and monitoring, A18.14
 - Design, A18.11
 - Isolators, A18.13
 - Nonaseptic, A18.14
 - Unidirectional hoods, A18.13
- Pressurization, A18.20
- Process exhaust, A18.19, 23
- Semiconductor
 - A18.17
- Process exhaust, A18.19, 23
- Pressurization, A18.20
- Testing, A18.9
- Temperature control, A18.20
- System sizing and redundancy, A18.21
- Vibration control, A18.24
- Washing, A18.14

- Air distribution, A57.1
- Air conditioners, room, S50.3
- Air-cooling, S4.8
- Applications, S23.6
- Aqueous glycol coils, S23.2
- Construction and arrangement, S23.1
- Control, A47.7; S23.3
- Direct-expansion coils, S23.2
- Fluid flow arrangement, S23.3
- Heat transfer, S23.6
- Load determination, S23.14
- Maintenance, S23.15
- Performance, S23.7
- Rating, S23.6
- Refrigerant coils, S23.2
- Selection, S23.5
- On ships, A13.4
- Water coils, S23.2
- Air-heating, S27.1
- Aqueous glycol, S27.2
- Construction, S27.1
- Design, S27.1
- Electric, A47.3; S27.3
- Installation, S27.4
- Maintenance, S27.5
- Rating, S27.3
- Refrigerant, S27.3
- Selection, S27.3
- Shipboard, A13.4
- Steam, S27.1
- Water, S15.6; S27.2
- Altitude effects, S23.5, 6
- Condensers, S39
 - Evaporative, S39.15
- Cooling, F19.20
- Dehumidifying, S23.1
- Desuperheating, S39.17
- Energy recovery loops, S26.11
- Halocarbon refrigeration systems, R1.22
- Heat and mass transfer, F6.13
- Heat reclaim, S27.3
- Preheat, S4.8
- Reheat, S4.9; S27.2
- Colburn’s analogy, F4.17
- Colebrook equation
 - Friction factor, F21.6
 - Pressure drop, F22.5
- Collectors, solar
 - A35.6, 11, 24, 25; S37.3
 - (See also Solar energy)
- Colleges and universities, A7.11
- Combined energy efficiency ratio (CEER), S50.3
- Combined heat and power (CHP), S7
 - Economic feasibility,
 - Load duration curve, S7.51
 - Simulation, S8.13
 - Electrical systems, S7.43
 - Utility interface, S7.43
- Expansion engines/turbines, S7.31
- Heat-activated chillers, S7.38
- Heat recovery
 - Engines, S7.32, 33
 - Turbines, S7.37
- Load profiling, S7.4
- Maintenance, S7.17
- Modular systems, S7.3
- Packaged systems, S7.3
- Peak shaving, S7.4
- Prime movers
 - Fuel cells, S7.22
 - Selection, S7.4
 - Thermal output, S7.32
- Turbines
 - Combustion, S7.18, 45
 - Steam, S7.24, 46
- Thermal energy storage, S7.39
- Utility interface, electric, S7.43
- Utilization systems
 - Air, S7.42
 - District heating and cooling, S7.43
 - Hydronic, S7.42
 - Service hot water, S7.43
- Vibration control, foundations, S7.16
- Combustion, F28
 - Air pollution, F28.17
 - Air required for, F28.11
 - Altitude compensation, F28.3; S7.9, 10, 19; S31.10
 - Calculations
 - Air required for, F28.11
 - Carbon dioxide, theoretical, F28.13
 - Efficiency, F28.15
 - Flue gas, F28.11
 - Coals
 - Classification, F28.10
 - Heating value, F28.10
 - Types, F28.10
 - Condensation in, F28.11
 - Continuous, F28.2
 - Corrosion in, F28.18
 - Diesel fuel, F28.9
 - Efficiency, F28.15
 - Engine fuels, cetane number, F28.9
 - Excess air, F28.12
 - Flammability limits, F28.1
 - Fuel oil, F28.1
 - Natural gas, F28.5
- Geothermal
 - Illuminants, F28.12
 - Liquefied petroleum gas, F28.5
- Gas turbine fuel, F28.9
- Heating value, F28.3
- Ignition temperature, F28.2
- Heat recovery
 - Engines, S7.32, 33
 - Turbines, S7.37
- Loads profiling, S7.4
- Maintenance, S7.17
- Modular systems, S7.3
- Packaged systems, S7.3
- Peak shaving, S7.4
- Prime movers
 - Fuel cells, S7.22
 - Selection, S7.4
 - Thermal output, S7.32
- Turbines
 - Combustion, S7.18, 45
 - Steam, S7.24, 46
- Thermal energy storage, S7.39
- Utility interface, electric, S7.43
- Utilization systems
 - Air, S7.42
 - District heating and cooling, S7.43
 - Hydronic, S7.42
 - Service hot water, S7.43
- Vibration control, foundations, S7.16
- Combustion, F28
 - Air pollution, F28.17
 - Air required for, F28.11
 - Altitude compensation, F28.3; S7.9, 10, 19; S31.10
 - Calculations
 - Air required for, F28.11
 - Carbon dioxide, theoretical, F28.13
 - Efficiency, F28.15
 - Flue gas, F28.11
 - Coals
 - Classification, F28.10
 - Heating value, F28.10
 - Types, F28.10
 - Condensation in, F28.11
 - Continuous, F28.2
 - Corrosion in, F28.18
 - Diesel fuel, F28.9
 - Efficiency, F28.15
 - Engine fuels, cetane number, F28.9
 - Excess air, F28.12
 - Flammability limits, F28.1
 - Fuel oil, F28.1
 - Natural gas, F28.5
- Geothermal
 - Illuminants, F28.12
 - Liquefied petroleum gas, F28.5
- Gas turbine fuel, F28.9
- Heating value, F28.3
- Ignition temperature, F28.2
- Heat recovery
 - Engines, S7.32, 33
 - Turbines, S7.37
- Loads profiling, S7.4
- Maintenance, S7.17
- Modular systems, S7.3
- Packaged systems, S7.3
- Peak shaving, S7.4
- Prime movers
 - Fuel cells, S7.22
 - Selection, S7.4
 - Thermal output, S7.32
- Turbines
 - Combustion, S7.18, 45
 - Steam, S7.24, 46
- Thermal energy storage, S7.39
- Utility interface, electric, S7.43
- Utilization systems
 - Air, S7.42
 - District heating and cooling, S7.43
 - Hydronic, S7.42
 - Service hot water, S7.43
- Vibration control, foundations, S7.16
Combustion air systems
air required, S35.28
burners
soot, S28.9
ventilation, S35.1
Combustion turbine inlet cooling (CTIC), S7.21; S8.1
thermal storage, S51.23
Comfort. (See also Physiological principles, humans)
environmental indices, F9.21
environmental parameters
air velocity, F37.31
asymmetrical thermal radiation, F9.14
draft, F9.15
floor temperature, F9.16
radiant temperature, F9.12
vertical air temperature difference, F9.15
humidity, F25.16; F37.32
local discomfort, F9.14
models
adaptive, F9.20
multisegment, F9.20
two-node, F9.18
nonuniform conditions, F9.14
predicted mean vote (PMV), F9.18; F37.32
predicted percent dissatisfied (PPD), F9.18
productivity, F9.14
radiant heating, A54.3
special environments
extreme cold, F9.27
hot and humid environments, F9.26
infrared heating, F9.23
personal environmental control (PEC) systems, F9.26
radiant heating, comfort equations, F9.25
steady-state energy balance, F9.17
multisegments, F9.20
two-node model, F9.18
combustion, F9.14
thermal sensation scale, F9.12
zones, F9.20; F10.16
Commercial and public buildings, A3
air leakage, F16.26
airports, A3.6
burners
gas, S31.3, 6
oil, S31.12
bus terminals, A3.7
central cooling systems, A42.1
cruise terminals, A3.6
design concepts, A3.3
ducts, S19
furnaces, S33.1
general design considerations, A3.1
heat exchangers, S22.6
ice rinks, R44.1
kitchen ventilation, A33.1
load characteristics, A3.2
malls, A2.7
material, S19.10
offices, A3.1
retail facilities, A2.1
service water heating, A50.13
transportation centers, A3.6
warehouses, A3.8
Commercial kitchen ventilation (CKV), A33
Commissioning, A43
acceptance, A43.8
basis of design (BOD), A43.2, 5
certification, A43.13
checklist, A43.3
construction, A43.6
closure systems, F7.19
costs, A43.12
desiccant dehumidifiers, S24.9
design, A43.5; A47.21
design review, A43.7
existing buildings, A43.1, 13
humidifiers, S22.15
in integrated building design, A58.8
issues load, A43.9
laboratories, A16.20
makeup air units, S28.9
new construction, A43.1
objectives, A43.2
occupancy and operations, A43.11
owner’s project requirements (OPR), A43.2
predesign, A43.5
pumps, centrifugal, S44.15
recommissioning, A43.1, 11
retrocommissioning, A43.1
steam systems, S11.16
systems manual, A43.2, 11
ventilation, A43.3
test procedures, A43.9
Comprehensive room transfer function method (CRTF), F19.11
Compressors, S38
air conditioners, room, S50.2
ammonia refrigeration systems, R2.1
bearings
centrifugal, S38.36
reciprocating, S38.8, 10
rotary, S38.13
single-screw, S38.15
twin-screw, S38.21
centrifugal, S7.45; S38.30
cold industry refrigeration, R46.6
drives, R2.2
dynamic, S38.1
electrically driven, S7.45
halocarbon refrigeration systems, R1.20
heat pump systems, S9.5
motors, S38.6; S45.5
noise generation, A48.15; S38.5, 34
operation and maintenance, S38.40
positive-displacement, S38.2
reciprocating, S7.45; S38.7
rampcrank, R1.34
rotary, S38.12
screw, S7.45
single, S38.15
twin, S38.20
scroll, S38.24
trophic (Wankel), S38.29
Computational fluid dynamics (CFD), F13.1, F19.25
assessing predictions, F13.11
boundary conditions for
inlet, F13.6
outlet, F13.7
reporting, F13.13
sources/sinks, F13.8
surfaces, F13.7, 8
walls, F13.7
considerations, F13.9
grids, F13.4
mathematical approaches, F13.1
meshing, F13.4
reporting, F13.9, 13
steps, F13.9
turbulence modeling, F13.3
validation, F13.9, 10
verification, F13.9
viscosity modeling, F13.10
Computer-aided design (CAD), A18.5; A40.15
Computers, A40
abbreviations for programming, F38.1
BACnet®, A40.18; F7.18
building automation systems (BAS), A40.18
computational fluid dynamics, A15.3; A40.14; A53.22
computer-aided design (CAD), A18.5; A40.15
centre of control, F7.4, 11, 21
design tools
acoustic calculations, A40.12
building information modeling (BIM), A40.15
combined heat and power (CHP), S7.54
computational fluid dynamics, A40.14
computer-aided design (CAD), A40.15
duct design, A40.10
equipment selection and simulation, A40.12
load calculations, A40.9
piping design, A40.11
refrigerant properties, A40.17
smoke control analysis, A53.7, 22
ventilation, A40.17
road tunnel, A15.3
equipment, A40.12
graphics, A40.15
hardware, A40.1
heat gain, F18.12
HVAC simulation, A40.13
Internet, A40.7
modeling, F7.21
monitoring and control, A40.17
networking components, A40.5
peripherals, A40.5
smoke control analysis, A53.7, 22
software, A40.2
antispyware, A40.2
custom programming, A40.4
development tools, A40.4
energy analysis, F19.5
firewall, A40.2
graphics, A40.3
HVAC, A40.9

| Condensers |
| --- | --- |
| Конденсаторы | Конденсаторы |
| Condensation |
| Condensation | Condensation |
| Condensate |
| Condensate | Condensate |
| Concert halls |
| Concert halls | Concert halls |
| Composite Index |
| Composite Index | Composite Index |
| surface, F25.2, 14 |
| prevention, dehumidification for, S24.11 |
| oil-fired appliances, S35.21 |
| interstitial, and drying, F25.15 |
| energy recovery equipment, S26.7 |
| dew-point analysis, F25.14 |
| control, with insulation, F23.3 |
| concealed, S22.3 |
| in combustion systems, F28.18 |
| in building components, F25.15 |
| water treatment, A49.17 |
| steam systems, F22.34; S11.6; S12.14, 27 |
| water heating for, A50.25 |
| thermal design, R45.4 |
| selection, R45.1 |
| pozzolanic admixtures, R45.1 |
| cooling, R45.1 |
| World Wide Web, A40.8 |
| halocarbon refrigeration systems |
| evaporative, R15.20; S39.14 |
| in chillers, S43.5, 8, 13 |
| chemical industry refrigeration, R46.7 |
| in chillers, S43.5, 8, 13 |
| evaporative, R15.20; S39.14 |
| airflow, S39.16 |
| capacity control, S39.18 |
| codes, S39.19 |
| coils, S39.15 |
| freeze prevention, S39.16 |
| heat transfer, S39.14 |
| liquid subcoolers, S39.17 |
| location, S39.16 |
| maintenance, S39.19 |
| multicircuiting with liquid coolers, S39.18 |
| multiple-condenser installations, S39.16 |
| purging, S39.19 |
| rating, S39.17 |
| standards, S39.19 |
| water, S39.18 |
| halocarbon refrigeration systems |
| air-cooled, R1.34 |
| evaporative, R1.33 |
| piping, R1.28 |
| pressure control, R1.33 |
| water, R1.33 |
| retail food store refrigeration, R15.19 |
| water-cooled, S39.1 |
| codes, S39.7 |
| Darcy-Weisbach equation, S39.5 |
| fouling factor, S39.4 |
| heat removal, S14.1; S39.1 |
| heat transfer, S39.2 |
| liquid subcooling, S39.5 |
| maintenance, S39.8 |
| noncondensable gases, S39.7 |
| pressure drop, S39.4 |
| standards, S39.7 |
| types, S39.5 |
| water circuiting, S39.5 |
| Conductance, thermal, F4.3; F25.1 |
| Conduction |
| display cases, R15.5 |
| steady-state, F4.3 |
| Conductivity, thermal, F25.1; F26.1 |
| apparent, F25.1; F26.1 |
| of thermal insulation, F26.1 |
| foods, R19.10 |
| soils, S39.13 |
| Constant air volume (CAV) |
| air terminal units, S4.16 |
| control, A42.2 |
| dual-duct, S4.12 |
| single-duct, S4.11 |
| supply air temperature reset, A42.43 |
| versus variable air volume (VAV), A16.11 |
| Containers, (See also Cargo containers) |
| air transport, R27.3 |
| marine transport, R26.2 |
| Contaminants |
| clean spaces, A18.3, 12 |
| food, R22.1 |
| gaseous |
| combustion, R28.17; S30.26 |
| concentration, indoor, measurement, A46.5 |
| control, S24.12; S30.18, 23, 26 |
| environmental tobacco smoke (ETS), F11.2 |
| flammable, R11.20 |
| indoor air, R11.18 |
| industrial, R11.17 |
| inorganic, R11.15 |
| measurement, R11.12; S37.35 |
| microbial volatile organic compounds (MVOCs), R10.8 |
| nuclear facilities, A28.3, 5, 8 |
| outdoor air, R11.16 |
| ozone, R14.15 |
| polycyclic aromatic compounds (PACs), R10.6 |
| radioactive, R11.21 |
| radon, R14.15; R10.22 |
| removal, R14.67 |
| semivolatile organic compounds (SVOCs), R10.4, 12; R11.15 |
| soil gases, R11.22 |
| vapors, flammable, R11.20 |
| volatile organic compounds (VOCs), R10.9, 11; R11.14 |
| total (TVOCs), R11.14 |
| indoor, concentration prediction, R13.16 |
| organism destruction, R22.4 |
| particulate aerosols, R29.1 |
| asbestos, R30.5 |
| classification, R11.1 |
| coarse, R11.3 |
| collection mechanisms, R29.2; S30.10, 15 |
| combustion, R28.17 |
| dusts, R11.20; R29.1 |
| environmental tobacco smoke (ETS), R11.2 |
| fine, R11.3 |
| fogs, R11.1, 4 |
| fumes, R11.1, 4 |
| measurement, S37.35 |
| mists, R11.1, 4 |
| pollen, R11.7 |
| polycyclic aromatic compounds (PACs), R10.6 |
| radioactive, R11.21 |
| size distribution, R11.4 |
| smogs, R11.1, 4 |
| smoke, R11.1 |
| suspended particles, counters, R11.6 |
| synthetic vitreous fibers, R10.6 |
| ultrafine, R11.3 |
| refrigeration systems, R7.1 |
| dirt, R7.6 |
| field assembly, R7.8 |
| filter-driers, R7.6 |
| generation by high temperature, R6.6 |
| lubricants, R7.7 |
| metallic, R7.6 |
| moisture, R7.1 |
| motor burnout, R7.8, 8 |
| noncondensable gases, R7.8 |
| residual cleaning agents, R7.8 |
| sampling, R7.10 |
| sludge, R7.7 |
| tars, and wax, R7.7 |
| solvents, R7.7 |
| special system characteristics, R7.9 |
| textile processing, A21.7 |
| Continuity, fluid dynamics, A3.2 |
| Control, (See also Controls, automatic; Supervisory control) |
| absorption units, A18.11, 15 |
| aircraft cabin pressure, A12.11, 13 |
| air-handling systems, A42.1, 42; A47.10 |
| all-air systems, S4.17 |
| authority, R7.7 |
| automobile air conditioning, R32.8 |
| boilers, A42.39; A47.1; S32.7 |
| building automation systems (BASs), A47.1 |
| business ventilation, A47.9 |
| burners, S31.19 |
| central air conditioning, A42.1 |
| chemical plants, R46.3 |
| chilled beams, A47.14 |
| chilled-water pumps, A42.12, 13, 24 |
| chillers, A42.16; A47.5 |
| combustion turbines, R7.21 |
| components, R7.4 |
| condensers |
| air-cooled, S39.11 |
| evaporative, S39.18 |
| cooling, S6.20 |
| coils, A47.7; S23.3 |
smoke, A53.1
snow-melting systems, A51.10
solar energy, A35.12, 25, 27, S37.17
differential temperature controller, S37.17
hot-water dump, S37.19
overtemperature protection, S37.18
solid-state, A47.3
sound, A48.1, 50; F8.15
static pressure, and variable flow rates, A47.9
steam coils, A47.3
steam systems, S11.13
system selection, A47.20
terminal units, A47.13
thermal storage systems, A42.29; S51.29
unit heaters, S28.6
unit ventilators, A47.16; S28.3
variable-air-volume (VAV) systems, A42.1;
A47.8
ventilation reset control (VRC), A47.11
vibration, A48.41
zone systems, A47.17
zone valves, S11.13

Controlled-atmosphere (CA) storage
apples, R35.2
apricots, R35.13
berries, R35.13
cherries, sweet, R35.12
figs, R35.13
grapes, R35.8
nectarines, R35.12
peaches, R35.12
pears, R35.6, 7
plums, R35.11
refrigerated facilities, R35.3
strawberries, R35.13
vegetables, R35.6

Controlled-environment rooms (CERs), and plant growth, A24.16

Controls, automatic, F7. (See also Control)
actuator, F7.4
authority, F7.7
classification, F7.4
closed loop (feedback), F7.1
commissioning, F7.19
components
drive control devices, F7.4
controllers, A38.17; F7.11, 20
slow, F7.9
transducers, electronic-to-pneumatic (E/P),
F7.13
computers, A40.17; F7.4
calibration action types, F7.2, 4, 19
dampers, F7.6
actuator mounting, F7.8
actuators, F7.8
types, F7.7
direct digital (DDC), F7.4, 11, 20
explosive atmospheres, A47.19
extraordinary incidents, A47.19
feedback (closed loop), F7.1
fuzzy logic, F7.3
mobile applications, A47.18
modeling, F19.23
modulating, F7.3
open loop, F7.1
positive positioners, F7.8
proportional/integral (PI), F7.3
proportional-integral-derivative (PID), F7.3
proportional-only (P), F7.3
refrigerant flow, R11.1
safety, A47.18
sensors, F7.9, 10; R11.4
location, A47.21
static pressure, A47.9
switches, R11.1
systems, F7.1
terminology, F7.1
testing, A38.16
thermostats, F7.12
transducers, pressure, R11.4
transmitters, F7.9
tuning, F7.3, 19, 20
two-position, F7.2
valves, F7.4
actuators, F7.6
temperature characteristics, F7.5
selection and sizing, F7.5, 6

Convection
flow, fully developed turbulent, F4.17
forced, F4.17
evaporation in tubes, F5.4, 7, 12
laminar, F4.17
transition region, F4.17
turbulent, F4.17
free, F4.19
mass, F6.5
natural, F4.19; F5.1
steam heating systems, S11.11
termal, F4.1

Convector
application, S36.5
design, S36.3
heat-distributing unit, S36.1
nonstandard condition corrections, S36.3
erating, S36.3

Convention centers, A5.5

Conversion factors, F39

Cooking appliances
heat gain, F18.8

Coolants, secondary

Coolers, See also Refrigerators
beverage, R39.10
cryocoolers, R47.11
forced-circulation air, R14.1
installation and operation, R14.6

Plant growth chambers, A24.17

Photographic materials

Performance monitoring, A47.12

Makeup air units, A47.17; S28.9

Low-temperature, R2.15

Laboratory systems, A16.11

Liquid chillers, S43.3, 6, 10, 14

Low-temperature, R2.15

Morning warm-up, A47.12

Motors, S45.5, 6

Protection, S45.7

Nuclear facilities, A28.5

Optimization, A42.1

Outdoor air quantity, A47.10

Paper moisture content, A20.2

Parking garage ventilation, A15.20

Performance monitoring, A47.6

Photographic materials processing, A22.3

Pipe-tracing systems, A51.20

Plant growth chambers, A24.17

Pneumatic, A47.1, 16, 19

Pressurization, A47.9

Radiant panels, A47.4; S6.19

Radioactivity, A28.8

Rail car air conditioning, A11.7

Refrigerant flow, R11.1

Residential heating and cooling, A1.6

Return fan, A47.9, 12

Road tunnel ventilation, A15.11

Scale, A49.4

Sequence of operation, A47.19

Ship air conditioning

Refrigerating equipment, A47.19

Shipboard fans, A42.8, 12

Towers, A47.6

Corrosion, A49.6, 18

Demand-controlled ventilation (DCV), A47.11

Design principles

Controlled area size, A47.21

Energy conservation, A47.19

Load matching, A47.21

Sensor location, A47.21

System selection, A47.20
Cooling. (See also Air conditioning)

absorption equipment, R18.1
animal environments, A24.4
bakery products, R41.4
concrete
active systems, R45.5
air blast, R45.2
chilled water, R45.1
embedded coils, R45.1
induction, R45.2
passive, R45.4
controls, A42.8, S6.20
foods and beverages, time calculations, R20.1
fruits and vegetables
evaporative, R28.8
forced-air, R28.6
hydrocooling, R28.3
load calculation, R28.1
package icing, R28.8
vacuum cooling, R28.9
geothermal energy systems, A34.9
greenhouses, A24.13
radiative, A35.16
solar energy systems, A35.15, 18, 27
water systems, S13.1, 18
dynamometers, A17.4

Cooling load
calculations, F17; F18
central plant, S3.2
coil, F18.2
cooling load temperature differential method with solar cooling load factors (CLTD/CLF), F18.58
nonresidential, F18
conduction transfer functions, F18.21
heat balance (HB) method, F18.2, 17
heat gain
fenestration, F18.16
infiltration, F18.14
internal, F18.3
latent, F18.16
heat sources, F18.3
radiant time series (RTS) method, F18.2, 22
sol-air temperature, F18.25
system effects, F18.42
total equivalent temperature differential method with time averaging (TETD/TA), F18.58
transfer function method (TFM), F18.58
residential, F17
heat balance (RHB) method, F17.2
load factor (RLF) method, F17.2
Cooling load temperature differential method with solar cooling load factors (CLTD/CLF), F18.58
Cooling towers, S40
approach to wet bulb, S40.1
capacity control, S40.11
airflow, A42.9
fan sequencing, A42.8
flow modulation, A42.27
variable vs. fixed-speed fans, A42.26
construction materials, S40.8
design condition, S40.2
shift, S40.14
eliminators, S40.14, 15
economics, S40.9
fill, S40.3
fogging, S40.14
free cooling, S40.13
freeze protection, S40.13
heat and mass transfer, simultaneous, F6.13
hybrid, S40.2, 7
indirect evaporative coolers, S14.4; S41.5
inspections, S40.15
Legionella pneumophila, S40.15, 16
maintenance, S40.15
model, F19.22
number of transfer units (NTU), S40.19
performance, S40.17
piping, S14.2; S40.11
plumes, S40.14
principle of operation, S40.1
recommissioning, A49.14
selection, S40.8
shutdown, A49.15
siting, S40.10
sound, attenuators, S40.14
start-up, A49.14
testing, A38.16; S40.18
theory, S40.18
types, S3.5; S40.2
open systems, S14.1
water treatment, A49.11, 14, 18; S14.3; S40.16
start-up and shutdown, A49.14
winter operation, S40.13
inspections, S40.16

Cool storage, S51.1
COP. See Coefficient of performance (COP)
Corrosion
brines, F31.4
in combustion systems, F28.18
concentration cell corrosion, A49.9
contributing factors, A49.8
control, A49.6, 10, 18
in boilers, A49.15
cathodic protection, A49.10
buried pipe, S12.34
in cooling towers, A49.11

Costs. See also Economics
all-air systems, S4.3
analysis period, A37.2
economic analysis techniques
computer analysis, A37.13
inflation, A37.11
internal rate of return, A37.12
life-cycle cost analyses, A37.9
payback, A37.10
present value (worth), A37.10
savings-to-investment ratio (SIR), A37.11
energy, A37.4, 9
financing alternatives, A37.8
inflation, A37.11
interest and discount rate, A37.4
laboratory systems, A16.21
life-cycle, A37.12
energy recovery equipment, S26.12
operation and maintenance, A39.1
piping insulation, S12.25
maintenance, A37.7
operating
actual, A37.4
electricity, A37.5
natural gas, A37.6
cold water, A37.6
cold water systems, A51.8, 10

Energy savings
in steam and condensate systems, A49.17
energy recovery equipment, S26.7
galvanized metals, F31.12
glycol degradation, F31.12
inhibited glycols, F31.5
under insulation, F23.7; R10.3
microorganism influence, A49.7, 12
oil-fired appliances, S35.22
oxygen corrosion, A49.8, 18
secondary coolant systems, R13.5
service water systems, A50.12
tuberculation, A49.22
types, A49.6
white rust, A49.11

pa.

Candidate

in geothermal energy systems, A34.6
inhibitors, A49.9
materials selection, A49.10
passivation, A49.11
protective coatings, A49.10
in steam and condensate systems, A49.17
energy recovery equipment, S26.7
galvanized metals, F31.12
glycol degradation, F31.15
inhibited glycols, F31.5
under insulation, F23.7; R10.3
microorganism influence, A49.7, 12
oil-fired appliances, S35.22
oxygen corrosion, A49.8, 18
secondary coolant systems, R13.5
service water systems, A50.32
tuberculation, A49.22
types, A49.6
white rust, A49.11

Costs. See also Economics
all-air systems, S4.3
analysis period, A37.2
economic analysis techniques
computer analysis, A37.13
inflation, A37.11
internal rate of return, A37.12
life-cycle cost analyses, A37.9
payback, A37.10
present value (worth), A37.10
savings-to-investment ratio (SIR), A37.11
energy, A37.4, 9
financing alternatives, A37.8
inflation, A37.11
interest and discount rate, A37.4
laboratory systems, A16.21
life-cycle, A37.12
energy recovery equipment, S26.12
operation and maintenance, A39.1
piping insulation, S12.25
maintenance, A37.7
operating
actual, A37.4
electricity, A37.5
natural gas, A37.6
other fuels, A37.6
snow-melting systems, A51.8, 10
owning
initial cost, A37.1
insurance, A37.4
taxes, A37.4
periodic, A37.4
refrigerant phaseout, A37.8
Cotton, drying, A25.8
Courtrooms, A9.5
CPVC. See Chlorinated polyvinyl chloride (CPVC)
Crawlspaces
heat loss, F17.11
insulation, A44.11
vented vs. unvented, A44.11
wall insulation, A44.11
Critical spaces
data centers, A42.8
forensic labs, A9.7
Cryogenics, R47

biomedical applications
cryomicroscopy, R49.6
cryopreservation, R49.1
cryoprotective agents, R49.2
cryosurgery, R49.7
induced hypothermia, R49.7
refrigeration, R49.1
specimen preparation, R49.6

Brayton cycle, R47.11
cascade cycle, R47.8
Claude cycle, R47.8
cryobiological, R49.8
cryocoolers
regenerative, R47.11
regenerative, R47.14
cryopumping, R47.1

equipment
cooled-tube exchanger, R47.21
compressors, R47.20
expansion devices, R47.20
heat exchangers, R47.21
regenerators, R47.23
systems, R47.20
turboalternators, R47.21
turboexpanders, R47.21

fluids
cold burns, R47.28
flammability, R47.30
storage vessels, R47.26
transfer, R47.27
freezers, industrial, R29.5
hazards, R47.28

Heylandt cycle, R47.8
instrumentation, R47.27
insulation
low-temperature, R47.23
selection (table), R47.27
thermal conductivity (table), R47.24
isenthalpic expansion, R47.6
isentropic expansion, R47.7
Joule-Thomson cycle, R47.6
Kleemenko cycle, R47.13

Linde cycle, R47.6
liquefaction
balanced flow condition, R47.6
of gases, R47.6
liquid-level sensors, R47.28
mixed refrigerant cycle, R47.8
natural gas processing, R47.18
properties
electrical, R47.5
magnetic, R47.5
mechanical, R47.6
thermal, R47.3
purification of gases, R47.19
recovery of gases, R47.17, 18
separation of gases, Gibbs phase rule, R47.16
staging, R47.15
Stirling cycle, R47.14
storage systems, R47.14
transfer systems, R47.27

Curtain walls, F15.6

Dairy products, R33

aseptic packaging, R33.20
butter
manufacture, R33.6
refrigeration load, R33.9
butter milk, R33.5
cheese
to cheese room refrigeration, R33.13
manufacture, R33.10
cream, R33.5
display refrigerators, R15.7
ice cream
freezing, R33.17
hardening, R33.17
milk fat content, R33.14
mix preparation, R33.15
refrigeration
equipment, R33.19
requirements, R33.16
milk
dry, R33.22
evaporated, R33.22
fresh, R33.1
sweetened condensed, R33.22
thermal properties, R19.1
UHT sterilization, R33.19
yogurt, R33.5

Dampers
air outlet, S20.5, 5, 7
dampers, automatic, F7.6, 7
fire and smoke, A53.2
opposed-blade, S4.7; S20.5, 7
outdoor air, R47.10
parallel-blade, S4.8; S20.5, 7
return air, S4.7
sound control, A48.13
vehicular facilities, enclosed, A15.35
vent, A15.35

Dampness problems in buildings, A62.1

Dams, concrete cooling, R45.1

Darcy equation, F21.6

Darcy-Weisbach equation
ductwork sectional losses, F21.14
pressure drop, F3.7; F22.5
water-cooled condensers, S39.5
water systems, S44.5

Data centers, A19

Data-driven modeling
black-box, F19.27
empirical, F19.27
examples, F19.33
gray-box, F19.28
neural network, F19.33
steady-state, F19.28

Daylighting, F19.26
interior building illumination, F15.54
light transmittance, F15.56
solar radiation, F15.1

DDC, See Direct digital control (DDC)

Dedicated outdoor air system (DOAS), R36.12;
S18.2, 8; S25.4

Degree-days, F14.12
method, F19.6
bin, F19.8
cold load, F19.6
heating, F19.6
infiltration, F16.13
modified bin, F19.8
variable base, F19.7

Dehumidification, A47.15; S24
absorption, S24.12
adsorption, S24.12
air washers, S41.8
all-air systems, S4.6
desiccant, S24.1
applications, S24.1, 10
capacity, S24.2
equipment, S24.3
high-pressure, S24.12
liquid, F32.3
solid, F32.4
evaporative cooling, A52.2; S41.8
performance factor, S41.8
residential, A1.5

Dehumidifiers
dedicated outdoor air system (DOAS),
S18.2, 8; S25.4
desiccant, S24
capacity, S24.2
commissioning, S24.9
high-pressure, S24.12
liquid, S24.3
operation, S24.8
rotary solid, S24.5
solid, S24.4
ice rims, S25.8
indoor swimming pool, S25.6
industrial, S25.8
installation, S25.9
mechanical, S25.1
components, S25.1
psychrometrics, S25.1
types, S25.3
tunnel dryer, S25.9
wrapsaround heat exchangers, S25.10

Dehydration
depending on eggs, R34.12
farm crops, A25.1
industrial systems for, A30.1
refrigeration systems, R8.1

Density
fluids, F3.1
modeling, R19.6

Dental facilities, A8.14

Desiccant, S24.1
absorption, S24.1
corrosion of water vapor and air contaminants,
F32.5
dehumidification, S24.1
isotherms, F32.5
life, F32.5
liquid, S24.3, 4
materials, F32.1
refrigerant systems, R7.5
equilibrium curves, R7.4
moisture, R7.3
solid, S24.2, 4
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
<td>F32.3, F32.4</td>
</tr>
<tr>
<td>Liquid absorbents</td>
<td>F32.3</td>
</tr>
<tr>
<td>Solid absorbents</td>
<td>F32.4</td>
</tr>
<tr>
<td>Design-day climatic data</td>
<td>F14.12</td>
</tr>
<tr>
<td>Desorption isotherm</td>
<td>F26.20</td>
</tr>
<tr>
<td>Desuperheaters</td>
<td>A1.32</td>
</tr>
<tr>
<td>Air conditioners, unitary</td>
<td>S49.4</td>
</tr>
<tr>
<td>In ammonia refrigeration</td>
<td>R2.12</td>
</tr>
<tr>
<td>Condensers, evaporative</td>
<td>S39.17</td>
</tr>
<tr>
<td>Heat pumps, unitary</td>
<td>S49.4</td>
</tr>
<tr>
<td>Condensers, evaporative</td>
<td>S39.17</td>
</tr>
<tr>
<td>Air conditioners, unitary</td>
<td>S49.4</td>
</tr>
<tr>
<td>Central plants</td>
<td>S12.43, S12.2</td>
</tr>
<tr>
<td>Applicability</td>
<td>S12.43, S12.2</td>
</tr>
<tr>
<td>Combined heat and power (CHP)</td>
<td>S7.43, S12.2</td>
</tr>
<tr>
<td>Steam burners</td>
<td>S31.1, S31.14</td>
</tr>
<tr>
<td>Service water heating</td>
<td>A50.13, A50.17, A50.20</td>
</tr>
<tr>
<td>Load characteristics</td>
<td>A6.1</td>
</tr>
<tr>
<td>Energy systems</td>
<td>A6.1</td>
</tr>
<tr>
<td>Design criteria</td>
<td>A6.1</td>
</tr>
<tr>
<td>Energy systems, A6.1</td>
<td></td>
</tr>
<tr>
<td>Air conditioning</td>
<td>A6.8</td>
</tr>
<tr>
<td>HVAC Systems and Equipment</td>
<td>A4.10, A4.10</td>
</tr>
<tr>
<td>Duct design</td>
<td>A38.4, A38.4</td>
</tr>
<tr>
<td>Ducts</td>
<td>A38.4, A38.4</td>
</tr>
<tr>
<td>Acoustical lining</td>
<td>A48.21</td>
</tr>
<tr>
<td>In hospitals</td>
<td>A8.13</td>
</tr>
<tr>
<td>Acoustical treatment</td>
<td>A9.19</td>
</tr>
<tr>
<td>Airflow measurement in</td>
<td>A38.2</td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>A8.10, A8.10</td>
</tr>
<tr>
<td>Classifications (pressure)</td>
<td>S19.10</td>
</tr>
<tr>
<td>Cleaning</td>
<td>S19.2</td>
</tr>
<tr>
<td>Construction</td>
<td>S19.10</td>
</tr>
<tr>
<td>Commercial</td>
<td>S19.10</td>
</tr>
<tr>
<td>Industrial</td>
<td>S19.10</td>
</tr>
<tr>
<td>Kitchen exhaust</td>
<td>S19.10</td>
</tr>
<tr>
<td>Master specifications</td>
<td>S19.12</td>
</tr>
<tr>
<td>Outdoor ducts</td>
<td>S19.12</td>
</tr>
<tr>
<td>Residential</td>
<td>S19.12</td>
</tr>
<tr>
<td>Seismic qualification</td>
<td>S19.12</td>
</tr>
<tr>
<td>Sheet metal welding</td>
<td>S19.12</td>
</tr>
<tr>
<td>Standards</td>
<td>S19.1, 9</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>S19.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composites</td>
<td>I.13</td>
</tr>
<tr>
<td>Refrigeration and Fundamentals</td>
<td>F14.12, F26.20</td>
</tr>
<tr>
<td>Distillation</td>
<td>A1.32</td>
</tr>
<tr>
<td>Gas chromatography</td>
<td>A1.32</td>
</tr>
<tr>
<td>Chemical, biological, and explosive (CBRE) incidents</td>
<td>R15.2, 5</td>
</tr>
<tr>
<td>District energy (DE)</td>
<td>S13.1</td>
</tr>
<tr>
<td>District heating and cooling (DHC)</td>
<td>S12.1</td>
</tr>
<tr>
<td>District heating and cooling (DHC), S12</td>
<td>S12.1</td>
</tr>
<tr>
<td>Central plants</td>
<td>S12.8</td>
</tr>
<tr>
<td>Boiler, S12.8</td>
<td></td>
</tr>
<tr>
<td>Chiller, A47.4</td>
<td>S12.2</td>
</tr>
<tr>
<td>Distribution design</td>
<td>S12.11</td>
</tr>
<tr>
<td>Emission control</td>
<td>S12.11</td>
</tr>
<tr>
<td>Equipment</td>
<td>S12.8</td>
</tr>
<tr>
<td>Heating medium</td>
<td>S12.8</td>
</tr>
<tr>
<td>Thermal storage</td>
<td>S12.10</td>
</tr>
<tr>
<td>Combined heat and power (CHP), S7.43</td>
<td>S12.2</td>
</tr>
<tr>
<td>Components</td>
<td>S12.1</td>
</tr>
<tr>
<td>Consumer interconnections</td>
<td>S12.2</td>
</tr>
<tr>
<td>Chilled water</td>
<td>S12.9, 27</td>
</tr>
<tr>
<td>Components</td>
<td>S12.42</td>
</tr>
<tr>
<td>Direct connection, S12.37</td>
<td>S12.42</td>
</tr>
<tr>
<td>Energy transfer station</td>
<td>S12.37</td>
</tr>
<tr>
<td>Flow control</td>
<td>S12.44</td>
</tr>
<tr>
<td>Indirect, with heat exchangers</td>
<td>S12.42</td>
</tr>
<tr>
<td>Steam, S12.27, 40</td>
<td>S12.42</td>
</tr>
<tr>
<td>Temperature differential control</td>
<td>S12.45</td>
</tr>
<tr>
<td>Costs</td>
<td>S12.37</td>
</tr>
<tr>
<td>Distribution system</td>
<td>S12.37</td>
</tr>
<tr>
<td>Aboveground systems</td>
<td>S12.26, 28</td>
</tr>
<tr>
<td>Condensate drainage and return</td>
<td>S12.14, S12.14</td>
</tr>
<tr>
<td>Conduits</td>
<td>S12.31, 33</td>
</tr>
<tr>
<td>Constant-flow, S12.11</td>
<td></td>
</tr>
<tr>
<td>Condensation</td>
<td>S12.26, 28</td>
</tr>
<tr>
<td>Condensate drainage and return</td>
<td>S12.14, 27</td>
</tr>
<tr>
<td>Conduits, S12.31, 33</td>
<td></td>
</tr>
<tr>
<td>Constant-flow, S12.11</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>S12.26</td>
</tr>
<tr>
<td>Entry pits</td>
<td>S12.35</td>
</tr>
<tr>
<td>Hydraulic design</td>
<td>S12.13</td>
</tr>
<tr>
<td>Insulation, pipe</td>
<td>S12.13</td>
</tr>
<tr>
<td>Pipe, S12.13</td>
<td></td>
</tr>
<tr>
<td>Thermal design conditions</td>
<td>S12.14</td>
</tr>
<tr>
<td>Underground systems</td>
<td>S12.29</td>
</tr>
<tr>
<td>Valve vaults, S12.35</td>
<td></td>
</tr>
<tr>
<td>Variable-flow, S12.12</td>
<td></td>
</tr>
<tr>
<td>Water hammer, S12.13</td>
<td></td>
</tr>
<tr>
<td>Economics, S12.3</td>
<td></td>
</tr>
<tr>
<td>Geothermal heating systems, A34.8</td>
<td></td>
</tr>
<tr>
<td>Heating conversion to</td>
<td>S12.42</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>S9.25</td>
</tr>
<tr>
<td>Heat transfer analysis</td>
<td>S12.15</td>
</tr>
<tr>
<td>Ground to air</td>
<td>S12.17</td>
</tr>
<tr>
<td>Pipes, S12.22</td>
<td></td>
</tr>
<tr>
<td>Single buried pipe, S12.17</td>
<td></td>
</tr>
<tr>
<td>Soil temperature calculation</td>
<td>S12.16</td>
</tr>
<tr>
<td>Two pipes buried, S12.21</td>
<td></td>
</tr>
<tr>
<td>Master planning, S12.2</td>
<td></td>
</tr>
<tr>
<td>Metering, S12.45</td>
<td></td>
</tr>
<tr>
<td>Pressure losses, S12.13</td>
<td></td>
</tr>
<tr>
<td>Thermal storage, S12.10, S51.7, 23</td>
<td></td>
</tr>
<tr>
<td>Water systems, S12.1</td>
<td></td>
</tr>
<tr>
<td>D-limonene</td>
<td>F31.12</td>
</tr>
<tr>
<td>DNS</td>
<td>See Direct numerical simulation (DNS)</td>
</tr>
<tr>
<td>DOAS</td>
<td>See Dedicated outdoor air system (DOAS)</td>
</tr>
<tr>
<td>Doors</td>
<td>F16.28</td>
</tr>
<tr>
<td>U-factors</td>
<td>F27.7</td>
</tr>
<tr>
<td>Dormitories</td>
<td>F27.8</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>F27.8</td>
</tr>
<tr>
<td>Design criteria</td>
<td>F27.8</td>
</tr>
<tr>
<td>Air exchange</td>
<td>F16.28</td>
</tr>
<tr>
<td>Air leakage</td>
<td>F21.16</td>
</tr>
<tr>
<td>All-air systems</td>
<td>S4.12</td>
</tr>
<tr>
<td>Commercial, small applications</td>
<td>S10.9</td>
</tr>
<tr>
<td>Computer analysis</td>
<td>A40.10</td>
</tr>
<tr>
<td>Darcy-Weisbach equation</td>
<td>F21.14</td>
</tr>
<tr>
<td>Design methods</td>
<td>F21.24</td>
</tr>
<tr>
<td>Static regain</td>
<td>F21.24</td>
</tr>
<tr>
<td>Design recommendations</td>
<td>F21.22</td>
</tr>
<tr>
<td>Duct fitting database</td>
<td>F21.13</td>
</tr>
<tr>
<td>Duct shape selection</td>
<td>F21.20</td>
</tr>
<tr>
<td>Dynamic losses</td>
<td>F21.13</td>
</tr>
<tr>
<td>Fan-system interface</td>
<td>F21.14</td>
</tr>
<tr>
<td>Fan system effect coefficients</td>
<td>F21.14</td>
</tr>
<tr>
<td>Friction losses</td>
<td>F21.6</td>
</tr>
<tr>
<td>Duct fitting database</td>
<td>F21.13</td>
</tr>
<tr>
<td>Industrial exhaust systems</td>
<td>F21.30, S30.28</td>
</tr>
<tr>
<td>Louvers</td>
<td>F21.19</td>
</tr>
<tr>
<td>Noise control</td>
<td>F21.25</td>
</tr>
<tr>
<td>Pressure, F21.2</td>
<td></td>
</tr>
<tr>
<td>Residential, S10.7</td>
<td></td>
</tr>
<tr>
<td>Roughness factors, F21.6</td>
<td></td>
</tr>
<tr>
<td>Security, F21.19</td>
<td></td>
</tr>
<tr>
<td>Stack effect, F21.2</td>
<td></td>
</tr>
<tr>
<td>System air leakage</td>
<td>F21.16</td>
</tr>
<tr>
<td>Testing and balancing</td>
<td>F21.22</td>
</tr>
<tr>
<td>Vacuum drying</td>
<td>S13.1</td>
</tr>
<tr>
<td>S13.1</td>
<td></td>
</tr>
<tr>
<td>Dual-temperature water (DTW) system</td>
<td>S13.1</td>
</tr>
<tr>
<td>Dual-duct systems</td>
<td>S4.12</td>
</tr>
<tr>
<td>Control</td>
<td>A47.17</td>
</tr>
<tr>
<td>Terminal boxes, A47.14</td>
<td></td>
</tr>
<tr>
<td>Testing, adjusting, balancing, A38.4</td>
<td></td>
</tr>
<tr>
<td>Dual-temperature water (DTW) system</td>
<td>S13.1</td>
</tr>
<tr>
<td>DuBois equation</td>
<td>F9.3</td>
</tr>
<tr>
<td>Duct design</td>
<td>F21.16</td>
</tr>
<tr>
<td>Air leakage</td>
<td>F21.16</td>
</tr>
<tr>
<td>All-air systems</td>
<td>S4.12</td>
</tr>
<tr>
<td>Commercial, small applications</td>
<td>S10.9</td>
</tr>
<tr>
<td>Computer analysis</td>
<td>A40.10</td>
</tr>
<tr>
<td>Darcy-Weisbach equation</td>
<td>F21.14</td>
</tr>
<tr>
<td>Design methods</td>
<td>F21.24</td>
</tr>
<tr>
<td>Static regain</td>
<td>F21.24</td>
</tr>
<tr>
<td>Design recommendations</td>
<td>F21.22</td>
</tr>
<tr>
<td>Duct fitting database</td>
<td>F21.13</td>
</tr>
<tr>
<td>Duct shape selection</td>
<td>F21.20</td>
</tr>
<tr>
<td>Dynamic losses</td>
<td>F21.13</td>
</tr>
<tr>
<td>Fan-system interface</td>
<td>F21.14</td>
</tr>
<tr>
<td>Fan system effect coefficients</td>
<td>F21.14</td>
</tr>
<tr>
<td>Friction losses</td>
<td>F21.6</td>
</tr>
<tr>
<td>Duct fitting database</td>
<td>F21.13</td>
</tr>
<tr>
<td>Industrial exhaust systems</td>
<td>F21.30, S30.28</td>
</tr>
<tr>
<td>Louvers</td>
<td>F21.19</td>
</tr>
<tr>
<td>Noise control</td>
<td>F21.25</td>
</tr>
<tr>
<td>Pressure, F21.2</td>
<td></td>
</tr>
<tr>
<td>Residential, S10.7</td>
<td></td>
</tr>
<tr>
<td>Roughness factors, F21.6</td>
<td></td>
</tr>
<tr>
<td>Security, F21.19</td>
<td></td>
</tr>
<tr>
<td>Stack effect, F21.2</td>
<td></td>
</tr>
<tr>
<td>System air leakage</td>
<td>F21.16</td>
</tr>
<tr>
<td>Testing and balancing</td>
<td>F21.22</td>
</tr>
<tr>
<td>Ducts</td>
<td>A48.21</td>
</tr>
<tr>
<td>Acoustical lining</td>
<td>A8.13</td>
</tr>
<tr>
<td>In hospitals</td>
<td>A8.13</td>
</tr>
<tr>
<td>Acoustical treatment</td>
<td>A9.19</td>
</tr>
<tr>
<td>Airflow measurement in</td>
<td>A38.2</td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>S19.10</td>
</tr>
<tr>
<td>Classifications (pressure)</td>
<td>S19.1</td>
</tr>
<tr>
<td>Cleaning</td>
<td>S19.2</td>
</tr>
<tr>
<td>Construction</td>
<td>S19.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>S19.1</td>
</tr>
<tr>
<td>Industrial</td>
<td>S19.9</td>
</tr>
<tr>
<td>Kitchen exhaust</td>
<td>S19.10</td>
</tr>
<tr>
<td>Master specifications</td>
<td>S19.12</td>
</tr>
<tr>
<td>Outdoor ducts</td>
<td>S19.12</td>
</tr>
<tr>
<td>Residential, S19.5</td>
<td></td>
</tr>
<tr>
<td>Seismic qualification</td>
<td>S19.12</td>
</tr>
<tr>
<td>Sheet metal welding</td>
<td>S19.12</td>
</tr>
<tr>
<td>Standards</td>
<td>S19.1</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>S19.12</td>
</tr>
</tbody>
</table>
Dust mites, F25.16
Dusts, S29.1
synthetic, S29.3
Dynamometers, A17.1
Earth, stabilization, R45.3, 4
Earthquakes, seismic-resistant design, A55.1
Economic coefficient of performance (ECOP), S7.2
Economic performance degradation index (EPDI), A61.3
Economies, (See also Costs) computer analysis, A37.13
district heating and cooling, S12.3
energy management planning, A36.1
evaporative cooling, A52.17, 18
indoor gaseous contaminant removal, A46.15
inflation, A37.11
insulation thickness, pipe, S12.25
internal rate of return, A37.12
laboratory systems, A16.21
life-cycle cost analyses, A37.9
owning and operating costs, A37.1
payback, A37.10
improved, A37.10
simple, A37.10
present value (worth), A37.10
savings-to-investment ratio (SIR), A37.11
Economizers
air-side, F16.19
compressors, single-screw, S38.16
control, A42.42
humidification load calculation, S22.4
kitchen ventilation, A33.6
water-side, S2.3
ECOP, See Economic coefficient of performance (ECOP)
ECS, See Environmental control system (ECS)
Eddy diffusivity, F6.7
Educational facilities
air conditioning, S19.7
service water heating, A50.23
EER, See Energy efficiency ratio (EER)
Effectiveness, heat transfer, F4.22
Effectiveness-NTU heat exchanger model, A19.19
Effective radiant flux (ERF), A54.2
Efficiency
air conditioners
room, S50.3
unitary, S49.6
boilers, S32.6
combustion, F28.15
compressors
centrifugal, S38.32
positive-displacement, S38.3
circulating, S38.9, 10
rotary, S38.13
single-screw, S38.18
fans, F4.6
furnaces, S33.9
heat pumps, unitary, S49.6
industrial exhaust gas cleaning, S30.3
infrared heaters, A16.4
motors, S45.2
pumps, centrifugal, S44.7
refrigerating, F2.3
Eggs, R34
composition, R34.1
dehydration, R34.12
processing plant sanitation, R34.13
products, R34.9
shell eggs
packaging, R34.8
processing, R34.5
refrigeration, R34.5
spoilage prevention, R34.4
storage, R34.8
structure, R34.1
transportation, R34.8
storage, R34.1
thermal properties, R19.1
Electricity
billing rates, A56.13
building electrical systems, A56.1
codes, A56.15
costs, A37.5, 9
efficiency and standby power systems, A56.4
generation, on-site, A37.9
grid, A61.8
imbalance, S45.1
measurement, F37.27
motors, A56.5
motor starting, A56.6; S45.8
performance, A56.2
power quality variations, A56.7
principles, A56.2
safety, A56.1
smart grid, A61.7
utility strategies, A61.9
voltage, A56.1
firing, A56.2
Electric thermal storage (ETS), S51.17
Electronic smoking devices (e-cigarettes), F11.19
Electrostatic precipitators, S29.7; S30.7
Elevators
smoke control, A55.3, 12
in tall buildings, A42.1
Emissions, pollution, F28.9
Emissivity, F4.2
Emittance, thermal, F25.2
Enclosed vehicular facilities, A15
Energy
audit, A36.7
balance
comfort, F9.2, 17
refrigeration systems, R5.3
conservation
air conditioners, room, S50.3
building envelopes, A44.1
building supervisory control, A42.1
clean spaces, A18.22
educational facilities, A7.1
crop drying, A25.3
greenhouses, A24.16
hospitals, A8.13
industrial environments, A31.6
infrared heaters, S16.1
kitchen ventilation, A33.4
motors, S45.2
pumps, centrifugal, S44.15
temperature and ventilation control, A47.19
textile processing, A21.7
thermal insulation, F23.1
consumption
benchmarking, A36.6
build HVAC, control effect on, A42.25
efficiency, A36.15
gaseous contaminant removal, A46.15
humidity, S22.3
United States, F34.7
world, F34.5
costs, A37.4
efficiency
in commercial and food service refrigerators, A16.7
and humidity, F25.16
ratio. See Energy efficiency ratio (EER)
efficiency use reduction, A36.15
estimating, F19
analysis, F19.5
forecasting, A42.36
general considerations, F19.1
integration of systems, F19.23
models, F19.1
software selection, F19.5
field survey audit, A38.17
forecasting building needs, A42.36
forward modeling, F19.1
management, A36
cost control, A36.10, 11
energy use reduction, A36.15
energy audits, A36.7
energy-efficiency measures (EEM),
comparing, A36.11
implementation, A36.15
improving discretionary operations,
A36.10
resource evaluation, A36.1
modeling, F19
Bayesian analysis, F19.37
calculating, F19.8
change-point, F19.28
regression, F19.30
classical approach, F19.1
data-driven approach, F19.2
models, F19.27
Gaussian process, F19.30
heat balance method, F19.9
hybrid inverse change point, F19.31
in integrated building design, A58.9
occupant behavior, F19.14
primary system components, F19.21
system controls, F19.23
weighting-factor method, F19.10
monitoring, A41
applications, A41.1–5
data, A41.6–15
design and implementation methodology,
A41.6
documentation, A41.7, 15
planning, A41.6, 15
quality assurance, A41.6, 14
recovery (See also Heat recovery)
in air-handling units, S4.9
air-to-air, S26, S41.4
in chemical industry, R46.4
industrial environments, A31.6
renewable, F35.2
resources, F34; F35.2
demand-side management (DSM), F34.4
integrated resource planning (IRP), F34.3
nonrenewable, F34.2
renewable, F34.2
United States, F34.7
world, F34.4
savings verification, A41.2
self-imposed budgets, F33.8
storage, S51
wheels, S26.9
Energy efficiency ratio (EER)
Evaporative cooling
natural convection, F5.4, 7
forced convection, F5.1
Evaporative coolers. (See also Refrigerators)
liquid (See also Evaporators)
in chillers, A1.5, S39.18, S43.5, 7, 13
Evaporative cooling, A52
application, control
air cleaning, A52.2; S41.9
animal environments, A24.4; A52.14
commercial, A52.10
dehumidification, A52.2; S41.8
gas turbines, A52.13
greenhouses, A24.13; A52.14
humidification, A52.2; S41.8
industrial
air conditioning, A14.8
area cooling, A52.12
process cooling, A52.13
spot cooling, A52.12
laundries, A52.13
makeup air pretreatment, S41.6
motors, A52.12
power generation facilities, A52.14
precooling, S41.6
produce storage, A52.14
residential, A52.10
wood and paper products facilities, A52.13
cooling towers, S40.1
direct, A52.1, 2; S41.1
economics, A52.17
entering air condition, A52.18
equipment
indirect, S41.3
maintenance, S41.9
two-stage, S41.5
heat recovery and, A52.7; S41.5
humidification, S22.10
indirect, A52.1, 2; S41.3
psychrometrics, A52.1, 11, 17, 18
staged
booster refrigeration, A52.8, 18
two-stage (indirect/direct), A52.11, 17;
S41.5
water treatment, A49.18; S41.10
Legionella pneumophila, S41.10
Evaporators. (See also Coolers, liquid)
air conditioners, room, S50.2
ammonia refrigeration system equipment, R2.9
automobile air conditioning, A10.6, 11
chemical industry refrigeration, R46.7
halocarbon refrigeration systems, piping, R1.23
liquid overfeed systems, R4.6
Exfiltration, F16.2
Exhaust
animal buildings, A24.6
clean spaces, A18.19, 23
engines
heat recovery, S7.35
installation recommendations, S7.14
two-stage, S7.14
engine test facilities, A17.2
industrial environments, A14.8; A32.1
kitchens, A33.36
laboratories, A16.3, 9
stack height, A16.13
photographic processing areas, A22.3
stacks
buildings, A45.1
design strategies, A45.1
exhaust dilution prediction equations,
A45.11
exhaust velocity, A45.1
industrial exhaust systems, A32.8
location relative to air intake, A45.2
wake downwash, A45.2
vehicular facilities, enclosed, A15.37
Exhibit cases, A23.5, 16
Exhibition centers, A5.5
smoke control, A53.16
Expansion joints and devices, S46.10
bends, S46.11
joints
- district heating and cooling, S12.25
- packed, S46.13
- packless, F22.21; S46.13
- loops, F22.13; S46.11

Expansion tanks, S12.10
hydronic systems, S15.3
closed, S13.4
diaphragm, S13.4
expansion chamber, S13.4
functions of, S13.4, 11
open, S13.4
sizing equations, S13.5
secondary coolant systems, R13.3
solar energy systems, A35.11

Explosions. See Chemical, biological, radiological, and explosive (CBRE) incidents

Fans
- Family courts, A9.4. (See also Juvenile detention facilities)

Fan-coil units, S5.6
capacity control, S5.7
maintenance, S5.7
performance under varying load, S5.11
systems, S20.10
types, S5.6
ventilation, S5.7
wiring, S5.7

Fans, F19.18; S21
air conditioners, room, S50.2
all-air systems, S4.4, 6, 9
altitude effects, S21.5
animal environments, A24.6
arrangement, S21.12
control, A47.8; S21.12
cooling tower capacity control, A42.8; S40.11
draft, S35.32
fan efficiency grade (FEG), S21.9
fan motor efficiency grade (FMFEG), S21.9
fixed- vs. variable-speed, A42.26
flow control, S21.12; S45.13
furnaces, S33.2
industrial exhaust systems, A32.8
installation, S21.12
isolation, S21.12
kitchen exhaust, A33.28
laws, S21.5
noise, S21.11
operating principles, S21.1
parallel operation, S21.10
performance, S21.4
plenum, S21.1
plug, S21.1
pressure relationships, S21.6
effect of duct system on, S21.7
rating, S21.4
selection, A48.10; S21.9
series operation, S21.10
ships, naval surface, A13.3
smoke exhaust, A53.3
sound level, A48.8; S21.11
stall, S21.9
surge, S21.9
system effects, S21.8
temperature rise across, S21.7
testing, S21.4
types, S21.1
unstable operation, A47.10
variable- vs. fixed-speed, A42.26
vehicular facilities, enclosed, A15.33
vibration, S21.11

Farm crops, drying and storing, A25
aeration, A25.4, 10
dryeration, A25.4
drying
- combination, A25.4
corn, A25.1
cotton, A25.8
deep-bed, A25.4
energy conservation, A25.3
equipment, A25.2
full-bin, A25.4
hay, A25.8
peanuts, A25.6
rice, A25.9
shallow-layer, A25.3
soybeans, A25.7
specific, A25.7
microbial growth, A25.1
recirculation, A25.3
storing
- grain aeration, A25.10
moisture migration, A25.9

Faults, system, reasons for detecting, A39.6
f-Chart method, sizing heating and cooling systems, A35.21

Fenestration. (See also Windows)
air leakage, F15.53
area, A44.2
attachments, F15.35
building envelopes, A44.2; F15.1
codes, F15.62
components, F15.1
condensation resistance, F15.58
control of rain entry, A44.10
cooling load, F18.16
drapery, F15.37
durability, F15.62
design, S34.5
flow, F15.3
energy flow, F15.3
energy performance, annual, F15.57
exterior shading, F15.1
glazing (glass), F15.1
infiltration, S18.5
insulation fire resistance ratings, F23.7
insulation properties, F23.3
interior shading, F15.2
irradiation, F19.18
occupant comfort, F15.60
opaque elements, F15.33
shading devices, F15.35
skylights, F15.21
solar gain, A44.10
solar heat gain, F15.14, 19
standards, F15.62
thermal radiation, F15.17
U-factors, F15.5, 7

Fick's law, F6.1
and moisture flow, F25.12

Filters, air, S29. (See also Air cleaners)
air conditioners, room, S50.4
aircraft, A12.9, 14
in air-handling units, S4.8
clean spaces, A18.2, 12, 17
demisters, A28.8
desiccant dehumidifiers, S24.8
dry, extended surface, S29.6
electronic, S29.5, 7
furnaces, S33.2
high-efficiency particulate air (HEPA) filters, A18.1, A28.3; S29.4, 6; S30.3
hospitals, A8.4
industrial air-conditioning, A14.8
industrial exhaust gas
fabric, S30.10
granular bed, S30.14
installation, S29.10
kitchens, A33.7, 18
laboratories, A16.9
maintenance, S29.8
nuclear facilities, A28.3, 8
panel, S29.5
places of assembly, A5.1
plants, A20.4
renewable media, moving-curtain, S29.6
residential, A1.6
safety requirements, S29.11
selection, S29.8
ships, A13.4
standards, S29.3, 5
test methods, S29.2
types, S29.5
ultrapenetrating air (ULPA) filters, A18.2, 3, 9; S29.4, 6; S30.3
viscous impingement, S29.5, 6

Finned-tube heat-distributing units, S36.2, 5
design, S36.3
nonstandard condition corrections, S36.3
rating, S36.3

Finned-tube heat transfer coils, F4.25
electricity, recovery loops, S26.11
two-phase flow in, F5.19

Fins, F4.6
Fire/smoke control. See Smoke control

Firearm laboratories, A9.7

Fire management, A53.1

Fireplaces, S34.5
chimney design, S35.23
altitude effects, S35.7, 32

Fire safety
- clean space exhaust systems, A18.20
- industrial exhaust gas cleaning, S30.29
- insulation fire resistance ratings, F23.7
- justice facilities, A9.3, 7
- kitchens, A33.29
- laboratories, A16.11
- nuclear facilities, A28.2
- penetration fire stopping, A53.1
- smoke control, A53.1
- thermal insulation, F23.6

Fish, R19; R32
fresh, R19.6; R32.1
frozen, R19.3; R32.4
thermal properties, R19.1

Fitness facilities. (See also Gymnasiums)
in justice facilities, A9.6

Fittings
- duct fitting database, F21.11
effective length, F3.8
- halocarbon refrigeration systems, R1.6
- loss coefficients, F3.8
- pipe
- design, F22.6, 28
- standards, F22.18; S46.2
- tees, F22.28
Composite Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-guideway vehicles</td>
<td>A11.7</td>
</tr>
<tr>
<td>Mass-transit systems</td>
<td></td>
</tr>
<tr>
<td>Fixture units</td>
<td>A50.1, 27</td>
</tr>
<tr>
<td>pipe design</td>
<td>F22.23</td>
</tr>
<tr>
<td>Flammability limits, gaseous fuels</td>
<td>F28.1</td>
</tr>
<tr>
<td>Flash tank, steam systems</td>
<td>S11.14</td>
</tr>
<tr>
<td>Floors</td>
<td></td>
</tr>
<tr>
<td>coverings</td>
<td></td>
</tr>
<tr>
<td>panel systems</td>
<td>S6.6</td>
</tr>
<tr>
<td>temperature comfort</td>
<td>F9.16</td>
</tr>
<tr>
<td>slabs, heat loss</td>
<td>F17.11, F18.40</td>
</tr>
<tr>
<td>Flowers, cut</td>
<td></td>
</tr>
<tr>
<td>air transport</td>
<td>R27.1, 3</td>
</tr>
<tr>
<td>cooling</td>
<td>R28.11</td>
</tr>
<tr>
<td>refrigerators</td>
<td>R16.3</td>
</tr>
<tr>
<td>storage, temperatures</td>
<td>R21.12</td>
</tr>
<tr>
<td>Flowmeters</td>
<td>A38.13, F37.18</td>
</tr>
<tr>
<td>bypass spring impact meters</td>
<td></td>
</tr>
<tr>
<td>devices, A38.13</td>
<td></td>
</tr>
<tr>
<td>district heating and cooling systems, S12.45</td>
<td></td>
</tr>
<tr>
<td>flow nozzles</td>
<td>F37.21</td>
</tr>
<tr>
<td>hoods</td>
<td>F37.20</td>
</tr>
<tr>
<td>orifice plates</td>
<td>A38.13, F37.21</td>
</tr>
<tr>
<td>positive-displacement meters</td>
<td>F37.24</td>
</tr>
<tr>
<td>rotameters</td>
<td>F37.23</td>
</tr>
<tr>
<td>turbine meters</td>
<td>A38.13, F37.24</td>
</tr>
<tr>
<td>ultrasonic</td>
<td>A38.13</td>
</tr>
<tr>
<td>velocity impact meters</td>
<td>A38.13</td>
</tr>
<tr>
<td>venturi meters</td>
<td>A38.13, F37.21</td>
</tr>
<tr>
<td>Fluid dynamics computations</td>
<td>F13.1</td>
</tr>
<tr>
<td>Fluid flow</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td>F3.6</td>
</tr>
<tr>
<td>Bernoulli equation</td>
<td>F3.6</td>
</tr>
<tr>
<td>kinetic energy factor</td>
<td>F3.2</td>
</tr>
<tr>
<td>pressure variation</td>
<td>F3.2</td>
</tr>
<tr>
<td>boundary layer</td>
<td>F3.3</td>
</tr>
<tr>
<td>cavitation</td>
<td>F3.14</td>
</tr>
<tr>
<td>choking</td>
<td>F3.13</td>
</tr>
<tr>
<td>compressible</td>
<td>F3.13</td>
</tr>
<tr>
<td>expansion factor</td>
<td>F3.13</td>
</tr>
<tr>
<td>pressure, F3.12</td>
<td></td>
</tr>
<tr>
<td>continuity</td>
<td>F3.2</td>
</tr>
<tr>
<td>Darcy-Weisbach equation</td>
<td>F3.7</td>
</tr>
<tr>
<td>devices, F3.5</td>
<td></td>
</tr>
<tr>
<td>discharge coefficients, F3.9</td>
<td></td>
</tr>
<tr>
<td>drag, F3.5</td>
<td></td>
</tr>
<tr>
<td>friction factors</td>
<td>F3.7</td>
</tr>
<tr>
<td>incompressible</td>
<td>F3.9</td>
</tr>
<tr>
<td>laminar</td>
<td>F3.3</td>
</tr>
<tr>
<td>measurement</td>
<td>A38.12, F3.10, F37.20</td>
</tr>
<tr>
<td>noise</td>
<td>F3.14</td>
</tr>
<tr>
<td>nonisothermal effects</td>
<td>F3.5</td>
</tr>
<tr>
<td>parabolic velocity profile</td>
<td>Poiseuille, F3.3</td>
</tr>
<tr>
<td>patterns</td>
<td>F3.4</td>
</tr>
<tr>
<td>pipe friction</td>
<td>F3.6, 7</td>
</tr>
<tr>
<td>Poiseuille</td>
<td>F3.3</td>
</tr>
<tr>
<td>properties</td>
<td>F3.1</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>Re, F3.3</td>
</tr>
<tr>
<td>section change losses</td>
<td>F3.8</td>
</tr>
<tr>
<td>sensors, F7.10</td>
<td></td>
</tr>
<tr>
<td>separation</td>
<td>F3.4</td>
</tr>
<tr>
<td>turbulent, F3.3</td>
<td></td>
</tr>
<tr>
<td>two-phase</td>
<td></td>
</tr>
<tr>
<td>boiling, F5.1</td>
<td></td>
</tr>
<tr>
<td>evaporation</td>
<td>F5.2, 4</td>
</tr>
<tr>
<td>pressure drop</td>
<td>F5.15</td>
</tr>
<tr>
<td>unsteady</td>
<td>F3.11</td>
</tr>
<tr>
<td>valve losses</td>
<td>F3.8, 9</td>
</tr>
<tr>
<td>vena contracta</td>
<td>F3.4</td>
</tr>
<tr>
<td>wall friction</td>
<td>F3.3</td>
</tr>
<tr>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>(See also specific foods)</td>
<td>R15.2</td>
</tr>
<tr>
<td>cooling times</td>
<td>R20.1</td>
</tr>
<tr>
<td>freezing times</td>
<td>R20.1</td>
</tr>
<tr>
<td>industrial freezing methods</td>
<td>R29.1</td>
</tr>
<tr>
<td>long-term storage</td>
<td>R40.7</td>
</tr>
<tr>
<td>microbial growth</td>
<td></td>
</tr>
<tr>
<td>control, R22.3</td>
<td></td>
</tr>
<tr>
<td>generalized</td>
<td>R22.1</td>
</tr>
<tr>
<td>requirements</td>
<td>R22.2</td>
</tr>
<tr>
<td>plants, R40.3</td>
<td></td>
</tr>
<tr>
<td>poultry products</td>
<td></td>
</tr>
<tr>
<td>freezing, R31.5</td>
<td></td>
</tr>
<tr>
<td>refrigeration</td>
<td>R31.1</td>
</tr>
<tr>
<td>processing facilities</td>
<td></td>
</tr>
<tr>
<td>contamination prevention</td>
<td>R22.3</td>
</tr>
<tr>
<td>dairy, R33.1</td>
<td></td>
</tr>
<tr>
<td>fruits, R40.5</td>
<td></td>
</tr>
<tr>
<td>main dishes</td>
<td>R40.1</td>
</tr>
<tr>
<td>meat, R30.1</td>
<td></td>
</tr>
<tr>
<td>organism destruction</td>
<td>R22.4</td>
</tr>
<tr>
<td>potato products</td>
<td>R40.5</td>
</tr>
<tr>
<td>poultry, R31.1</td>
<td></td>
</tr>
<tr>
<td>precooked foods</td>
<td>R40.1</td>
</tr>
<tr>
<td>refrigeration systems</td>
<td>R40.3, 4, 6</td>
</tr>
<tr>
<td>requirements and standards</td>
<td>R22.5</td>
</tr>
<tr>
<td>sanitation</td>
<td>R22.4</td>
</tr>
<tr>
<td>vegetables, R40.3</td>
<td></td>
</tr>
<tr>
<td>refrigeration</td>
<td></td>
</tr>
<tr>
<td>dairy products</td>
<td>R33</td>
</tr>
<tr>
<td>eggs and egg products</td>
<td>R34.1</td>
</tr>
<tr>
<td>fishery products</td>
<td>R32</td>
</tr>
<tr>
<td>fruits, fresh</td>
<td>R35, R36</td>
</tr>
<tr>
<td>meat products</td>
<td>R30</td>
</tr>
<tr>
<td>vegetables</td>
<td>R37</td>
</tr>
<tr>
<td>refrigerators</td>
<td></td>
</tr>
<tr>
<td>commercial</td>
<td>R16</td>
</tr>
<tr>
<td>retail food store</td>
<td>R15.1</td>
</tr>
<tr>
<td>storage requirements</td>
<td></td>
</tr>
<tr>
<td>canned foods</td>
<td>R21.11</td>
</tr>
<tr>
<td>citrus fruit</td>
<td>R36.3</td>
</tr>
<tr>
<td>commodities</td>
<td>R21.1</td>
</tr>
<tr>
<td>dried foods</td>
<td>R21.11</td>
</tr>
<tr>
<td>fruit</td>
<td>R35</td>
</tr>
<tr>
<td>thermal properties</td>
<td>R19</td>
</tr>
<tr>
<td>enthalpy, R19.8</td>
<td></td>
</tr>
<tr>
<td>heat of respiration</td>
<td>R19.17, 19, 20</td>
</tr>
<tr>
<td>ice fraction</td>
<td>R19.6</td>
</tr>
<tr>
<td>surface heat transfer coefficient</td>
<td>R19.24</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>R19.10, 12, 16</td>
</tr>
<tr>
<td>thermal diffusivity</td>
<td>R19.17</td>
</tr>
<tr>
<td>transpiration coefficient</td>
<td>R19.19, 24</td>
</tr>
<tr>
<td>water content, initial freezing point</td>
<td>R19.6</td>
</tr>
<tr>
<td>Food service</td>
<td></td>
</tr>
<tr>
<td>refrigerators for</td>
<td>R16.1</td>
</tr>
<tr>
<td>service water heating</td>
<td>A50.11, 21</td>
</tr>
<tr>
<td>vending machines</td>
<td>R16.5</td>
</tr>
<tr>
<td>Forced-air systems</td>
<td></td>
</tr>
<tr>
<td>residential, A1.1</td>
<td></td>
</tr>
<tr>
<td>multifamily</td>
<td>A1.7</td>
</tr>
<tr>
<td>Forensic labs</td>
<td>A9.6</td>
</tr>
<tr>
<td>autopsy rooms</td>
<td>A9.6, 7</td>
</tr>
<tr>
<td>critical spaces</td>
<td>A9.4, 7</td>
</tr>
<tr>
<td>firearm labs</td>
<td>A9.6, 7</td>
</tr>
<tr>
<td>intake air quality</td>
<td>A9.7</td>
</tr>
<tr>
<td>Foiling factor</td>
<td></td>
</tr>
<tr>
<td>condensers, water-cooled</td>
<td>S39.4</td>
</tr>
<tr>
<td>coolers, liquid</td>
<td>S42.4</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
</tr>
<tr>
<td>heat transfer</td>
<td>F19.12</td>
</tr>
<tr>
<td>moisture control</td>
<td>A44.11</td>
</tr>
<tr>
<td>Fountains</td>
<td></td>
</tr>
<tr>
<td>Legionella pneumophila control</td>
<td>A49.14</td>
</tr>
<tr>
<td>Fourier’s law</td>
<td></td>
</tr>
<tr>
<td>and heat transfer</td>
<td>F25.5</td>
</tr>
<tr>
<td>Four-pipe systems</td>
<td>S5.5</td>
</tr>
<tr>
<td>load</td>
<td>S13.20</td>
</tr>
<tr>
<td>room control</td>
<td>S5.15</td>
</tr>
<tr>
<td>zoning</td>
<td>S5.15</td>
</tr>
<tr>
<td>Framing</td>
<td></td>
</tr>
<tr>
<td>for fenestration</td>
<td>F15.2</td>
</tr>
<tr>
<td>materials, F15.2</td>
<td></td>
</tr>
<tr>
<td>solar gain</td>
<td>F15.20</td>
</tr>
<tr>
<td>Freeze drying</td>
<td>A30.6</td>
</tr>
<tr>
<td>biological materials</td>
<td>R49.3</td>
</tr>
<tr>
<td>Freeze prevention</td>
<td></td>
</tr>
<tr>
<td>(See also Freeze protection systems)</td>
<td></td>
</tr>
<tr>
<td>condensers, evaporative</td>
<td>S39.16</td>
</tr>
<tr>
<td>coolers, liquid</td>
<td>S42.5</td>
</tr>
<tr>
<td>cooling tower</td>
<td></td>
</tr>
<tr>
<td>basin water</td>
<td>S40.13</td>
</tr>
<tr>
<td>piping, S14.3</td>
<td></td>
</tr>
<tr>
<td>energy recovery equipment</td>
<td>S26.7</td>
</tr>
<tr>
<td>hydronic systems</td>
<td>S13.23</td>
</tr>
<tr>
<td>insulation for</td>
<td>F23.5</td>
</tr>
<tr>
<td>solar energy systems</td>
<td>A35.24, S37.3, 19</td>
</tr>
<tr>
<td>Freeze protection systems</td>
<td>A51.18, 19</td>
</tr>
<tr>
<td>Freezers</td>
<td></td>
</tr>
<tr>
<td>blast</td>
<td>R16.3, R23.10, R29.1, R30.15</td>
</tr>
<tr>
<td>household</td>
<td>R17.1</td>
</tr>
<tr>
<td>cabinet construction</td>
<td>R17.4</td>
</tr>
<tr>
<td>cabinets, R17.2</td>
<td></td>
</tr>
<tr>
<td>defrosting</td>
<td>R17.6</td>
</tr>
<tr>
<td>durability</td>
<td>R17.12</td>
</tr>
<tr>
<td>efficiency</td>
<td>R17.9</td>
</tr>
<tr>
<td>performance evaluation</td>
<td>R17.9</td>
</tr>
<tr>
<td>refrigerating systems</td>
<td>R17.5</td>
</tr>
<tr>
<td>safety</td>
<td>R17.12</td>
</tr>
<tr>
<td>testing</td>
<td>R17.9</td>
</tr>
<tr>
<td>industrial</td>
<td>R29.1</td>
</tr>
<tr>
<td>walk-in</td>
<td>R16.4</td>
</tr>
<tr>
<td>Freezing</td>
<td></td>
</tr>
<tr>
<td>beverages</td>
<td>R20.7</td>
</tr>
<tr>
<td>biomedical applications</td>
<td>R49.1</td>
</tr>
<tr>
<td>foods</td>
<td></td>
</tr>
<tr>
<td>bakery products</td>
<td>R41.5</td>
</tr>
<tr>
<td>egg products</td>
<td>R34.9</td>
</tr>
<tr>
<td>fish</td>
<td>R32.5</td>
</tr>
<tr>
<td>freezing time calculations</td>
<td>R20.7</td>
</tr>
<tr>
<td>ice cream</td>
<td>R33.15</td>
</tr>
<tr>
<td>meat products</td>
<td>R30.16</td>
</tr>
<tr>
<td>poultry products</td>
<td>R31.5</td>
</tr>
<tr>
<td>processed and prepared food</td>
<td>R40.1</td>
</tr>
<tr>
<td>industrial</td>
<td>R29.1</td>
</tr>
<tr>
<td>soil</td>
<td>R45.3, 4</td>
</tr>
<tr>
<td>Friction, in fluid flow</td>
<td></td>
</tr>
<tr>
<td>conduit</td>
<td>F3.6</td>
</tr>
<tr>
<td>wall</td>
<td>F3.3</td>
</tr>
<tr>
<td>Fruit juice</td>
<td>R38</td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
</tr>
<tr>
<td>dried</td>
<td></td>
</tr>
<tr>
<td>storage</td>
<td>R42.7</td>
</tr>
<tr>
<td>thermal properties</td>
<td>R19.1</td>
</tr>
<tr>
<td>fresh</td>
<td></td>
</tr>
<tr>
<td>air transport</td>
<td>R27.1</td>
</tr>
</tbody>
</table>
I.18 2018 ASHRAE Handbook—Refrigeration

Fume hoods, laboratory exhaust, A16.3

Fungi
and moisture, A62.10
pathogens, F10.8
spores, F11.2

Furnaces, S33
air cleaners and filters, S33.2
airflow configurations, S33.2
air supply, S35.28
burners, S31.1; S33.2
casings, S33.1
codes, S33.9
commercial, S33.5
efficiency, S33.9
components, S33.1
controls, S33.2, 5
derating, S31.10
duct, S35.5
duct furnaces, S31.6
electric, S33.4, 9
fans and motors, S33.2
floor furnaces, S34.2
gas-fired, S33.1, 8
codes, S33.9
commercial, S33.5
installation, S33.9
residential, S33.1

standards, S33.10
upflow, S33.5
humidifiers, S33.2
installation, S33.9
location, S33.6
natural gas, S31.11; S33.1, 4, 8
residential, S33.1, 8
venting, S33.2; S35.20
oil, S33.4, 9
venting, S35.21
performance criteria, S33.8
propane, S33.4, 9
regulating agencies, S33.10
residential, A1.3; S33.1
floor furnaces, S34.2
indoor or outdoor, S33.4
performance criteria, S33.8
selection, S33.6
standards, S33.10
stokers, S31.17
thermal storage, S51.18
unducted, S33.5
upflow, S33.5
venting, S35.20, 21
wall furnaces, S34.1

Galleries. See Museums, galleries, archives, and libraries

Garages
automotive repair, A15.21
bus, A15.22
contaminant criteria, A15.19
parking, A3.8; A15.18
ventilation
airflow rate, A15.19
control, A15.20
equipment, A15.33
residential, F16.21
system configuration, A15.21

Gases
compressed, storage, A16.8
drying, S24.13
liquefaction, R47.6
purification, R47.16, 19
separation
gaseous oxygen, R47.18
Gibbs phase rule, R47.16

Gas-fired equipment, S34. (See also Natural gas
noise, F28.19
Gas vents, S35.1

Gaussian process (GP) models, F19.30

GCHP. See Ground-coupled heat pumps (GCHP)

Generators
absorption units, 16
combined heat and power (CHP), S7.40

Geothermal energy, A34
corrosion control, A34.6
direct-use systems, A34.3
cooling, A34.9
equipment, A34.5
heating, A34.8
service water heating, A34.8
district heating, A34.8
geothermal fluids, A34.1
disposal, A34.4
temperature, A34.1, 4

ground-source heat pump (GSHP) systems, A34.10, 38; S9.4
heat exchangers, A34.7, 37
materials performance, A34.5
resources, A34.1
valves, A34.7
water wells
flow rate, A34.3
pumps, A34.6, 36
terminology, A34.33
water quality testing, A34.4

Geothermal heat pumps (GHP), A34.10

Glaser method, F25.15

Glazing

Graphical symbols, F38

Green design, and sustainability, F35.1

Greenhouses. (See also Plant environments)
evaporative cooling, A52.14
plant environments, A24.10

Grids, for computational fluid dynamics, F13.4

Ground-coupled heat pumps (GCHP)
closed-loop ground-source, A34.10
heat exchanger, S49.13

Ground-coupled systems, F19.23

Ground-source heat pumps (GSHP), A34.1, 10

Groundwater heat pumps (GWHP), A34.32

Guard stations, in justice facilities, A9.5

GWP. See Global warming potential (GWP)

Gymnasiums, A5.5; A7.3

HACCP. See Hazard analysis critical control point (HACCP)

Halocarbon
coolants, secondary, F31.12
refrigerant systems, R.1.1

Hartford loop, S11.3

Hay, drying, A25.8

Hazard analysis and control, F10.4

Hazard analysis critical control point (HACCP), R22.4

in meat processing facilities, R30.1

Hazen-Williams equation, F22.6

HB. See Heat balance (HB)

Health
airborne pathogens, F10.8
asbestosis, F10.5
carbon monoxide, F10.15
combustion, S7.11
corrosion control, A34.6
direct-use systems, A34.3
cooling, A34.9
equipment, A34.5
heating, A34.8
service water heating, A34.8
district heating, A34.8
gas-fired, S33.1, 8
gases, A16.8
gaseous oxygen, R47.18
gibbs phase rule, R47.16

Global climate change, and refrigerants, F29.1

Global warming potential (GWP), F29.5

Glossary, of refrigeration terms, R50

Glycols, desiccant solution, S24.2
Composite Index

- design criteria, A.8.5
- disease prevention, A.8.2
- mold, A.6.2.1
- regulatory requirements, A.8.1
- sustainability, A.8.13

Heat
- flow rates, F.18.1
- latent
 - respiratory loss, F.9.4
 - skin loss, F.9.3, 10
- sensible
 - respiratory, F.9.4
 - skin, F.9.3
- space extraction rate, F.18.2
- timers, S.11.13
- transfer, F.25; F.26; F.27

Heat and moisture control, F.27.1

Heat balance (HB), S.9.23
- air, F.18.20
- conduction transfer function, F.18.21
- cooling load calculation methods, F.18.2, 17
- equations, F.18.21
- input procedure, F.18.22
- method, F.19.3
- model, F.18.17
- studies, S.9.23
- surface, F.18.17

Heat capacity, F.25.1

Heat control, F.27

Heaters, S.34
- automobiles, A.10.5
- catalytic, S.34.1
- control, S.34.2, 4
- direct-contact, S.15.5
- electric, S.16.2; S.34.3
- fireplaces, S.34.5
- gas, S.16.1; S.31.6; S.31.7; S.34.1
- control valves, S.34.2
- efficiency requirements, S.34.2
- infrared, S.16.1
- room, S.34.1
- thermostats, S.34.2
- wall furnaces, S.34.1
- hot-water, S.28.4
- hydronic snow melting, A.51.12
- infrared, S.16.1; S.31.7
- indirect, S.31.7
- oil-fired, S.16.3
- radiant, A.54.1, 4, 8
- in-space, S.34.1
- kerosene, S.34.3
- oil, S.16.3; S.34.3
- radiant, S.31.34
- electric, S.16.2
- gas-fired, S.16.1; S.31.7; S.34.1
- infrared, S.31.7
- oil-fired infrared, S.16.3
- panels, S.34.4
- quartz, S.34.4
- residential, S.34.1
- room, S.34.1
- solid fuel, S.34.4
- standards, S.34.6, 7
- steam, S.28.4
- stoves, S.34.5
- testing, S.34.7
- unit, S.28.4; S.31.6
- control, S.28.6

- location, S.28.4
- maintenance, S.28.8
- piping, S.28.7
- ratings, S.28.6
- selection, S.28.4
- sound level, S.28.6
- types, S.28.4
- ventilators, S.28.1
- water, A.50

Heat exchangers, S.48
- air-to-air energy recovery, S.26.1
- heat pipes, S.26.14
- liquid-desiccant cooling systems, S.26.18
- rotary enthalpy wheels, S.26.9
- thermosiphon, S.26.16
- twin-tower enthalpy recovery loops, S.26.19
- animal environments, A.24.4
- antifreeze effect on, S.13.24
- chimneys, S.35.31
- counterflow, F.4.22; S.48.1
- district heating and cooling, S.12.42
- double-wall construction, S.48.3
- effectiveness, capacity rate ratio, F.4.22
- enhanced surfaces, S.48.6
- fouling, S.48.6
- furnaces, S.33.1
- geothermal energy systems, A.34.7, 37
- halocarbon refrigeration systems, R.1.29
- installation, S.48.6
- liquid suction, R.1.29
- number of transfer units (NTU), F.4.22
- parallel flow, F.4.22
- plate, F.4.24; R.1.30; S.42.2
- pressure drop in, F.5.18
- welded, S.12.42; S.48.3
- selection, S.48.5
- shell-and-coil, R.1.29; S.12.43; S.48.2
- shell-and-tube, R.1.29; S.12.43; S.42.1
- components, S.48.4
- gasketed, S.12.42; S.48.3
- plate-and-frame, S.12.42
- pressure drop in, F.5.18
- welded, S.12.43; S.48.3
- selection, S.48.5
- solar energy, S.37.1
- systems
 - all-air, S.4.2, 5
 - selection, S.11.1, 9
 - small forced-air, S.10.1
 - solar energy, S.35.15, 26
 - steam, S.11.1
 - thermal storage, S.51.16

Heating load
- calculations, F.18.34
- central plant, S.32
- residential calculations, crawlspace heat loss, F.17.11

Heating seasonal performance factor (HSPF), S.49.6

Heating values of fuels, F.28.3, 9, 10

Heat loss. (See also Load calculations)
- basement, F.18.40
- crawlspaces, F.17.11
- floor slabs, F.18.40
- latent heat loss, F.17.11; F.18.41
- radiant panels, S.6.6

Heat pipes, air-to-air energy recovery, S.26.14

Heat pumps
- air-source, S.49.1, 9
- add-on, S.49.9
- air-to-air, S.9.5, 10
- air-to-water, S.9.5, 10
- balance point, S.49.9
- compressor selection, S.49.11
- control, S.49.11
- defrost cycle, S.49.10

R = 2018 Refrigeration
F = 2017 Fundamentals
S = 2016 HVAC Systems and Equipment
A = 2015 HVAC Applications
I.20 2018 ASHRAE Handbook—Refrigeration

Heat recovery. See Thermal storage

Heat stress
index (HSI), A31.6; F9.21
industrial environments, A31.5
thermal standards, A31.5

Heat transfer, F; F25; F26; F27. (See also Heat flow)
across air space, F25.6
antifreeze effect on water, S13.24
apparent transfer coefficient, F25.6
augmentation
active, F4.29
passive, F4.25
building materials, F37.34
coefficients, F15.6
convective, F9.7
convective evaporation, F5.7
evaporative, F9.8
foods, R19.24
Lewis relation, F9.4
low-temperature, R48.9
overall, F4.26
coils
air-cooling and dehumidifying, S23.6
air-heating, S27.4
condensers, S39.2
water-cooled, S39.2
duct conductance, F4.3
duction, F4.1, 3
shape factors, F4.4
control, F25; F26; F27
convection
buffer layer, F4.1
coefficient, F4.1
external, F4.17
flow, fully developed laminar, F4.17
forced, boundary layer, F4.17
free, F4.1, 19
internal, F4.17
laminar sublayer, F4.1
natural, F4.1, 19
turbulent region, F4.1
definition, F25.1
diffuse radiators, F4.15
district heating and cooling pipes, S12.15
effectiveness, F4.22
extended surfaces, F4.6
factor, friction, F4.17
film
coefficient, F25.1
resistance, F25.6
fins, F4.6, 7
forced convection, air coolers, F4.17
Fourier’s law, F25.5
heat exchangers, S48.1
insulation, F37.34
lakes, A34.38
mass transfer
convection, F6.6
molecular diffusion, F6.3
simultaneous with, F6.10
cooling coils, F6.13
number of transfer units (NTU), F4.23
radiant balance, F4.15
radiation
actual, gray, F4.2, 12
angle factor, F4.13
Beer’s law, F4.16
blackbody, F4.12
black surface, F4.2
energy transfer, F4.11
exchange between surfaces, F4.14
in gases, F4.16
gray surface, F4.12
hemispherical emissivity, F4.12
Kirchoff’s law, F4.12
monochromatic emissive power, F4.12
spectral emissive power, F4.12
Stefan-Boltzmann law, F4.2, 12
thermal, F4.2
Wien’s displacement law, F4.12
simultaneous with mass transfer, F6.10
snow-melting systems, A51.1
fluids, A51.10
solar energy systems, A35.11
steady-state, F25.5
surface, F25.6
terminology, F25.1
thermal bridging, F25.8
transient
cooling time estimation, F4.9
cylinder, F4.9
radiation, F4.8
slab, F4.9
sphere, F4.9
transmission data, F26
two-phase, F5.15, 17
water, S13.3

Heat transmission
doors, F27.7
floor slabs, F18.40
windows, F27.7

Heat traps, A50.1

Helium
in air, F1.1
recovery, R47.18
and thermal radiation, F4.16

High-efficiency particulate air (HEPA) filters, A28.3; S29.6; S30.3

High-rise buildings. See Tall buildings

High-temperature short-time (HTST) pasteurization, R33.2

High-temperature water (HTW) system, S13.1

Homeland security. See Chemical, biological, radiological, and explosive (CBRE) incidents

Hoods
draft, S35.30
gaseous contaminant removal, A46.7
industrial exhaust systems
canopy hoods, A32.3, 6
capture velocities, A32.2
compound hoods, A32.5
design principles, A32.3
entry loss, A32.4
overhead hoods, A32.6
Composite Index

I.21

I.21

Hotels and motels, A6.2
air conditioning, A8.2
air movement, A8.4
air quality, A8.3
cold storage, A48.34
unidirectional, A18.13
laboratory fume, A16.3
load characteristics, A6.1
design criteria
cooling, A8.13
control
heat transfer vs. flow, A38.6, 7
heat pumps, R16.6
combined heat and power (CHP), S7.42
central multifamily, A1.7
territorial, A8.8
heating and cooling, S22.3
load calculations, S22.4
Humidifiers, S22
all-air systems, S4.9
bacterial growth, S22.1
central air systems
industrial and commercial, S22.7
residential, S22.6
commercial, S22.6
cold storage, S22.13
energy considerations, S22.3
equipment, S22.6
 evaporative cooling, S22.10
furnaces, S33.2
industrial, S22.6
Legionella pneumophila control, A49.14
load calculations, S22.4
condensed, S22.6
portable, S22.6
residential, A1.5; S10.2; S22.6
scaling, S22.5
supply water, S22.5
terminal, S4.17
types, S22.5
Humidity (See also Moisture)
building envelope affected by, S22.3
control, A47.15; A62; F32.1; S22.1; S24.1
retail food store refrigeration, R15.11
disease prevention and treatment, S22.1
human comfort conditions, S22.1
measurement, F37.10
odors affected by, F12.2
relative, F1.12
sound transmission affected by, S22.2
sources of, S25.8
static electricity affected by, S22.2
HVC security, A59
commissioning, A59.6
owner’s project requirements (OPR), A59.1
risk evaluation, A59.2
system design, A59.3
design measures, A59.4
maintenance management, A59.6
modes of operation, A59.3
Hybrid inverse change point model, F19.31
Hybrid ventilation, F19.26
Hydrogen, liquid, R47.3
Hydronic systems, S35. (See also Water systems)
central multifamily, A1.7
combined heat and power (CHP), S7.42
heating and cooling design, S13.1
altitude effects, S36.5
heat transfer vs. flow, A38.6, 7
pipe design, F22.26
residential, A1.3
snow melting, A51.10
testing, adjusting, balancing, A38.6, 8
units
baseboard, S36.2, 3, 5
convector, S16.1, 3, 5
finned-tube, S36.2, 3, 5
heat exchangers, S28.4
makeup air, S28.9
pipe coils, S36.1
radiant panels, S36.6
radiators, S36.1, 2, 5
ventilators, S28.1
water treatment, A49.18
Hygrometers, F7.9; F37.10, 11
Hygrothermal loads, F25.2
Hygrothermal modeling, F25.15; F27.10
criteria, F25.16
dew-point method, F25.14
transient analysis, F25.15; F27.10
IAQ. See Indoor air quality (IAQ)
IBD. See Integrated building design (IBD)
Ice
commercial, R43.6
delivery systems, R43.5
manufacture, R43.1
storage, R43.3
thermal storage, R43.3; S51.9
Ice makers
commercial, R16.6
heat pumps, R43.6
household refrigerator, R17.2
large commercial, R43.1
storage, R43.3
thermal storage, R43.3
types, R43.1
Ice rinks, A5.5; R44
cold storage, R44.4, 5
dehumidifiers, S25.8
energy conservation, R44.5
floor design, R44.10
heat loads, R44.2
pebbling, R44.13
surface building and maintenance, R44.12
water quality, R44.13
ID50, mean infectious dose, A59.9
Ignition temperatures of fuels, F28.2
IGUs. See Insulating glazing units (IGUs)
Illuminance, F37.31
Indoor air quality (IAQ). (See also Air quality)
bioaerosols
health effects, F10.8
particles, F10.5
sources, F10.8
environmental tobacco smoke (ETS), F10.6
e-cigarettes, F10.7
gaseous contaminant removal, A46.1
hospitals, A8.3
hotels and motels, A6.6
humidity, F25.16
microbial volatile organic chemicals (MVOCs), F10.8
modeling, F13.1
particulate matter, F10.5
poly cyclic aromatic compounds (PAEs), F10.6
poly cyclic aromatic hydrocarbons (PAHs), F10.6
radon action levels, F10.22
semivolatile organic compounds (SVOCs), F10.4, 12
sensors, F7.10
standards, F10.12
synthetic vitreous fibers, F10.6
Industrial environments, A14; A31; A32

Indoor environmental modeling, F13
computational fluid dynamic (CFD), F13.1
contaminant transport, F13.16
multi-zone network, F13.14
verification and validation, F13.17

Indoor environmental quality (IEQ), kitchens, A33.20. (See also Air quality)

Induction
air-and-water systems, A38.6
systems, S5.10
units under varying load, S5.11

Industrial applications
burners
gas, S31.6
oil, S31.12
ducts, S19.9

gas drying, S24.13
heat pumps, S9.9
humidifiers, S22.6
process drying, S24.13
process refrigeration, R46.1
thermal storage, S51.23
service water heating, S50.25
steam generators, A27.5

Industrial environments, A14; A31; A32
-air conditioning, A14
-cooling load, A14.6
design, A14.5
evaporative systems, A14.8
-maintenance, A14.8
-refrigerant systems, A14.7
-spot cooling, A31.4; A52.12
-ventilation, A31.1
-air distribution, A31.3
-air filtration systems, A14.8; S29.2; S30.1
-commissioning, A14.9
-contaminant control, A14.5, 8
-control systems, A14.9
-energy
-conservation, A31.6
-recovery, A31.6
-sustainability, A31.6
-evaporative cooling, A52.12
-heat control, A31.5
-heat exposure control, A31.6
-heating systems, A14.7
-heat stress, A31.5
-local exhaust systems, A31.6; A32.1
-air cleaners, A32.8
-airflow near hood, A32.3
-air-moving devices, A32.8
-ducts, A32.6; S30.28
-energy recovery, A32.8
-exhaust stacks, A32.8
-fans, A32.8
-hoods, A32.2
-hot processes, A32.6
-operation and maintenance, A32.9
-system testing, A32.9
-pressureurization, A14.6
-process and product requirements, A14.1
-safety, A14.9
-spot cooling, A31.4, 6
-thermal control, A14.5
-ventilation systems, A31.2
-Insulating glazing units (IGUs), F15.5

Infrared applications

In-room terminal systems
changeover temperature, S5.12
performance under varying load, S5.11
primary air, S5.10

Instruments, F14. (See also specific instruments or applications)

Insulating glazing units (IGUs), F15.5

Insulation, thermal
airflow retarders, F25.9
animal environments, A24.5
below-ambient system, R10.1, 2
clothing, F9.8
compressive resistance, F23.9
dependation control, F23.3
corrosion under, F23.7
cryogenic, R47.23; R48.9
ducts, F23.15; S19.12
flexible, F23.13
process, F23.15
economic thickness, in mechanical systems, F23.1
-electrical, motor, breakdown of, S45.16
-energy conservation, F23.1
defire resistance ratings, F23.7
-fire safety, F23.6
-flame spread index, F23.6
-foundations, A44.3
-freeze protection, F23.5
green buildings, F23.1
-heat gain, F23.18
-heat loss, F23.18
-heat transfer, F37.34
-hospitals, A8.13
-insertion loss, F23.6
-limited combustible, F23.7
-materials, F23.8; F26.1
-cellular, F23.9
-fibrous, F23.9
-coal scum, and kraft paper (FSK), F23.13
-foil-reinforced kraft (FRK), F23.14
-granular, F23.9
-reflective, F23.9
-moisture control, F26.1
-noise control, F23.5
-noncombustible, F23.7
-operating temperature, F23.9
-performance, F26.1
-personnel protection, F23.2
-pipes, F23.13
-economic thickness, S12.25
-hangers, F23.13
-underground, F23.15; S12.15
-properties, F25.1
-refrigerant piping, R10.1
-design, R10.1
-installation, R10.8
-jacketing, R10.7
-joint sealant, R10.5
-maintenance, R10.11
-thickness tables, R10.5
-vapor retarders, R10.5
-refrigerated facilities, R23.12; R24.1
-smoke developed index, F23.6
-solar energy systems, S37.6, 13
tanks, vessels, and equipment, F23.15
-thermal conductivity, F23.9
-thermal storage systems, water, S51.6
-water absorption, F23.9
-water vapor permeability, F23.9
-water vapor permeance, F23.9
-water vapor retarders, F23.11
-weather barriers, F23.10
-weather protection, F23.10

Integrated building design (IBD), A58.1, 7
-budgeting, A58.3
Composite Index

commissioning, A58.8
communication, A58.4
congestion, A9.9
document phase, A58.7
documentation, A58.7

design

basis, A58.5
criteria, A58.5
development, A58.8
intent, A58.8
team, A58.3, 8
design-phase contract, A58.7
drawings

preliminary, A58.7
working, A58.7
energy modeling, A58.9
building optimization, A58.9
equipment selection, A58.9
system optimization, A58.9

objectives, A58.3
organization, A58.1
programming, A58.1
project
closeout, A58.8
delivery, A58.6
design, A58.5
manual, A58.7
predesign, A58.7

quality assurance/quality control (QA/QC), A58.4

schematic design, A58.7
specifications

criteria, A58.5

outline, A58.7

project manual, A58.7

training, A58.4

Intercoolers, ammonia refrigeration systems, R.12

Internal heat gains, F.19.13

Jacketing, insulation, R.10.7

Jails, A9.4

Joule-Thomson cycle, R.47.6

Judges’ chambers, A9.5

Juice, R.38.1

Jury facilities, A9.5

Justice facilities, A9

control rooms, A9.4, 5
courthouses, A9.5
courtrooms, A9.5, 5
dining halls, A9.4
energy considerations, A9.2
fire/smoke management, A9.3
firearm laboratories, A9.7
fitness facilities, A9.6
forensic labs, A9.1, 6
guard stations, A9.4, 5

health issues, A9.4

heating and cooling plants, A9.3

jail cells, A9.6

jails, A9.4

judges’ chambers, A9.5, 5

jury rooms, A9.5

juvenile, A9.1

kitchens, A9.5

lavatories, A9.5

libraries, A9.4, 6

police stations, A9.1

Prisons, A9.4

shooting ranges, indoor, A9.8

system controls, A9.3

system requirements, A9.1

tear gas and pepper spray, A9.3

terminology, A9.1

types of, A9.1

U.S. Marshals, A9.6

Juvenile detention facilities, A9.1. (See also Family courts)

K-12 schools, A7.2

Kelvin’s equation, F.25.11

Kirchoff’s law, F.4.12

Kitchens, A33

air balancing, A33.2

multiple-hood systems, A33.3

air filtration, A33.7, 18

cooking effluent

cleanliness

generation of, A33.1

thermal plume behavior, A33.17

dishwashers, piping, A50.7

energy conservation

economizers, A33.6

reduced airflow, A33.6

residential hoods, A33.36

restaurants, A33.4

exhaust hoods, A33

ductless, A33.15

recirculating systems, A33.15, 29

replacement air, A33.20

residential, A33.35

systems, A33.7

type I, A33.7

type II, A33.7, 14

down draft systems, A33.7, 36

downdraft, A33.15

ducts, A33.27; S19.10

effluent control, A33.18

fans, A33.28

hoods, A33.7

maintenance, A33.35

multiple-hood systems, A33.3, 31

residential, A33.36

terminations, A33.28

fire safety, A33.29, 31

fire suppression, A33.30

multiple-hood systems, A33.31

prevention of fire spread, A33.31

residential, A33.37

grease removal, A33.7, 18

heat recovery, A33.5

high-performance green design, A33.6

indoor environmental quality (IEQ), A33.20

integration and design, A33.2

in justice facilities, A9.5

maintenance, A33.34

makeup air systems

air distribution, A33.22

maintenance, A33.35

replacement, A33.20

residential, A33.36

operation, A33.34

replacement air, A33.20

residential, A33.35

service water heating, A50.7

ventilation, A33

Kleemenko cycle, R.47.13

Krypton, recovery, R.47.18

Laboratories, A16

air distribution, A16.9

air filtration, A16.9

air intakes, A16.13

animal labs, A16.14

cage environment, A24.9

ventilation performance, A24.9

biological safety cabinets, A16.5

biosafety levels, A16.17

clean benches, A16.7

cleanrooms, A1.8

clinical labs, A16.18

commissioning, A16.20

compressed gas storage, A16.8

containment labs, A16.16

controls, A16.11

design parameters, A16.2

duct leakage rates, A16.10

economics, A16.21

exhaust devices, A16.7

exhaust systems, A16.9

fire safety, A16.11

fume hoods, A16.3

controls, A16.13

performance, A16.5

hazard assessment, A16.2

heat recovery, A16.20

hospitals, A8.8

loads, A16.2

nuclear facilities, A28.11

paper testing labs, A26.4

radiochemistry labs, A16.18

safety, A16.2, 11

scale-up labs, A16.17

stack heights, A16.13

supply air systems, A16.9

system maintenance, A16.18

system operation, A16.18

teaching labs, A16.18

types, A16.1

ventilation, A16.8

Laboratory information management systems (LIMS), A9.8

Lakes, heat transfer, A34.38

Laminar flow

air, A18.4

fluids, F.3.3

Large eddy simulation (LES), turbulence modeling, F.13.3; F.24.13

Laser Doppler anemometers (LDA), F.37.17

Laser Doppler velocimeters (LDV), F.37.17

Latent energy change materials, S.51.2

Laundries

evaporative cooling, A52.13

fume hoods, A33.8

in justice facilities, A9.5; F.25.11

service water heating, A50.23

LCR, See Load ratio (LRC)

LD₅₀, mean lethal dose, A59.9

LDA, See Laser Doppler anemometers (LDA)

LDV, See Laser Doppler velocimeters (LDV)

LE, See Life expectancy (LE) rating

Leakage

air-handling unit, A32.15

in justice facilities, A9.5; F.25.11

service water heating, A50.23

R = 2018 Refrigeration

F = 2017 Fundamentals

S = 2016 HVAC Systems and Equipment

A = 2015 HVAC Applications
Legionnaires' disease.

Legionella pneumophila

Leak detection of refrigerants

Leakage function

Motors, S45
 air volume control, S45.13
codes, S45.2
compressors, S38.6
current, S45.6
efficiency, S45.2
electrically commutated (EC), R16.5, 8
evaporative cooling, A52.12
field assembly and refrigerant contamination, R7.8
furnaces, residential, S33.2
general purpose, S45.3
harmonics, S45.18
hermetic, S45.5
burnout, R7.8, 8
impedance, S45.15
integral thermal protection, S45.5
inverter duty, S45.16
noise, S45.17
operation above base speed, S45.8
power factor correction capacitors, S45.18
power supply (AC), S45.1
protection, S45.5
pumps, centrifugal, S44.9, 15
service factor, S45.4
standards, S45.2
starting, and electricity, S45.8
switching times, S45.15
torque, S45.4
in variable-frequency drives, S45.15
voltage imbalance, S45.1

Movie theaters, A5.3
MRT, See Mean radiant temperature (MRT)
Multifamily residences, A1.7

Multiple-use complexes
 air conditioning, A6.8
design criteria, A6.1
load characteristics, A6.1
systems, A6.1, 2
energy inefficient, A6.2
total energy, A6.3

Multisplit unitary equipment, S49.1
Multizone airflow modeling, F13.14
applications example, F13.18
approaches, F13.16
verification and validation, F13.17

Museums, galleries, archives, and libraries
 air distribution, A23.18
 air filtration, A23.18
 artifact deterioration, A23.5
 building construction, A23.13
dehumidification, A23.17, 19
 exhibit cases, A23.5
humidification, A23.17
mold growth, A23.5
outdoor air, A23.18
relative humidity, effect on artifacts, A23.5
system selection, A23.16
temperature, effect on artifacts, A23.3

MVOCs. See Microbial volatile organic compounds (MVOCs)

Nataurions. (See also Swimming pools)
 air conditioning, A5.6
dehumidifiers, S25.6
duct design, A5.7
envelope design, A5.7
load estimation, A5.6

pool water chemistry, A5.8
ventilation requirements, A5.7
Natural gas, F28.5
liquefaction, R74.8
liquefied, R47.3
pipe design, F22.38
processing, R47.18
separation, R47.18

Navier-Stokes equations, F13.2
Reynolds-averaged, F13.3

NC curves. See Noise criterion (NC) curves

Net positive suction head (NPSH), A34.34;
R2.9; S44.10

Network airflow models, F19.25
Night setback, recovery, A42.43

Nitrogen
 liquid, R47.3
 recovery, R47.17

Noise, F8.13. (See also Sound)
 air conditioners, room, S50.4
 combustion, F28.19
 compressors
 centrifugal, S38.5, 34
 single-screw, S38.19
 condensing units, R15.21
 control, with insulation, F23.5
 controls, A18.24
 engine test facilities, A17.4
 fans, S21.11
 fluid flow, F3.14
 health effects, F10.20
 water pipes, F22.22

Noise criterion (NC) curves, F8.16

Noncondensible gases
 condensers, water-cooled, S39.7
 refrigerant contamination, R7.8

Normalized mean bias error (NMBE), F19.33

NPSH. See Net positive suction head (NPSH)

NTU. See Number of transfer units (NTU)

Nuclear facilities, A28
 air filtration, A28.3, 8
codes, A28.12
 criticality, A28.1
 decommissioning, A28.11
 Department of Energy facilities requirements
 confinement systems, A28.4
 ventilation, A28.5
 fire protection, A28.2
 HVAC design considerations, A28.1
 Nuclear Regulatory Commission requirements
 boiling water reactors, A28.9
 laboratories, A28.11
 medical and research reactors, A28.11
 other buildings and rooms, A28.10
 power plants, A28.6
 pressurized water reactors, A28.8
 radioactive waste facilities, A28.12
 safety design, A28.2
 standards, A28.12
 terminology, A28.1
 tornado and wind protection, A28.2

Number of transfer units (NTU)
 cooling towers, S40.19
 heat transfer, F4.23

Nursing facilities, A8.15
 service water heating, A50.11

Nuts, storage, R42.7

Odors, F12
 analytical measurement, F12.5
 control of, in industrial exhaust gas cleaning,
 S30.26, 27
 factors affecting, F12.2, 5
 odor units, F12.5
 off unit, F12.6
 sense of smell, F12.1
 sensory measurement, F12.2
 acceptability, F12.5
 sources, F12.1
 suprathreshold intensity, F12.3
 threshold, F12.1

ODP. See Ozone depletion potential (ODP)

Office buildings
 air conditioning, A3.2, 3
 space requirements, A3.5
 load density, F18.15
 service water heating, A50.11, 18

Oil, fuel, F28.7
 characteristics, F28.8
 distillate oils, F28.7
 handling, S31.15
 heating value, F28.9
 pipe design, F22.38
 preparation, S31.16
 residual oils, F28.7
 storage buildings, A27.10
 storage tanks, S31.15
 sulfur content, F28.9
 viscosity, F28.8

Oil, in two-phase flow, F5.15. (See also Lubricants)

Oil unit, F12.6

One-pipe systems
 chilled-water, S13.19
 steam convection heating, S11.12; 1993
 Fundamentals, Chapter 33, pp. 18-19 (See explanation on first page of index.)

Operating costs, A37.4

Operation and maintenance, A39. (See also Maintenance)
 automated fault detection and diagnostics
 (AFDD), A39.5
 commissioning, A39.10
 compressors, S38.40
desiccant dehumidifiers, S24.8
documentation, A39.7
industrial exhaust systems, A32.9
exhaust gas cleaning equipment, S30.29
laboratory HVAC equipment, A16.18
manuals, A39.8
new technology, A39.10
renovations and retrofits, A39.9
responsibilities, A39.8
staffing, A39.8
training, A39.8

Optimization, A42.4
 applications, A42.1
 dynamic, A42.5, 27
 static, A42.4, 21

Outdoor air, free cooling. (See also Ventilation)
 cooling towers, S40.12
 liquid chillers, S43.11

Outpatient health care facilities, A8.14

Owning costs, A37.1

Oxygen
 in aircraft cabins, A12.9
I.27

Ozone
- Activated carbon air cleaner, A46.15
- In aircraft cabins
- Catalytic converters, A12.14
- Limits, A12.15
- Electronic air filters, S29.8
- Health effects, F10.15

Packaged terminal heat pumps (PTHPs)

Packaged terminal air conditioners (PTACs)

Ozone depletion potential (ODP)
- F29.5

Packaged terminal heat pumps (PTHPs), S50.5
- Residential, A1.7

PAH. See Polyaromatic hydrocarbons (PAHs)

Paint, and moisture problems, F25.16

Panel heating and cooling, S6. (See also Radiant heating and cooling)
- Advantages, S6.10
- Capillary tube mats, S6.6
- Cooling, S6.1
- Design, S6.10
- Calculations, S6.7
- Disadvantages, S6.10
- Electric heating systems, S6.14
- Ceiling, S6.14
- Floor, S6.16
- Wall, S6.16
- Heat flux
 - Combined, S6.4
 - Natural convection, S6.3
 - Radiation, S6.2
- Heating, S6.1
- Hybrid HVAC, S6.1
- Hydronic systems, floor, S6.13
- Wall, S6.13

Paper
- Moisture content, A20.2
- Photographic, A22.1
- Storage, A22.3

Paper products facilities, A26
- Air conditioning, A26.2
- Conduction drying, A30.3
- Control rooms, A26.3
- Evaporative cooling, A52.13
- Finishing area, A26.3
- Machine area, A26.2
- System selection, A26.4
- Testing laboratories, A26.4

Parallel compressor systems, R15.14

Particulate matter, indoor air quality (IAQ), F10.5

Passive heating, F19.27

Pasteurization, R33.2
- Beverages, R39.6
- Dairy products, R33.2
- Eggs, R34.4, 10
- Juices, R38.4, 7

Peak dew point, A62.9

Peanuts, drying, A25.9

PEC systems. See Personal environmental control (PEC) systems

PEL. See Permissible exposure limits (PEL)

Performance monitoring, A47.6

Permafrost stabilization, R45.4

Permeability
- Clothing, F9.8
- Vapor, F37.34
- Water vapor, F25.2

Permeance
- Air, F25.2
- Thickness, F37.34
- Water vapor, F25.2

Permissible exposure limits (PELs), F10.5

Pharmaceutical manufacturing cleanrooms, A18.9

Photographic materials, A8.9

Phase-change materials, A41.2

Photovoltaic (PV) systems, S36.18. (See also Solar energy)

Physical properties of materials, F33
- Boiling points, F33.1, 2
- Building materials, F26
- Density
 - Liquids, F33.2
 - Solids, F33.3
 - Vapors, F33.1
- Emissivity of solids, F33.3
- Freezing points, F33.2
- Heat of fusion, F33.2
- Heat of vaporization, F33.2
- Solids, F33.3
- Specific heat
 - Liquids, F33.2
 - Solids, F33.3
 - Vapors, F33.1
- Thermal conductivity
 - Solids, F33.3
 - Vapors, F33.1

Physiological principles, humans. (See also Comfort)
- Adaptation, F9.17
- Age, F9.17
- Body surface area (DuBois), F9.3
- Clothing, F9.8
- Cooling load, F18.3
- DuBois equation, F9.3
- Energy balance, F9.2
- Heat stress, F9.21, 26
- Heat transfer coefficients
 - Convective, F9.7
 - Evaporative, F9.8
 - Lewis relation, F9.4
 - Radiative, F9.7
- Hypothalamus, F9.1
- Hypothermia, F9.1
- Latent heat loss, F9.3, 10
- Mechanical efficiency, F9.6
- Metabolic rate, F9.6
- Models, F9.20

Pigs. See Swine

Pipes, S46. (See also Piping)
- Buried, heat transfer analysis, S12.17
- Codes, S46.6
- Cold springing, F22.14; S12.26; S46.12
- Computer analysis, A40.11
- Copper tube, F22.15; S46.1
- Design, F22
- Expansion, S12.25
- Expansion bends, S46.11
- Expansion joints, S46.12
- Expansion loops, F22.13; S46.10, 11
- Fittings, F22.18; S46.2
- Fluid flow, F3.1
- Heat transfer analysis, S12.15
- Insulation, F23.13
- Hangers, F23.13
- Installation, F23.13
- Underground, F23.15
- Iron, F22.15; S46.2
- Joining methods, F22.18; S46.2
- Plastic, F22.25; S46.7, 8
- Selection, S46.6
- Sizing
 - Fittings, F22.6, 28
 - Fuel oil, F22.38
 - Gas, F22.38
 - Hydronic systems, F22.26; S13.23
 - Pressure drop equations, F22.5
 - Service water, F22.23
 - Steam, F22.29
 - Valves, F22.6, 28
 - Water, F22.22
 - Sizing
 - Ammonia systems capacity tables, R2.16, 17
 - Insulation and vapor retarders, R2.19
 - Isolated line sections, R2.18
 - Refrigerant, retail food store refrigeration, R1.53
 - Valves; R2.15
- Standards, fittings, F22.18; S46.2
- Steel, S46.1
- Stress calculations, S46.7
- Supporting elements, S12.26; S46.8

Piping. (See also Pipes)
- Boilers, S11.3
- Capacity tables, R1.4–15
- Codes, S46.6
- Cooling towers, S14.2; S40.11
- District heating and cooling
 - Distribution system, S12.13
 - Heat transfer, S12.15
 - Hydraulics, S12.13
- Insulation thickness, S12.25
- Leak detection, S12.34
- Relative costs, S12.28
- Types, S12.27
- Valve vaults, S12.35
- Geothermal energy systems, A34.8
heat carrying capacity, S13.3
hydronic snow melting, A51.11
insulation, R10.1
refrigerant
ammonia systems, R2.1; R3.7
below-ambient, R10.1
halocarbon systems, R1.1
heat gain limits, R10.1
insulation, R10.1, 5
jacketing, R10.7
pipe preparation, R10.3
supports and hangers, R10.10
vapor retarders, R10.5
service hot water, A50.3
solar energy, A24.11; S37.3
sound
control, A48.50
transmission, A38.24
standards, S12.27; S46.6
service hot wa
ter, A50.3
solar energy, A35.11; S37.6, 7
halocarbon refrigeration
ammonia refrigeration, R2.15
transmission, A38.24
control, A48.50
solar energy, A35.11; S37.3
vapor retarders, R10.5
supports and hangers, R10.10
vapor retarders, R10.5
service hot water, A50.3
solar energy, A24.11; S37.3
sound
control, A48.50
transmission, A38.24
standards, S12.27; S46.6
system identifi
cation, F38.10
systems
ammonia refrigeration, R2.15
halocarbon refrigeration
capacity tables, R1.4–15
compressor, R1.20
defrost gas supply lines, R1.26
discharge lines, R1.24
double hot-gas risers, R1.24
draining prevention, R1.24
evaporator, R1.23
gas velocity, R1.2
hot-gas
(discharge) mufflers, R1.25
bypass, R1.35
insulation, R1.6
liquid cooler, flooded, R1.22
location and arrangement, R1.5
minimum gas velocities, R1.24
oil transport up risers, R1.24
refrigerant feed devices, R1.22
single riser and oil separator, R1.24
vibration and noise, R1.6
solar energy, A35.11; S37.6, 7
steam, S11.3, 5
water, S13.6; S15.6
unit heaters, S28.7
vibration control, A48.50
vibration transmission, A38.24
Pitot tubes, A38.2; F37.17
Places of assembly, A5
air conditioning, A5.2
air distribution, A5.2
air filtration, A5.1
air stratification, A5.2
arenas, A5.4
atriums, A5.9
auditoriums, A5.3
concert halls, A5.4
convention centers, A5.5
exhibition centers, A5.5
fairs, A5.8
gymnasiums, A5.5
houses of worship, A5.3
lighting loads, A5.1
mechanical equipment rooms, A5.3
movie theaters, A5.3
natatoriums, A5.6
playhouses, A5.3
power grid, A61.7
Power grid, A61.7
Power-law airflow model, F13.14
Power plants
also Animal environments)
chilling, R31.1
decontamination, R31.4
freezing, R31.5
packaging, R31.7
processing, R31.1, 5
processing plant sanitation, R31.9
recommended environment, A24.8
refrigeration, retail, R31.10
storage, R31.10
tenderness control, R31.10
thawing, R31.11
Power grid, A61.7
Power-law airflow model, F13.14
Power plants, A27
buildings
oil pump, A27.10
oil storage, A27.10
steam generator, A27.5
turbine generator, A27.7
precooling, A5.2
sound control, A5.1
space conditions, A5.1
stadiums, A5.4
temporary exhibit buildings, A5.8
vibration control, A5.1
Planes. See Aircraft
Plank's equation, R20.7
Plant environments, A24.10
controlled-environment rooms, A24.16
design, A24.10
greenhouses, A24.10
carbon dioxide enrichment, A24.14
cooling, A24.13
energy conservation, A24.16
evaporative cooling, A24.13
heating, A24.11
heat loss calculation, A24.11
humidity control, A24.14
photoperiod control, A24.15
shading, A24.13
site selection, A24.10
supplemental irradiance, A24.14
ventilation, A24.13
other facilities, A24.21
photoperiod control, A24.15
phytotrons, A24.20
plant growth chambers, A24.16
supplemental irradiance, A24.14
Plenums
mixing, S4.7
sound attenuation, A48.18
stratification in, A38.2
sound attenuation, A48.18
mixing, S4.7
ventilation, A24.13
vibra
Damping, F37.32
comfort, F9.18
Predicted percent dissatisfied (PPD), F9.18
Preschools, A7.1
Pressure
absolute, F37.13
aircraft cabins, A12.9, 11, 13, 15
clean spaces, A18.20
differential, F37.13
to conversion head, A38.12
hospitals, A8.4
readout, A38.12
dynamic, F37.13
gage, F37.13
measurement, A38.2; F37.13
sensors, F7.10
smoke control, A53.6, 8
stairswells, A53.8, 12
static control, A47.9; F37.13
steam systems, S11.4
units, F37.13
vacuum, F37.13
Pressure drop. (See also Darcy-Weisbach
equation)
correlations, F5.15
district heating and cooling, S12.13
pipe design, F22.1
in plate heat exchangers, F5.18
two-phase fluid flow, F5.15
Primary-air systems, S5.10
Printing plants, A20
air conditioning, A20.1
air filtration, A20.4
binding areas, A20.5
collotype printing rooms, A20.4
letterpress areas, A20.2
lithographic pressrooms, A20.3
paper moisture content control, A20.2
platemaking rooms, A20.2
relief printing areas, A20.2
Pumps

Prisons, A9.4

Produce

desiccation, R21.1
deterioration rate, R21.1
display refrigerators, R15.8

Product load, R15.6

Propane

central station, F28.5

Propylene glycol

Psychrometers, F1.13

Psychrometrics, F1

PTACs. See Packaged terminal air conditioners (PTACs)

PTHPs. See Packaged terminal heat pumps (PTHPs)

Public buildings. See Commercial and public buildings: Places of assembly

Pumps, F19.18
cavitation, S14.2
centrifugal, S44

Refrigerant control devices

dehumidification, R9.3

drift, R11.22

drivers, R11.22

drying, R9.3

dryer pad, R9.3

dryers, R9.3

dust, R9.3

RC curves. See Room criterion (RC) curves

Receivers

Radiant heating and cooling (RHC)

Radiation

Radiance method

Radiosity method

Radon

Radioactive gases

Radioactivity

Radiology

Refrigerant absorbent pairs

Refrigerant control devices

Recycling refrigerants

Red banding

Red paint

Redundancy

Refrigerant system components

Recuperator

Refrigeration systems

Refrigerant fluid indicators

Refrigerant leakage

Refrigerant refrigerant systems

Refrigerant selection

Regenerative heating

Reflection

Remote terminals

Reliability

Reliability equations

Remote monitoring

Remote service

Remote web monitoring tools

Remote web monitoring system

Relaxed control

Remote sensor device

Remote sensing

Remote stationary

Remote storage

Remote terminal

Remote terminal devices

Remote terminal monitoring system

Remote terminal service

Removal

Residential area

Residential area temperatures

Residential building

Residential buildings

Residential cooling system

Residential energy consumption

Residential facility

Residential facilities

Residential heating system

Residential load

Residential systems

Residential type

Residential unit

Residential unit load

Residential units

Residential vapor source

Residence

Residence, thriving

Resolution

Resonant mode

Retention

Returns

Retailers

Retailers, food

Retailers, convenience

Retailers, nonfood

Retailers, small

Retailers, wholesale

Retailers, retail

Retailers, department

Retailers, grocery

Retailers, specialty

Retailers, general

Retailers, discount

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount

Retailers, general

Retailers, convenience

Retailers, wholesale

Retailers, grocery

Retailers, specialty

Retailers, convenience

Retailers, discount
Refrigerants, F29.1

Absorption solutions, F30.71
ammonia, F30.40–41
chemical reactions, R6.5
refrigeration system practices, R2.1
refrigeration systems, R3.1
ammonia/water, F30.71
analysis, R6.1
automobile air conditioning, A10.11
azeotropic, F2.6
bakeries, R41.7
carbon dioxide, F30.44–45
refrigeration systems, R3.1
cascade refrigeration systems, R48.3
charge minimization, R1.36
chemical evaluation techniques, R6.12
and climate change, F29.1
compatibility with materials, R6.9
computer analysis, A40.17
contaminants in, R7
cryogenic fluids, F30.60–69
density, F30.75
effect on materials, F29.10
emissions, R9.1
enthalpy, F30; F30.75
entropy, F30; F30.75
flammability, R6.1
halocarbons
azeotropic blends, F30.39
charge minimization, R1.36
ethane series, F30.10–21
flow rate, R1.2
hydrolysis, R6.6
methane series, F30.2–3
propane series, F30.25
propylene series, F30.26–31
refrigeration system practices, R1.1
thermal stability, R6.4
zeotropic blends, F30.32–37
hydrocarbons
ethane, F30.48–49
ethylene, F30.56–57
isobutane, F30.54–55
methane, F30.46–47
n-butane, F30.52–53
propane, F30.50–51
propylene, F30.58–59
insulation for piping, R10.1
leak detection, F29.9; R8.4; R9.2
lines, oil management, R1.16
lithium bromide/water, F30.71
lubricant solutions, R12.12
moisture in, R7.1
performance, F29.6
phaseout, costs, A37.8
piping, R1.2
pressure drop
 discharge lines, R1.5
 suction lines, R1.3
properties, F29.1
electrical, F29.6
global environmental, F29.1
physical, F29.6
rail car air conditioning, A11.5
reclamation, R9.4
 removing contaminants, R9.3
recovery, R9.3
recycling, R9.3
safety, F29.6
 classifications, F29.2
sampling, R7.10
sound velocity, F29.6
specific heat, F30; F30.75
specific volume, F30
speed of sound, F30; F30.76
surface tension, F30
system chemistry, R6.1
system reactions, R6.4
systems, lubricants, R12.1
thermal conductivity, F30; F30.75
thermodynamic properties, F30
thermophysical properties, R3.2
transport properties, F30
vapor pressure, F30; F30.75
velocity of sound, F30; F30.75
viscosity, F30; F30.75
water/steam, F30.42–43
zeotropic, F2.6, 10
Refrigerant transfer units (RTU), liquid chillers, S43.11
Refrigerated facilities, R23
air handling and purification, R21.10
automated, R23.4, 16
construction, R23.4
controlled-atmosphere storage, R23.3
controls, R21.10
design
building configuration, R23.1
initial building considerations, R23.1
location, R23.1
shipping and receiving docks, R23.3
single-story structures, R23.2
specialized storage facilities, R23.3
stacking arrangement, R23.2
utility space, R23.3
freezers, R23.10
insulation, R23.12
load calculations, R24.1
refrigerated rooms, R23.4
refrigeration systems
condensate drains, R23.9
defrosting, R23.9
fan-coil units, R23.9
multiple installations, R23.10
unitary, R23.7
valves, R23.9
sanitation, R21.10
temperature pulldown, R23.15
vapor retarders, R23.5, 12
Refrigeration, F1.16. (See also Absorption; Adsorption)
absorption cycle, F2.13
adsorption cycle, F2.20
air coolers, forced-circulation, R14.1
air transport, R27.3, 5
ammonia systems, R2
compressors, R2.1
controls, R2.15
converting systems, R2.21
equipment, R2.1
liquid recirculation (overfeed), R2.21
lubricant management, R2.18
multistage systems, R2.19
piping, R2.14
safety, R2.26
system selection, R2.19
two-stage screw compressor, R2.20
valves, R2.18
vessels, R2.11
autocascade systems, R48.1
azeotropic mixture, F2.6
beverage plants, R39.11
breweries, R39.3
carbon dioxide systems, R3.1
cascade systems, R48.4
chemical industry, R46.1, 2, 5
coefficient of performance (COP), F2.3, 14
compression cycles
Carnot cycle, F2.6, 7
Lorenz cycle, F2.9
multistage, F2.10
zeotropic mixture, F2.10
concrete, R45.1
condensers, cascade, R5.1
food
eggs and egg products, R34.1
fish, R32.1
vegetables, R37.1
food processing facilities, R40.1
banana ripening rooms, R36.5
control of microorganisms, R22.3
meat plants, R30.1
food service equipment, R16
fruits, fresh, R35.1, R36
halocarbon systems, R1
accessories, R1.29
charge minimization, R1.36
heat exchangers, R1.29
lubricant management, R1.16
refrigerant receivers, R1.28
subcoolers, R1.30
valves, R1.6
heat reclaim, service water heating, A50.11
ice rinks, R44.1
insulation, R10.1
liquid overfeed systems, R4.1
loads, R24.1; R40.3
low-temperature
cascade systems, R48.3
core transfer, R48.9
material selection, R48.6
Schneider system, R23.7
Schools
air conditioning, A7.2
service water heating, A50.23

elementary, A50.11
high schools, A50.12, 18
Seasonal energy efficiency ratio (SEER) unitary equipment, S49.6
Security. See Chemical, biological, radiological, and explosive (CBRE) incidents
Seeds, storage, A25.12
SEER. See Seasonal energy efficiency ratio (SEER)
Seismic restraint, A48.52; A55.1
anchor bolts, A55.7
design, A55.1
design calculations
examples, A55.8–14
static analysis, A55.2, 3
duct construction, S19.12
dynamic analysis, A55.2
installation problems, A55.14
snubbers, A55.8
terminology, A55.2
weld capacities, A55.8
Semivolatile organic compounds (SVOCs), F10.4, 12; F11.15
Sensors
automatic controls, F7.9, 10
location, A47.21
Separators, lubricant, R11.23
Service water heating, A50
combined heat and power (CHP), A33.1
commercial and institutional, A50.13
corrosion, A50.32
design considerations, A50.2
distribution system
for commercial kitchens, A50.7
manifolding, A50.8
piping, A50.3
pressure differential, A50.3
return pump sizing, A50.6
two-temperature service, A50.7
geothermal energy, A34.8
indirect, A50.10, 26
industrial, A50.25
Legionella pneumophila, A50.31
pipe design, F22.23
requirements, A50.12
residential, A50.12
safety, A50.32
scale, A50.32
sizing water heaters
instantaneous and semi-instantaneous, A50.27
storage heaters, A50.12, 15
solar energy, A50.13, 17, 26; A50.10
steam, S11.1
system planning, A50.2
thermal storage, S51.17
water heating equipment
placement, A50.34
sizing, A50.12, 27
types, A50.8
water quality, A50.32
Sizing water heaters
corrosion, A50.32
safety, A50.32
residential, A50.12
requirements, A50.12
pipe design, F22.23
Legionella pneumophila
industrial, A50.25
indirect, A50.10, 26
geothermal energy, A34.8
solar energy, A50.13, 17, 26; A50.10
steam, S11.1
system planning, A50.2
thermal storage, S51.17
water heating equipment
placement, A50.34
sizing, A50.12, 27
types, A50.8
water quality, A50.32
Sizing water heaters
instantaneous and semi-instantaneous, A50.27
storage heaters, A50.12, 15
solar energy, A50.13, 17, 26; A50.10
steam, S11.1
system planning, A50.2
thermal storage, S51.17
water heating equipment
placement, A50.34
sizing, A50.12, 27
types, A50.8
water quality, A50.32
SES. See Subway environment simulation (SES) program
Shading
devices, indoor, F15.38
fenestration, F15.3
Ships, A13
air conditioning
air distribution, A13.2, 4
to controls, A13.3, 4
design criteria, A13.1, 3
equipment selection, A13.2, 3
systems, A13.2, 4
cargo holds, R26.2
cargo refrigeration, R26.1
coils, A13.4
ducts, A13.3
fish freezing, R26.8
fish refrigeration
icing, R26.7; R32.1
refrigerated seawater, R26.8; R32.2
merchant, A13.1
nautral surface, A13.3
refrigerated stores, R26.4
reduction systems, R26.1
regulatory agencies, A13.3
Shooting ranges, indoor, A9.8
Short-tube restrictors, R11.31
Silica gel, S24.1, 4, 6, 12
Single-duct systems, all-air, S4.11
SIR. See Savings-to-investment ratio (SIR)
Skating rinks, R44.1
Skylights, and solar heat gain, F15.21
Slab heating, A50
Slab-on-grade foundations, A50.31
Slab heating
fire management, A53.16
fire and smoke dampers, A53.2
extraordinary incidents, A53.23
fire and smoke dampers, A53.2
fire management, A53.1
hospitals, A8.5
pressurization, A53.6, 8
rapid-transit systems, A15.14
road tunnels, A15.9
smoke movement, A53.3
buoyancy, A53.4, 6
elevator piston effect, A53.5
elevation, A53.4
forced ventilation, A53.5
stack effect, A53.3
wind, A53.5
stairwells
analysis, A53.9
compartmentation, A53.9
open doors, A53.12
pressurized, A53.8
tenability systems, A53.22
test, A53.22
weather data, A53.3
zones, A53.15
Snow-melting systems, A51
back and edge heat losses, A51.7, 8
control, A51.10
electric system design
constant wattage systems, A51.15
electrical equipment, A51.13
gutters and downspouts, A51.17
heat flux, A51.13
idling, A51.18
heating elements, A51.13
infrared systems, A51.16
installation, A51.16
mineral insulated cable, A51.13
free area ratio, A51.1
freeze protection systems, A51.10, 18
heat balance, A51.1
heating requirement
annual operating data, A51.8
heat flux equations, A51.2
hydronic and electric, A51.1
load frequencies, A51.3
surface size, A51.7
transient heat flux, A51.7
weather data, A51.3
wind speed, A51.7
hydronic system design components, A51.10
controls, A51.13
fluid header, A51.12
heat transfer fluid, A51.10
piping, A51.11
pump selection, A51.13
thermal stress, A51.13
operating costs, A51.10
slab design, hydronic and electric, A51.8
snow detectors, A51.10
Snubbers, seismic, A55.8
Sodium chloride brines, F31.1
Soft drinks, R39.10
Software
automated fault detection and diagnosis (AFDD), A61.4
antispyware, A40.2
custom programming, A40.4
development tools, A40.4
energy analysis, F19.5
firewall, A40.2
graphics, A40.3
HVAC, A40.9
readymade, A40.4
road tunnel, A15.3
terminology, A40.2
utilities, A40.2, 16
Soils. (See also Earth) stabilization, R45.3, 4
temperature calculation, S12.16
thermal conductivity, F26.13; S12.15
Solar energy, A35; S37.1 (See also Solar heat gain; Solar radiation)
active systems, A35.15, 17, 20
I.33

Composite Index

airflow, A35.26
collectors, A35.5, 6, 11, 25; S37.3
array design, A37.7
concentrating, A35.7
construction, S37.6
design and installation, A35.25
efficiency, A35.10
flat plate, A35.5
module design S37.6
mounting, A35.24
performance, A35.9; S37.9
selection, S37.10
testing, S37.10
types, S37.3
combi systems, A35.1, 17
constant, A35.1
control, A35.25, 27; S37.17
automatic temperature, S37.17
differential temperature, S37.17
hot-water dump, S37.19
OVERtemperature protection, S37.18
cooling systems, A35.15, 18, 27
absorption refrigeration, A35.15; S37.4, 10
sizing, A35.20
types, A35.15
design, installation, operation checklist, A35.25
design values, solar irradiation, A35.3
domestic hot water, A35.13, 26
equipment, S37.1
f-Chart method, A35.21
freeze protection, A35.24; S37.3, 19
heat exchangers, A35.11; S37.15
external, S37.16
freeze protection, S37.19
internal, S37.16
performance, S37.17
requirements, S37.15
heating systems, A35.15; S51.3
active, A35.15, 17
air, S37.2, 8, 11
components, A35.11
control, A35.12
design, S37.2
direct circulation, A35.13; S37.3
hybrid, A35.16
indirect, A35.14; S37.3
integral collector storage systems, A35.14; S37.4
liquid, S37.2, 7, 11
passive, A35.15
pool heating, A35.15
recirculation, A35.15
residential, A1.4
sizing, A35.20
thermosiphon, A35.13
heat pump systems, S9.4
hybrid systems, A35.16
hydraulics, A35.26
installation, A35.24
irradiation, A35.3; F14.8
maintenance, A35.25
overheat protection, A35.25
passive systems, A35.15, 16, 22
photovoltaic (PV) systems, A35.27; S37.19
quality and quantity, A35.1
radiation at earth’s surface, A35.3
radiative cooling, A35.16
safety, A35.25
service water heating systems, A35.13, 18, 26;
A50.10; S51.3
sizing heating and cooling systems, A35.19
solar angles, A35.1
solar-combi systems, S37.1
solar time, A35.2
spectrum, A35.3
start-up procedure, A35.25
thermal storage systems, A35.11, 26
short circuiting, S37.14
sizing, S37.15
time, A35.2
types, S37.14
uses, A35.26
Solar heat gain, F15.14; F18.16
calculation, F15.19, 32
coefficient, F15.19
residential load calculations, F17.9
roof overhangs, F15.34
skylights, F15.21
Solar-load ratio (SLR), A35.22
Solar-optical glazing, F15.14
Solar radiation, F14.8; F15.14
daylighting, F15.1
flux, F15.33
optical properties, F15.16
Solid fuel
burners, S31.17
coke, F28.9
coking, F28.13
Solvent drying, constant-moisture, A30.7
Soot, F38.20
Sorbents, F32.1
Sorption isotherm, F25.10; F26.20
Sound, F8. (See also Noise)
air outlets, S20.2
attenuators, A48.18
bandwidths, F8.4
combustion, F28.19
compressors, A48.15
combined analysis, A40.12
control, A48; F8
acoustical design of HVAC systems, A48.1
air handlers, S4.10
A-weighted sound level (dBA), F8.16
barriers, A48.33; F8.11
ceiling sound transmission, A48.38
chillers, A48.15
clean spaces, A18.24
combustion turbines, S7.21
cooling towers, S40.14
data reliability, A48.1
design, A48.8, 38; F8.15
ducts, A48.12
sound attenuation, A48.18; F8.13
enclosures, F8.13
engines, S7.16
gas test facilities, A17.4
equipment sound levels, A48.8
fans, A48.10
fume hood duct design, A48.34
hotels and motels, A6.8
insertion loss, A48.21
justice facilities, A9.6, 7
mechanical equipment rooms, A48.35
noise criterion (NC) curves, F8.16
outdoor equipment, A48.33
piping, A48.50, 51
places of assembly, A5.1
return air system sound transmission, A48.38
rooftop air handlers, A48.11
room criterion (RC) curves, F8.16
room sound correction, A48.30
standards, A48.55
terminology, F8.11
troubleshooting, A38.20
variable-air-volume (VAV) systems, A48.10
cooling towers, S40.14
ducts, A48.12
loudness, F8.14
measurement, F37.29
basics, F8.6
instrumentation, A38.19; F8.4
level meter, F8.4
power, F8.2
pressure, F8.1
speed, F8.2
terminology
bandwidths, F8.8
controlling, F8.11
decibel, F8.1
frequency, F8.2
frequency spectrum, F8.15
intensity, F8.2
level, F8.1
loudness, F8.14
pressure, F8.1
quality, F8.14
wavelength, F8.2
testing, A38.19
time averaging, F8.4
transmission, A38.20
humidity affecting, S22.2
paths, F8.9
troubleshooting, A38.20
typical sources, F8.10
unit heaters, S28.6
Soybeans, drying, A25.7
Specific heat
equation, F2.5
foods, R19.7
liquids, F33.2
materials, F33.1
Split-flux method, F19.26
Spot cooling
evaporative, A52.12
industrial environments, A31.4, 6; A52.12
makeup air units, S28.8
mines, A29.10
Spot heating, A54.4
Stack effect
duct design, F21.2
multizone air flow modeling, F13.14
smoke movement, A53.3
Stadiums, A5.4
Stairwells
smoke control, A53.8
stack effect and infiltration, F16.7
Standard atmosphere, U.S., F1.1
Standards, R51. (See also Codes)
air cleaners, S29.3, 5
air conditioners, S49
packaged terminal, S50.7
room, S50.4
unitary, S49.6, 7

I.34 2018 ASHRAE Handbook—Refrigeration

Steam systems

steam

static electricity and humidity

Steam

humidity, S4.8

air distribution, A5.7.1

boilers, S32.6

chiller, S57.19

chimneys, S39.2

dew points, S35.30, 34

duct construction, S19.1

filters, S2.9.3

furnaces, S33.10

green buildings, F16.1

heaters, S4.6.7

heat pumps, S4.9

packaged terminal, S50.7

unitary, S49.6.7

water-source, S49.13

indoor air quality (IAQ), F10.11

liquid chillers, S43.4

makeup air units, S28.9

motors, S45.2.16

nuclear facilities, A28.12

piping, S12.27; S46.6

pipe fittings, F22.18; S46.2

pressures, S11.4

piping, S11.5

return pipes, S12.27

drainage and return, S12.14

inlet orifices, S11.13

Hartford loop, S11.3

terminal equipment, S11.6

temperature control, S11.13

terminal equipment

forced-convection, S11.11

natural convection, S11.11; S36.1

radiant panel, S11.11

turbines, S7.24

traps, S11.7

vacuum return for, S11.12

wall, S11.12

valves

pressure-reducing, S11.9

safety, S11.10

temperature control, S11.13

water, S11.12

Steam traps

Stevens’ law

Stefan-Boltzmann equation

Steam traps

two-pipe systems, S11.12

unit

heaters, S8.8

ventilators, S8.1

vacuum return, S11.12

Stokers

Storage

apples, A52.14; R35.1.2

citrus, A52.14; R35.6.3

cold, S11.16

condensed gases, A16.8

controlled-atmosphere, S24.10

cryogenic fluids, R47.26

desiccant dehumidification, S24.10

high-pressure, S24.13

design, refrigerated-facility, S23.1

eggs, S34.5

farm crops, A25.9

fish

fresh, S32.3

frozen, S32.7

flowers, cut, R21.12

food, canned or dried, R21.11

fruit

dried, R42.7

fresh, S35.1

furs and fabrics, R21.11

ice, R43.3

meat products, S30.16

milk, S33.4

nursery stock, R21.12

nuts, R42.7

photographic materials, A22.3.4

unprocessed, A22.1

potatoes, A52.14

poultry products, R31.10

refrigerated-facility design, R23.1

seeds, A25.12; R21.13

tanks, secondary coolant systems, R31.2

vegetables, R37.3

dried, R42.7

ventilation, F21.6

wine, R39.10

wood products, A26.2

Stoves, heating, S34.5

Stratification

of air

in places of assembly, A5.2

in plenums, A38.2

of water, in thermal storage tanks, S51.4

Stroboscopes, F37.28

Subcoolers

condensers, S39

evaporative, S39.17

water-cooled, S39.5

two-stage, R1.30

Subway environment simulation (SES) program, A15.3

Subway systems. (See also Mass-transit systems)

car air conditioning, A11.5

station air conditioning, A15.14

ventilation, A15.11

Suction risers, R2.24

Sulfur content, fuel oils, F28.9

Superconductivity, diamagnetism, R47.5

Supermarkets. See Retail facilities, supermarkets

Supertall buildings, A4.1

Supervisory control, A42

air-handling systems

distribution, A42.1

sequencing, A42.42

set point reset, A42.43

boilers, A42.39

building temperature set point

night setback recovery, A42.43

precooling, A42.44

chilled-water pumps, A42.12, 13, 24

chillers

load distribution, A42.16

sequencing, A42.16, 19

computerized, A40.17

cooling tower fans, A42.8, 26

cool thermal storage systems, A42.29

ice storage control optimization, A42.7

forecasting energy requirements, A42.36

optimization methods, A42.4

Supply air outlets, S20.2. (See also Air outlets)

Surface effect. See Coanda effect

Surface transportation

automobiles, A10.1

buses, A11.2

fixed-guide vehicles, A11.7

rail cars, A11.5

Surface water heat pump (SWHP), A34.12

heat exchanger, S49.13

Sustainability, F16.1; F35.1; S49.2

and air, noise, and water pollution, F35.4

airtightness, F16.26

chlorofluorocarbon (CFC) production, F35.5

Notes on piping and air, A21.5

cold, S20.2. (See also Air outlets)

building temperature set point

night setback recovery, A42.43

precooling, A42.44

chilled-water pumps, A42.12, 13, 24

chillers

load distribution, A42.16

sequencing, A42.16, 19

computerized, A40.17

cooling tower fans, A42.8, 26

cool thermal storage systems, A42.29

ice storage control optimization, A42.7

forecasting energy requirements, A42.36

optimization methods, A42.4

Supply air outlets, S20.2. (See also Air outlets)

Surface effect. See Coanda effect

Surface transportation

automobiles, A10.1

buses, A11.2

fixed-guide vehicles, A11.7

rail cars, A11.5

Surface water heat pump (SWHP), A34.12

heat exchanger, S49.13

Sustainability, F16.1; F35.1; S49.2

and air, noise, and water pollution, F35.4

airtightness, F16.26

chlorofluorocarbon (CFC) production, F35.5
Composite Index

climatic, F35.5
design process, F35.8
energy resources, F35.2, 8
factors impacting, F35.2
global warming, F35.5
and green design, F35.1
greenhouse gas (GHG) emissions, F35.5
infiltration, F16.1
in integrated building design, A58.8
material resources, F35.3
ozone, F35.5
renewable energy, F35.2
and solid and liquid waste disposal, F35.4
standards of care, F35.6
and solid and liquid waste disposal, F35.4
water use, F35.3
waste, F35.4

SWHP. See Surface water heat pump (SWHP)

Swimming pools. (See also Natatoriums)

dehumidifiers, S25.6
solar heating, A35.15
water chemistry, A5.8
water heating for, A50.24
Swine, recommended environment, A24.7
Symbols, F38

Synthetic vitreous fibers (SVFs), F10.6

TABS. See Thermally activated building systems (TABS)

Tachometers, F37.28

Tall buildings, A4
codes, A4.20
HVAC design process, A4.8
hydrostatic considerations, A4.17
life safety, A4.20
low-temperature air VAV systems, A4.10
megatall buildings, A4.1
refrigeration machine location, A4.17
reverse stack effect, A4.1
stack effect, A4.1

elevator doors, A4.2
heating problems, A4.2
manual doors, A4.2
minimizing, A4.6
smoke and odor propagation, A4.2
standards, A4.20
supertall buildings, A4.1
system selection, A4.9
underfloor air distribution (UFAD) systems, A4.10
vertical transportation, A4.19
water distribution systems, A4.17

 Tanks, secondary coolant systems, R13.2

TDD. See Tubular daylighting devices

Telecommunication facilities, air-conditioning systems, A19.1

Temperature
ambient, A54.1
cchangeover, S5.12, 13
dew-point, F1.12
dry-bulb, adjusted, A54.1
effective, A52.11; F9.21
humid operative, F9.21
mean radiant, A54.1; F9.11; F37.32; S6.1
measurement, F37.4
odors affected by, F12.2
operative, A54.1
plane radiant, F9.11; F37.32
radiant asymmetry, F9.12
sensors, F7.9
sol-air, F18.25
and task performance, F9.14
vertical differences, F9.15
wet-bulb, F1.12; F9.22
wet-globe, F9.23
wind chill index, F9.23

Temperature-controlled transport, R25.1

Temperature index, S22.3

Terminal units. [See also Air terminal units (ATUs)], A47.13, F19.16; S20.7
boxes
reheat, A47.13
variable-air-volume (VAV), A48.11
ceiling, S20.8
chilled beams, S5.8
dual-duct, S20.8
fan-coil, S5.6
fan-powered, A47.13; S20.8
induction, A47.13
induction units, S5.10
radiant floor heat, S5.9
radiant panels, S5.9
reheat, S20.8
steam systems, S11.11
unit ventilators, S5.6
VAV box, F19.17

Terminology, of refrigeration, R50

Termination. See Chemical, biological, radiological, and explosive (CBRE) incidents

TES. See Thermal energy storage (TES)

Testing
air cleaners, A46.17; S29.3
air conditioners, packaged terminal, S50.7
air leakage, F16.15
clean spaces, A18.9
compressors
centrifugal, S38.39
positive-displacement, S38.5
condensers, S39
evaporative, S39.19
water-cooled, S39.7
cooling towers, A38.15; S40.18
desiccant dehumidification for, S24.12, 13
duct efficiency, S10.10
fans, S21.4
filters, air, S29.3
heaters, S34.7
heat pumps
packaged terminal air conditioners (PTACs), S50.7
water-source, S49.13
industrial exhaust systems, A32.9
radiant heating system, A54.7
refrigeration systems
compressor, R8.5
leak detection, R8.4
performance testing, R8.5
refrigerators, household, R17.9
smoke control systems, A53.23
solar collectors, S37.10
sound
instrumentation, A38.19
procedure, A38.19
transmission problems, A38.20, 24
vibration equipment, A38.22
instrumentation, A38.21
isolators, A38.22; A48.53
piping transmission, A38.24
procedure, A38.21

Testing, adjusting, and balancing. (See also Balancing)
air diffusers, A38.2
air distribution systems, A38.3
reporting results, A38.6
airflow measurement, A38.2
balancing procedure, A38.5
central plant chilled-water systems, A38.14
cooling towers, A38.15
design considerations, A38.1
dual-duct systems, A38.4
duct design, F21.22
energy audit field survey, A38.17
fluid flow measurement, A38.12
HVAC systems, A38.1
hydronic systems, A38.6
heat transfer vs. flow, A38.6, 7
water-side balancing
instrumentation, A38.8
proportional method, A38.10
rated differential method, A38.11
sizing balancing valves, A38.8
temperature difference method, A38.9
total heat transfer method, A38.11
induction systems, A38.6
instruments, A38.3
sound transmission problems, A38.20, 24
steam distribution systems, A38.15
temperature controls, A38.16
terminology, A38.1
variable-air-volume (VAV) systems, A38.6

TETD/TA. See Total equivalent temperature differential method with time averaging (TETD/TA)

TEWL. See Total equivalent warning impact (TEWI)

Textile processing plants, A21
air conditioning design
air cleaning, A21.5
air distribution, A21.6
collector systems, A21.5
health considerations, A21.7
energy conservation, A21.7
fabric making, A21.3
fiber making, A21.1
yarn making, A21.2

TFM. See Transfer function method (TFM)

Theaters, A5.3

Thermal bridges, F25.8

Thermal comfort. See Comfort

Thermal displacement ventilation (TDV), F19.17

Thermal emittance, F25.2

Thermal energy storage (TES), S8.6; S51
applications, S51.23
benefits, S51.3
building mass, S51.19
combined heat and power (CHP), S7.39
commissioning, S51.35
controls, S51.1

R = 2018 Refrigeration
F = 2017 Fundamentals
S = 2016 HVAC Systems and Equipment
A = 2015 HVAC Applications

See also Chemical, biological, radiological, and explosive (CBRE) incidents

See also Natural ventilation

See also Fire alarm systems

See also HVAC systems

See also Indoor air quality (IAQ)

See also Water systems
Thermal zones, F19.14

Thermists, R11.4
Thermodynamics, F2.1
absorption refrigeration cycles, F2.13
bubble point, F2.6
compressed liquid, F2.2
compression refrigeration cycles, F2.6
cooling and freezing of foods, R20.1
cycle, F2.2
dew point, F2.6
dry saturated vapor, F2.2
enthalpy, F2.5
entropy, F2.5
equations of state, F2.4
laws, F2.2
liquid, F2.2
multicomponent systems, F2.5
principles, F2.1
process, F2.2
properties, F2.2
calculation, F2.4
zeotropic mixture, F2.10
pure substance, F2.2
of refrigerants, F30
refrigeration cycle analysis, F2.3
saturated liquid or vapor, F2.2
subcooled liquid, F2.2
superheated vapor, F2.2
terminology, F2.1
vapor, F2.2

Thermometers, F37.5
black globe, A54.7
error sources, F37.5
infrared
radiometers, A54.7; F37.9
thermography, F37.9
liquid-in-glass, F37.5
resistance
semiconductors, F37.6
thermocouples, F37.7

Thermopile, F7.4; F37.9; R45.4

Thermosiphons
heat exchangers, S26.16
solar energy systems, A35.13

Thermostats
heater control, S34.2, 4
steam systems, S11.7

Thermowell, F11.7

Thermal energy storage (TES), F15.30

Thermal-network method, F19.11

Thermal properties, F26.1
air spaces, F26.13
of food, R19
insulation materials, F26.1

Thermal resistivity, F25.1

Thermal storage, See Thermal energy storage (TES)

Thermal transmission data, F26

Thermal transmission, R19.19

Transmittance, thermal, F25.2
of flat building component, F25.7
thermal bridging, F25.8

Transmitters, F7.9, 10

Transportation centers
commercial and public buildings, A3.6
ventilation, A15.11, 24

Transport properties of refrigerants, F30

Traps
ammonia refrigeration systems
liquid level indicators, R2.13
purge units, R2.14
suction accumulator, R2.12
vertical suction, R2.12
steam systems, S11.7
thermostatic, S11.7

Traps, refrigerated, R25. (See also Cargo containers)

Tubular daylighting devices (TDDs), F15.30

Tuning automatic control systems, F7.19

Tunnels, vehicular, A15.1
fires, A15.3
railroad, A15.16
rapid transit, A15.11
road, A15.3

Turbines, S7
benefits, S8.2
chiller systems, S8.5
absorption, S8.6
mechanical, S8.6
thermal energy storage (TES), S8.6
combustion, S7.18, 45; S8.1
Brayton cycle, S7.19
components, S7.19
controls, S7.21
dual-shaft, S7.19
emissions, S7.21
evaporative cooling applications, S8.3
exhaust gas systems, S7.21
fuels, S7.20
heat recovery, S7.37
inlet cooling, S8
instruments, S7.21
lubrication, S7.21
maintenance, S7.21
noise control, S7.21
performance, S7.19
single-shaft, S7.19
split-shaft, S7.19
starting systems, S7.21
thermal output, S7.33
engine test facilities, gas, A17.3
expansion, S7.31; S43.1
fogging, S8.4
gas, S7.19
hydraulic, S25.13
microturbines, S7.18
steam
applications, S7.46
axial flow, S7.24
heat recovery, S7.37
maintenance, S7.30
wet compression, S8.4
wetted media, S8.4
Composite Index

I.37

Ultraviolet (UV) lamp systems

Valves, S46. (See also Regulators)
actuators, S47.4
ammonia refrigeration systems control, R2.18
relief, R2.18
solenoid, R2.18
stop, R2.18
authority, S47.8
automatic, S47.4
actuators, S47.4
control, F7.4; S47.6
expansion, S23.2
flow characteristics, S47.8
sizing, S47.9
types, S47.6
backflow-prevention devices, S47.14
balancing, S47.10
sizing, S47.8
body styles, S47.2
cavitation, S47.2
check, R11.22; S47.13
compressors, reciprocating, S38.10
condensing-pressure-regulating, R11.15
constant-pressure expansion, R11.14
control valves, F3.8
coefficient, F3.9
discharge bypass, R11.16
expansion
constant-pressure, R11.11, 14
electric, R11.10
thermostatic, R11.5
float control, R11.17
flow coefficient, S47.2
flow-limiting, S47.8
friction losses, F22.6, 26
geothermal energy, A34.7
halocarbon refrigeration systems equivalent lengths, R1.6
float control, R1.22
hydronic systems control, S13.16
safety relief, S13.21
manual, S47.2
materials, S47.1
multiple-purpose, S47.11
pressure drop, F22.6, 28
pressure-independent, S47.7
pressure-reducing makeup water, S47.13
pressure relief, S47.11
safety, R11.22
ratings, S47.1
refrigerant control, R11.5
regulating and throttling, R11.11
safety, S47.11
solar energy systems, A35.12
solenoid, R11.18; S47.6
steam system, S11.9, 13
stop-check, S47.14
suction pressure regulating, R11.14
thermostatic, S11.13; S47.12
water hammer, S47.2
zone control, S11.13
Vaporization systems, S8.6
liquefied natural gas (LNG), S8.6
Vapor pressure, F27.8; F33.2
Vapor retarders, jackets, F23.12
Variable-air-volume (VAV) systems all-air
dual-duct, S4.12
single-duct, S4.11
versus constant air volume (CAV), A16.11
central control, A42.1, 3, 43
diversity, A38.5
dual-duct systems, S4.12
duct static pressure control, A47.9
fan selection, A48.10
sequencing, A47.10
unstable operation, A47.10
humidity control, S47.22
museums, galleries, and libraries, A33.19
pressure-dependent systems, S43.4
pressure-independent systems, S43.4
single-duct, S4.11
sound control, A48.10
static pressure control, A38.4
dynamic pressure reset, A42.43
system types, A38.5
terminal boxes, A47.13; A48.11
testing, adjusting, balancing, A38.4
variable-speed drives, S45.14
Variable-frequency drives, S45.14
and bearing currents, S45.9
carrier frequencies, S45.17
conductor impedance, S45.15
control, S45.14
generator-powered, 18
generators, S45.18
harmonic disturbances, S45.17
motors, S45.16
impedance, S45.15
pulse width modulation, S45.15
transistors, S45.14
voltage waveform distortion, S45.17

Variable-refrigerant flow (VRF), S18.1; S49.1, 14
applications, S18.2
commissioning, S18.15
design, S18.9
life-cycle analysis tools, S18.3
life-cycle operating costs, S18.3
modeling, S18.8
multisplit system, S18.2
operation, S18.5
standards, S18.3

Variable-speed drives. See Variable-frequency drives

VAV. See Variable-air-volume (VAV) systems

Vegetables, R37
air transport, R27.1
cooling, R28.1
deterioration rate, R21.1
display refrigerators, R15.8
dried, storage, R42.7
frozen, R40.3
refrigeration, R37.1
storage, R37.3
thermal properties, R19.1
transport, R37.2

Vehicles
AC- or DC-powered, transit, A11.6
design, R25.1
equipment attachment provisions, R25.3
sanitation, R25.3
<table>
<thead>
<tr>
<th>Topic</th>
<th>2018 ASHRAE Handbook—Refrigeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature-controlled, R25.1</td>
<td>use, R25.11</td>
</tr>
<tr>
<td>Vending machines, R16.5</td>
<td>Ventilation, F16</td>
</tr>
<tr>
<td>age of air, F16.5</td>
<td>air change effectiveness, F16.5</td>
</tr>
<tr>
<td>airflow, F16.3</td>
<td>animal environments, A24.5</td>
</tr>
<tr>
<td>animal environments, A24.5</td>
<td>bus garages, A15.22</td>
</tr>
<tr>
<td>cargo containers, R25.6</td>
<td>Dilution, A31.2</td>
</tr>
<tr>
<td>Vena contracta</td>
<td>roof, A31.4</td>
</tr>
<tr>
<td>Vending machines</td>
<td>unit capacity, S28.3</td>
</tr>
<tr>
<td>Ventilation</td>
<td>control, A47.16; S28.3</td>
</tr>
<tr>
<td>age of air, F16.5</td>
<td>location, S28.1</td>
</tr>
<tr>
<td>air change effectiveness, F16.5</td>
<td>selection, S28.1</td>
</tr>
<tr>
<td>aircraft, A12.6, 15</td>
<td>types, S28.1</td>
</tr>
<tr>
<td>air change rate, F16.4, 13</td>
<td>Vending, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>airflow, F16.3</td>
<td>Vibration, F8.17</td>
</tr>
<tr>
<td>animal environments, A24.5</td>
<td>compressors</td>
</tr>
<tr>
<td>bus terminals, A15.24</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>cargo containers, R25.6</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>dilution, A31.2; A46.7</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>displacement, S4.14</td>
<td>Verification, of airflow modeling, F13.9, 10, 17</td>
</tr>
<tr>
<td>modeling, F19.17</td>
<td>Vesses, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>driving mechanisms, F16.13</td>
<td>Vibration, F8.17</td>
</tr>
<tr>
<td>engine test facilities, A32.1</td>
<td>compressors</td>
</tr>
<tr>
<td>forced, F16.1</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>garages, residential, F16.21</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>gaseous contaminant removal, A46.7</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>greenhouses, A24.13</td>
<td>Vessels, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>health care facilities, A8.1</td>
<td>Vibration, F8.17</td>
</tr>
<tr>
<td>hospitals, A8.2</td>
<td>compressors</td>
</tr>
<tr>
<td>nursing facilities, A8.15</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>outpatient, A8.14</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>hybrid, F16.15</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>indoor air quality (IAQ), F16.11</td>
<td>Vibration, F8.17</td>
</tr>
<tr>
<td>industrial environments, A31</td>
<td>compressors</td>
</tr>
<tr>
<td>exhaust systems, A32.1</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>kitchens, A33</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>laboratories, A16.8</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>latent heat load, F16.12; F17.6</td>
<td>Vibration, F8.17</td>
</tr>
<tr>
<td>leakage function, F16.15</td>
<td>compressors</td>
</tr>
<tr>
<td>mechanical, F16.1; F24.8</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>mines, A29</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>multiple spaces, F16.30</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>natatoriums, A5.7</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>natural</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>airflow, F16.1, 13</td>
<td>compressors</td>
</tr>
<tr>
<td>guidelines, F16.14</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>modeling, F19.24</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>stack effect, F16.14</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>wind, F16.13; F24.8</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>nuclear facilities, A28.5</td>
<td>compressors</td>
</tr>
<tr>
<td>odor dilution, F12.5</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>power plants, A27.4</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>railroad tunnels, A15.16</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>rapid-transit systems, A15.11</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>residential, F16.18</td>
<td>compressors</td>
</tr>
<tr>
<td>road tunnels, A15.3, 5</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>roof ventilators, A31.4</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>security concerns, A59.8</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>sensible heat load, F16.12; F17.6</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>ships, A13.1</td>
<td>compressors</td>
</tr>
<tr>
<td>shooting ranges, indoor, A9.8</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>standards, F16.19</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>tear gas and pepper spray, A9.3</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>terminology, F16.1</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>thermal loads, F16.11</td>
<td>compressors</td>
</tr>
<tr>
<td>tollbooths, A15.26</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>wind effect on, F24.8</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>Ventilators, roof, A31.4</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>unit</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>capacity, S28.3</td>
<td>compressors</td>
</tr>
<tr>
<td>Visibility, F3.1</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>fuel oils, F28.8</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>lubricants, R12.8</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>modeling, F13.10</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>moist air, F1.19</td>
<td>compressors</td>
</tr>
<tr>
<td>Volatile organic compounds (VOCs), F10.11</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>contaminants, A46.3</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>Voltage, A56.1</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>imbalance, S45.1</td>
<td>Vibration, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>utilization, S45.1</td>
<td>compressors</td>
</tr>
<tr>
<td>Volume ratio, of compressors</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>rotary vane, S38.14</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>single-screw, S38.17</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>twin-screw, S38.22</td>
<td>VRF, See Variable refrigerant flow (VRF)</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>Ventilation, F16</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>Vending, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>compressors</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>Vending, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>compressors</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>single-screw, S38.19</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>Vending, ammonia refrigeration systems, R2.11</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>compressors</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>centrifugal, S38.34</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>positive-displacement, S38.5</td>
</tr>
<tr>
<td>Walls, glass block, F15.32</td>
<td>single-screw, S38.19</td>
</tr>
</tbody>
</table>
Composite Index

sizing, A50.12, 27
solar energy, A50.10
storage, A50.8, 10, 12
terminology, A50.1
usable hot-water storage, A50.33
waste heat recovery, A50.10

Water horsepower, pump, S44.7

Water/lithium bromide absorption
- components, R18.1
- control, R18.11
- double-effect chillers, R18.5
- maintenance, R18.12
- operation, R18.10
- single-effect chillers, R18.3
- terminology, R18.1

Water systems
- air elimination, S13.21
- antifreeze, S13.24
- precautions, S13.25
- capacity control, S13.13
- chilled-water, S13.1, 18
 - combined heat and power (CHP)
 - distribution, S7.44
 - district heating and cooling, S12.27
 - closed, S13.1, 2, S15.1
 - components, S13.2
 - condenser water, S14.1
 - closed, S14.4
 - once-through, S14.1
 - open cooling tower, S14.1
 - overpressure precautions, S14.4
 - systems, S14.1
 - water economizer, S14.4
 - control valve sizing, S13.16
- Darcy-Weisbach equation, S44.5
- district heating and cooling, S12.8
- dual-temperature (DTW), S13.1, 20
 - equipment layout, S13.23
- expansion tanks
 - functions of, S13.4, 11
 - sizing equations, S13.5
- fill water, S13.20
- four-pipe, S13.20
- freeze prevention, S13.23
- hot-water
 - boilers, S32.1
 - combined heat and power (CHP)
 - distribution, S7.44
 - low-temperature (LTW), S36.3
terminal equipment, S36.1
medium- and high-temperature, S15
air-heating coils, S15.6

boilers, S15.2
cascade systems, S15.5
circulating pumps, S15.5
control, S15.6
design, S15.2
direct-contact heaters, S15.5
direct-fired generators, S15.2
distribution, S15.6
expansion tanks, S15.6
heat exchangers, S15.6
 piping design, S15.6
pressurization, S15.3
precautions, S13.5
safety, S15.8
space heating, S15.6
thermal storage, S15.7
water treatment, S15.7

hot-water, S13.1
loads, S13.3
makeup, S13.20
open, S13.2, S14.1
pipe sizing, S13.23
piping, S13.12
water distribution, S13.6
pressure drop determination, S13.23; S44.5
pumps, S44.1
pump curves, S13.6; S44.4
pumping, S13.7; S44.12
standby pump, S13.8; S44.13
safety relief valves, S13.21
steam and, combined, S11.16
in tall buildings, A4.17
temperature classifications, S13.1
treatment, A49
turndown ratio, S13.4
two-pipe, S13.20
water horsepower, S44.7

Water treatment, A49
air washers, A49.18; S41.9
biological control, A49.11
Legionella pneumophilia, A49.14
boilers, A49.15
brine systems, A49.20
closed recirculating systems, A49.18
condensers, evaporative, S39.18
condenser water, S14.3
cooling towers, A49.11, 14; S40.16
corrosion control, A49.6, 18
 evaporative coolers, S41.9
fundamentals, A49.1
medium- and high-temperature systems, S15.7
nonchemical (physical), A49.12, 20
one-through systems, A49.18
open recirculating systems, A49.18
scale control, A49.4
sprayed-coil units, A49.18
steam and condensate systems, A49.17
terminology, A49.21
thermal storage, S51.6

Water vapor control, A44.6
Water vapor permeance/permeability, F26.12, 17, 18

Wind, (See also Climatic design information; Weather data)
data sources, F24.7
effect on chimneys, S35.3, 33
smoke movement, A53.5
system operation, F24.8
pressure, F24.4

Wind chill index, F9.23

Windows, (See also Fenestration)
aireakage, F15.53
solar gain, F15.14, 19
U-factors, F15.4, 7; F27.7

Wind restraint design, A55.15
minimum design wind load, A55.16

Wineries
- refrigeration, R39.9
temperature control
 fermentation, R39.9
 storage, R39.10
 wine production, R39.8

Wireless sensors, A61.6

Wood construction, and moisture, F25.10

Wood products facilities, A26.1
- evaporative cooling, A52.13
- process area, A26.2
- storage, A26.2

Wood pulp, A26.2

Wood stoves, S34.5

World Wide Web (WWW), A40.8

WSHP, See Water-source heat pump (WSHP)

WWW, See World Wide Web (WWW)

Xenon, R47.18

Zeolites, R18.10; R41.9; R47.13; S24.5. (See also Molecular sieves)