
ASHRAE STANDARDASHRAE STANDARD

ANSI/ASHRAE Addendum t
to ANSI/ASHRAE Standard 135-2008

BACnet®—A Data
Communication
Protocol for Building
Automation and
Control Networks
Approved by the ASHRAE Standards Committee on January 23, 2010; by the ASHRAE Board of Directors on
January 27, 2010; and by the American National Standards Institute on January 28, 2010.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which
the Standards Committee has established a documented program for regular publication of addenda or revi-
sions, including procedures for timely, documented, consensus action on requests for change to any part of
the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from
the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edi-
tion of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE,
Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (world-
wide), or toll free 1-800-527-4723 (for orders in US and Canada).

© Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

American Society of Heating, Refrigerating
and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE, Atlanta, GA 30329
www.ashrae.org

ASHRAE Standing Standard Project Committee 135
Cognizant TC: TC 1.4, Control Theory and Application

SPLS Liaison: Douglas T. Reindl

*Denotes members of voting status when the document was approved for publication

David Robin, Chair* Thomas Ertsgaard Robert L. Old, Jr.

Carl Neilson, Vice-Chair David M. Fisher Mark A. Railsback

Sharon E. Dinges, Secretary* James W. Ford Joseph R. Prokop

Donald P. Alexander* Craig P. Gemmill Alan D. Rein

Ron E. Anderson Jerald Griliches John I. Ruiz

Beauford W. Atwater Daniel P. Giorgis Carl J. Ruther

Donald S. Berkowitz Ira G. Goldschmidt Anil Saigal

Victor Boed John L. Hartman Ernest Senior

David J. Branson Winston I. Hetherington Gideon Shavit

Barry B. Bridges* David G. Holmberg Patrick F. Sheridan

Coleman L. Brumley, Jr. Richard Holtz David G. Shike

Ernest C. Bryant Anthony J. Icenhour Kim E. Shinn

Steven T. Bushby Bernhard Isler* Stephen V. Skalko

James F. Butler Robert L. Johnson Ted Sunderland

A. J. Capowski Stephen Karg* William O. Swan, III

C. Martel Chen William R. King Kevin A. Sweeney

John P. Cilia Simon Lemaire David B. Thompson*

Keith A. Corbett J. Damian Ljungquist* Daniel A. Traill

Jeffrey Cosiol James G. Luth Stephen J. Treado*

Troy Cowan John J. Lynch Danny J. Wahlquist, Jr.

Harsha M. Dabholkar Jerald P. Martocci J. Michael Whitcomb*

Robert A. Dolin Bertram W. Murphey David F. White

Tal Elyashiv H. Michael Newman Grant N. Wichenko

Dana R. Epperson Cherisse M. Nicastro Robert J. Zamojcin

ASHRAE STANDARDS COMMITTEE 2009–2010

Steven T. Bushby, Chair
H. Michael Newman, Vice-Chair
Robert G. Baker
Michael F. Beda
Hoy R. Bohanon, Jr.
Kenneth W. Cooper
K. William Dean
Martin Dieryckx
Allan B. Fraser
Katherine G. Hammack
Nadar R. Jayaraman
Byron W. Jones
Jay A. Kohler
Carol E. Marriott

Merle F. McBride
Frank Myers

Janice C. Peterson
Douglas T. Reindl

Lawrence J. Schoen
Boggarm S. Setty

Bodh R. Subherwal
James R. Tauby
James K. Vallort
William F. Walter

Michael W. Woodford
Craig P. Wray

Wayne R. Reedy, BOD ExO
Thomas E. Watson, CO

Stephanie Reiniche, Manager of Standards

SPECIAL NOTE
This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards
Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as “substantial agreement reached by
directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity.
Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this
standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.
ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project

Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all
must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project
Committees.

The Manager of Standards of ASHRAE should be contacted for:
a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER
ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and

accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components,
or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its
Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating
purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing
other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them,
and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied,
that the product has been approved by ASHRAE.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

[This foreword and the “rationale” on the following pages are not part of this standard. They are merely
informative and do not contain requirements necessary for conformance to the standard.]

FOREWORD

Addendum 135t to ANSI/ASHRAE Standard 135-2008 contains a number of changes to the current standard. These
modifications are the result of change proposals made pursuant to the ASHRAE continuous maintenance procedures and of
deliberations within Standing Standard Project Committee 135. The changes are summarized below.

135-2008t-1. Add XML data formats, p. 1.

In the following document, language added to existing clauses of ANSI/ASHRAE 135-2008 and addenda is indicated
through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are added, plain type
is used throughout.

SSPC 135 wishes to recognize Joel Bender for the help he provided in developing this addendum.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

 ii

135-2008t-1. Add XML data formats.

Rationale
A new standard way of representing building data will give BACnet new capabilities for standardized
communications between a wide range of applications. A definition for an XML syntax which can be used to
represent building data in a consistent, flexible and extensible manner is defined by this addendum in the form of
a new annex to the standard.

The Extensible Markup Language (XML) is a popular technology in the data processing and communications
worlds due to its ability to model a wide range of data and its ability to be transformed and extended. With this
new IT-friendly way of representing building data, BACnet will open up a range of possible new ways to share
data. XML can be used for exchanging files between systems, integrating buildings with energy utilities, and
expanding enterprise integration with richer Web services. Some of these new applications will be standardized
in future addenda to the standard based on the syntax defined here.

This XML syntax defined in this annex is expected to be used in a wide variety of ways. Specific uses may
require surrounding XML beyond that which is specified here, but this addendum defines the core data definition
and data representation for all of the intended uses.

This syntax is intended to be the core data representation for the following use cases:

a. An electronic version of a PICS document, consumable by workstations and other tools, to describe the

capabilities of a device.
b. An XML version of an EPICS, defining not only the capabilities of the device, but also including the complete

test database and other test-oriented data.
c. An "as built" description of a deployed device, distributed either as a separate file or as a File Object resident

in the device itself.
d. Descriptions of proprietary objects and properties and datatypes (in any of the above three uses). These

descriptions may be minimalistic, providing basic data sharing capabilities, or extremely rich, providing
complete descriptions of the meaning and usage of the data to enable a comprehensive user interface,
including the capability of providing such descriptions in multiple human languages.

e. An export format for tools and workstations to export or publish their knowledge of the arrangement and
configuration of a device or a complete system of devices and networks.

f. Web services that exchange complex or constructed data.

Addendum 135-2008t-1

[This Table of Contents is not part of the standard. It is provided as an aid to the reader.]

ANNEX X - XML DATA FORMATS (NORMATIVE) .. 1

X.1 Introduction .. 1
X.1.1 Design .. 1
X.1.2 Syntax Examples .. 2

X.2 Document Structure .. 4
X.2.1 <CSML> .. 4

X.2.1.1 'defaultLocale' ... 4
X.2.1.2 <Definitions> .. 5

X.3 Expressing BACnet Datatypes in XML ... 5
X.3.1 Common Attributes .. 5

X.3.1.1 'name'... 6
X.3.1.2 'type' .. 6
X.3.1.3 'extends' ... 6
X.3.1.4 'overlays' .. 7
X.3.1.5 'displayName' .. 7

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 ii

X.3.1.6 'description' ... 8
X.3.1.7 'comment' .. 8
X.3.1.8 'writable' .. 9
X.3.1.9 'readable' .. 9
X.3.1.10 'commandable' ... 9
X.3.1.11 'associatedWith' ... 10
X.3.1.12 'requiredWith' .. 11
X.3.1.13 'requiredWithout' ... 12
X.3.1.14 'notPresentWith' .. 12
X.3.1.15 'writableWhen' ... 13
X.3.1.16 'requiredWhen' .. 14
X.3.1.17 'writeEffective' .. 14
X.3.1.18 'optional' .. 15
X.3.1.19 'absent' ... 15
X.3.1.20 'variability' ... 16
X.3.1.21 'volatility' ... 16
X.3.1.22 'contextTag' ... 17
X.3.1.23 'propertyIdentifier' ... 17

X.3.2 Common Child Elements ... 17
X.3.2.1 <DisplayName> .. 18
X.3.2.2 <Description> .. 18
X.3.2.3 <Documentation> .. 18
X.3.2.4 <WritableWhen> ... 18
X.3.2.5 <RequiredWhen> .. 19
X.3.2.6 <Extensions> ... 19

X.3.3 Named Values .. 19
X.3.3.1 <NamedValues> .. 20
X.3.3.2 'displayNameForWriting' .. 21
X.3.3.3 'notForWriting' .. 22
X.3.3.4 'notForReading' ... 22
X.3.3.5 <DisplayNameForWriting> .. 23

X.3.4 Named Bits .. 23
X.3.4.1 <NamedBits> .. 23
X.3.4.2 <Bit> ... 23

X.3.5 Primitive Values .. 24
X.3.5.1 'value'... 25
X.3.5.2 'unspecifiedValue' ... 26
X.3.5.3 'charset' .. 26
X.3.5.4 'codepage' .. 26
X.3.5.5 'length' ... 26
X.3.5.6 <Value> ... 27

X.3.6 Range Restrictions ... 27
X.3.6.1 'minimum' .. 28
X.3.6.2 'maximum' ... 29
X.3.6.3 'minimumForWriting' .. 29
X.3.6.4 'maximumForWriting' ... 29
X.3.6.5 'resolution' ... 29

X.3.7 Engineering Units .. 29
X.3.7.1 'units' ... 30
X.3.7.2 <Units> ... 30

X.3.8 Data Validity .. 30
X.3.8.1 'valueAge' .. 30
X.3.8.2 'error' ... 31
X.3.8.3 <Error> .. 31

X.3.9 Length Restrictions .. 31
X.3.9.1 'minimumLength' .. 32
X.3.9.2 'maximumLength' .. 32

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

 iiii

X.3.9.3 'minimumLengthForWriting' ... 32
X.3.9.4 'maximumLengthForWriting' .. 33
X.3.9.5 'minimumEncodedLength' ... 33
X.3.9.6 'maximumEncodedLength' .. 33
X.3.9.7 'minimumEncodedLengthForWriting' ... 33
X.3.9.8 'maximumEncodedLengthForWriting' .. 33

X.3.10 Collections ... 34
X.3.10.1 'minimumSize' ... 34
X.3.10.2 'maximumSize' .. 34
X.3.10.3 'memberType' .. 34
X.3.10.4 <MemberTypeDefinition> .. 35

X.3.11 Representing Primitive Data .. 35
X.3.11.1 <Null> ... 35
X.3.11.2 <Boolean> ... 35
X.3.11.3 <Unsigned> ... 36
X.3.11.4 <Integer> ... 36
X.3.11.5 <Real> ... 36
X.3.11.6 <Double> .. 36
X.3.11.7 <OctetString> .. 36
X.3.11.8 <String> .. 36
X.3.11.9 <BitString>.. 36
X.3.11.10 <Enumerated>... 37
X.3.11.11 <Date> .. 37
X.3.11.12 <DatePattern> ... 37
X.3.11.13 <DateTime> .. 38
X.3.11.14 <DateTimePattern> ... 38
X.3.11.15 <Time> ... 39
X.3.11.16 <TimePattern> .. 39
X.3.11.17 <ObjectIdentifier> .. 39
X.3.11.18 <ObjectIdentifierPattern> ... 39
X.3.11.19 <WeekNDay> ... 40

X.3.12 Representing Constructed Data ... 40
X.3.12.1 <Sequence> ... 40
X.3.12.2 <Choice> ... 41
X.3.12.3 <Array> ... 41
X.3.12.4 <List> .. 42
X.3.12.5 <SequenceOf> ... 42

X.3.13 Representing Data of Unknown Type ... 42
X.3.13.1 <Any> ... 42

X.4 Expressing BACnet Objects and Properties in XML ... 43
X.4.1 <Object> .. 43

X.5 Definitions, Types, Instances, and Inheritance ... 43
X.6 Binary Encoding and Access Rules .. 49
X.7 Extensibility ... 50

X.7.1 XML extensions ... 50
X.7.2 Data Model Extensions .. 50

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

1 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

[Reference Standard 135-2008 for the changes in this addendum]:

[Add new Annex X, p.682]

ANNEX X - XML DATA FORMATS (NORMATIVE)

(This annex is part of this standard and is required for its use.)

This annex defines formats for XML data exchanged between various BAS systems. This data may have a variety of
purposes and may be conveyed through files or by other means.

X.1 Introduction

The Extensible Markup Language (XML) is a format for structured text that can be used to represent a variety of data in
a machine-readable form. The XML syntax used in this standard conforms to the "Extensible Markup Language (XML)
1.0 (Fifth Edition)", and the XML datatypes used in this standard, indicated by the prefix "xs:", refer to the datatypes
defined by "XML Schema Part 2: Datatypes Second Edition."

This syntax allows data structure definitions, such as those in Clause 21, and instances of those definitions to be
represented in XML. The syntax is optimized for efficient representation of BACnet data and is sufficiently flexible not
to be limited to modeling BACnet data exclusively. Additionally, the syntax allows for human language descriptions,
range restrictions, and usage information to be added to the basic data structure definitions.

X.1.1 Design

This XML syntax is designed to provide a common syntax and data model that can be used to represent both standard
and proprietary data types along with any accompanying descriptive information. It is a general data definition and
instance language rather than a syntax specific for the data defined in this standard. To allow the flexibility to present
proprietary data along with standard data with a consistent syntax and data model, the syntax uses a datatype-centric
form, such as <String name="present-value" value="75"> and <Boolean name="proprietary-value" value="true"> rather
than a syntax specific to standard BACnet data names, such as <PresentValue>75</PresentValue>. This allows any kind
of data, standard or proprietary, to be represented in the future without changing the XML schema or the code for the
low level parsing of the XML into a native form for higher level processing to consume.

For the purposes of document brevity and human readability, this syntax represents data in XML attribute form rather
than element body text form wherever possible. However, this representation choice does not limit extensibility of the
data model because, like the attributes in the BACnet Web services data model described in Annex N, most attributes
defined in this annex can be extended to have attributes of their own using an extension syntax defined in Clause X.7.
This allows XML brevity for the common cases without limiting extensibility when needed.

With the exception of the <Documentation> element, which contains rich text XHTML-formatted documentation, this
standard does not use mixed content in any element body. So simple consumers that ignore formatted documentation
only need to process attribute text and simple element body text.

Validation of this syntax may be accomplished with XML data validators such as XML Schema. These validators can be
used to validate the type and range of data in elements and attributes of the syntax itself. This syntax is also intended to
represent a higher-level data model, such as BACnet objects and properties. Higher level data model validation, such as
whether a property is allowed in a given object or whether its value is within its declared minimum and maximum limits,
is beyond the capabilities of XML syntax validators like XML Schema and shall therefore be performed as needed by the
application consuming this XML.

To simplify processing and avoid the definition of potentially complex scoping rules, all datatype definitions are given
globally unique names. The management of the names to ensure global uniqueness is a local matter to the organization
producing the XML and should at least consist of a prefix for the name that is unique to an organization and then have
the organization manage everything that follows that prefix. For brevity, if an organization has a BACnet Vendor ID, the

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 2

prefix can consist of that ID as a decimal number followed by a dash character ('-'). In all cases, however, a reversed
domain name, like "com.companyname.controlsdivision.", can be used as a prefix to ensure global uniqueness.

X.1.2 Syntax Examples

Some examples using the Clause 21 datatypes will provide an introduction to the form and capabilities of the syntax. The
full details of the XML elements and attributes are defined in Clauses X.3 and X.4, and a description of the data model
and the type system is described in Clause X.5.

Enumerations in Clause 21 are defined as a mapping between an unsigned value and a textual identifier.

BACnetFileAccessMethod ::= ENUMERATED {
 record-access (0),
 stream-access (1)
 }

The definition of that same enumeration in XML creates the mapping with a series of named unsigned values.

<Definitions>
 <Enumerated name="0-BACnetFileAccessMethod">
 <NamedValues>
 <Unsigned name="record-access" value="0" />
 <Unsigned name="stream-access" value="1" />
 </NamedValues>
 </Enumerated>
</Definitions>

An XML representation of a value of that enumeration uses the textual identifier rather than the number when the type is
known.

<Enumerated type="0-BACnetFileAccessMethod " value="record-access" />

Some enumerations in BACnet are extensible, however, and in those cases, and in cases where the type is not known, a
number is used in place of the textual identifier. This is discussed in more detail later.

Bit Strings in Clause 21 are similarly defined as a mapping between a bit position and a textual identifier.

BACnetEventTransitionBits ::= BIT STRING {
 to-offnormal (0),
 to-fault (1),
 to-normal (2)
 }

The definition of that bit string in XML also defines the mapping with a series of named unsigned values, where the value
specifies the bit position.

<Definitions>
 <BitString name="0-BACnetEventTransitionBits" length="3">
 <NamedBits>
 <Bit name="to-offnormal" bit="0" />
 <Bit name="to-fault" bit="1" />
 <Bit name="to-normal" bit="2" />
 </NamedBits>
 </BitString>
</Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

3 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

An XML representation of a value of that bit string is a list of the textual identifiers for the bits that are set.

<BitString type="0-BACnetEventTransitionBits" value="to-offnormal;to-normal" />

Similar to the extensible enumeration case, if a textual representation of a bit is not known, then a number indicating its
bit-position is used instead.

Constructed data definitions in Clause 21 define a set of named members and can also specify context tags, optionality, and
comments about the data members.

BACnetPropertyReference ::= SEQUENCE {
 propertyIdentifier [0] BACnetPropertyIdentifier,
 propertyArrayIndex [1] Unsigned OPTIONAL --used only with array datatype
 -- if omitted with an array the entire array is referenced
 }

In XML, this sequence also specifies names, context tags, optionality, and can even capture comments:

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier" />
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true"
 comment="Used only with array datatype. If omitted, the entire array is referenced."/>
 </Sequence>
</Definitions>

An XML representation of a value of that sequence may provide values for each member that is present, using a
representation appropriate to that member's type, and omit optional members that are not present.

<Sequence type="0-BACnetPropertyReference" >
 <Enumerated name="propertyIdentifier" value="present-value" />
</Sequence>

Choices in Clause 21 are defined as a choice of named members with specified types.

BACnetClientCOV ::= CHOICE {
 real-increment REAL,
 default-increment NULL
 }

In XML, this choice is also defined as a choice of named members with specified types.

<Definitions>
 <Choice name="0-BACnetClientCOV">
 <Choices>
 <Real name="real-increment"/>
 <Null name="default-increment"/>
 </Choices>
 </Choice>
</Definitions>

An XML representation of a value of that choice indicates which member is chosen and gives a value for it.

<Choice type="0-BACnetClientCOV">
 <Real name="real-increment" value="75.0" />

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 4

</Choice>

Variable length collections of identical members are defined in Clause 21 using the SEQUENCE OF construct.

BACnetDailySchedule ::= SEQUENCE {
 day-schedule [0] SEQUENCE OF BACnetTimeValue
 }

In XML, this collection is represented by the SequenceOf element which takes a 'memberType' attribute.

<Definitions>
 <Sequence name="0-BACnetDailySchedule">
 <SequenceOf name="day-schedule" contextTag="0" memberType="0-BACnetTimeValue"/>
 </Sequence>
</Definitions>

An XML representation of a value of that SEQUENCE OF provides a collection of unnamed members of the appropriate
type.

<Sequence type="0-BACnetDailySchedule ">
 <SequenceOf name="day-schedule">
 <Sequence>
 <Time name="time" value="08:00:00.00"/>
 <Unsigned name="value" value="1"/>
 </Sequence>
 <Sequence>
 <Time name="time" value="15:00:00.00"/>
 <Unsigned name="value" value="0"/>
 </Sequence>
 </SequenceOf>
</Sequence>

X.2 Document Structure

The XML elements and attributes defined in this annex may be used for a variety of purposes and are always enclosed in
a <CSML> element.

X.2.1 <CSML>

The XML syntax defined by this annex is enclosed in the element <CSML> ("Control Systems Modeling Language")
that has a single optional attribute, 'defaultLocale', and an xml namespace of "http://www.bacnet.org/CSML/1.0".

 The valid child elements of <CSML> are any number and combination of the <Definitions> element and the data
elements <Any>, <Array>, <BitString>, <Boolean>, <Choice>, <Date>, <DatePattern>, <DateTime>,
<DateTimePattern>, <Double>, <Enumerated>, <Integer>, <List>, <Null>, <Object>, <ObjectIdentifier>,
<ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>, <TimePattern>,
<Unsigned>, and <WeekNDay>, all described elsewhere in this annex.

X.2.1.1 'defaultLocale'

This optional attribute of <CSML>, of type xs:language, specifies the locale (language plus optional country tag) that
becomes the "default locale" for the enclosed elements. All human language data in the enclosed elements is for the
default locale unless otherwise indicated.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

5 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

If this attribute is not present, then the default locale for the document remains unspecified. In this case, the
interpretation of any human language content is a local matter, and the use of the 'locale' attribute to specify alternate
locales is not permitted elsewhere in the document.

X.2.1.2 <Definitions>

This optional child element of <CSML> provides the "definition context" as used in this annex. There may be multiple
<Definitions> elements under a <CSML> element and these definitions may appear in any position and in any order,
with the only restriction that data types shall be defined before they are used.

One of the fundamental functions of this XML syntax is to define new data structures. Child elements of <Definitions>
provide named definitions that are globally available for use as type definitions for instances, or to be extended by other
definitions.

The valid child elements of <Definitions> are any number and combination of the data elements <Any>, <Array>,
<BitString>, <Boolean>, <Choice>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>,
<Enumerated>, <Integer>, <List>, <Null>, <Object>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>,
<Real>, <Sequence>, <SequenceOf>, <String>, <Time>, <TimePattern>, <Unsigned>, and <WeekNDay>, all
described elsewhere in this annex.

For example, the following <Sequence> element creates a globally available definition for "0-BACnetAddress" by
enclosing the <Sequence> element within the <Definitions> element.

<Definitions>
 <Sequence name="0-BACnetAddress">
 <Unsigned name="network-number"/>
 <OctetString name="mac-address"/>
 </Sequence>
</Definitions>

The following represents an instance of that <Sequence> that refers to its definition using the 'type' attribute.

<Sequence type="0-BACnetAddress">
 <Unsigned name="network-number" value="888" />
 <OctetString name="mac-address" value="AC101801BAC0" />
</Sequence>

X.3 Expressing BACnet Datatypes in XML

BACnet data is expressed in XML using the data elements <Any>, <Array>, <BitString>, <Boolean>, <Choice>,
<Date>, <DatePattern>, <DateTime>, <DateTimePatern>, <Double>, <Enumerated>, <Integer>, <List>, <Null>,
<ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay>.

While no two datatypes are the same, the various types do have many things in common. The characteristics that are
common to all datatypes are described in Clauses X.3.1 and X.3.2; the characteristics that are common to groups of
datatypes are described in Clauses X.3.3 through X.3.10; and finally, the characteristics of the individual datatypes are
described in Clauses X.3.11 and X.3.12.

X.3.1 Common Attributes

All BACnet data elements share a common set of optional attributes. In addition to the common attributes described
here, each primitive data element may also define a specific set of required or optional attributes of its own. This is done
in individual clauses that define those data elements.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 6

X.3.1.1 'name'

This optional attribute, of type xs:string, provides a name for the element. A name may or may not be required, based on
the element's context. For example, a name is required for definitions, and for <Sequence>, <Choice>, and <Object>
members, but not for <Array>, <List>, and <SequenceOf> members. When used in a definition context, the 'name'
provides a globally unique name for the defined type, which other elements may refer to by using the 'type', 'extends', or
'overlays' attributes.

As systems change over time, it is expected that the definitions of types will change. Versioning of a type can be
accomplished within the 'name' attribute of an element. The name should be prefixed with the vendor ID of the
implementor followed by a hyphen character. A suffix may be added to indicate newer definitions. The content of the
suffix is a local matter.

The allowed string values for 'name' attributes are restricted and shall conform to the limitations of a "node-identifier" as
described in Clause N.2. The semicolon character shall be used to delimit names in a list, such as in the 'requiredWith'
attribute in Clause X.3.1.12.

For example, the 'name' attribute is used below to define the type name "0-BACnetDeviceObjectReference" and also to
define the names of the two members. Note that in this example the name uses the ASHRAE vendor identifier.

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true" />
 <ObjectIdentifier name="objectIdentifier" contextTag="1" />
 </Sequence>
</Definitions>

An XML representation of an instance of that type assigns values to the members by identifying the member by its name.
Optional elements that do not have a value are simply omitted from the XML.

<Sequence type="0-BACnetDeviceObjectReference" >
 <ObjectIdentifier name="objectIdentifier" value="analog-input,0" />
</Sequence>

X.3.1.2 'type'

This optional attribute, of type xs:string, indicates the type of the element when that element is an instance of a
previously defined type.

This is required only in contexts that cannot otherwise determine the type unambiguously. For example, if an instance of
a <Sequence> is explicitly given a 'type' attribute, then the types of its members are known and the 'type' attribute is not
required on the members. If present in this case, however, it shall be exactly equal to the type specified for that member
in its definition, unless the defined type is <Any>, in which case it is limited to the types allowed by the definition for the
<Any>. Conversely, if the definition is <Any>, an instance shall always specify the type if an explicit type is known.

See Clause X.5 for further description of the use and rules for the 'type' attribute.

X.3.1.3 'extends'

This optional attribute, of type xs:string, indicates the name of the existing defined type that is being extended by or
within a new definition. If the new definition is not making any structural changes, then the 'type' attribute shall be used
rather than the 'extends' attribute. See the description of the 'type' attribute for more information on this distinction.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

7 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

The XML element type of the existing definition shall match the new definition with the exception that, if the existing
definition is <Any>, then the new definition can be of any type.

See Clause X.5 for further description of the use and rules for the 'extends' attribute.

X.3.1.4 'overlays'

This optional attribute, of type xs:string, indicates the name of an existing type that is being augmented with extra
metadata. It is used instead of the 'type' attribute to identify the existing type. It is used for elements in the <Definitions>
section but does not create a new definition and cannot make any structural changes; therefore, the 'name', and 'extends'
attributes are not used either.

The XML element type of the existing definition shall match the overlay element type.

A likely use for the "overlays" attribute could be to provide additional localization information to existing type
definitions (e.g., translation information made available in a separate "language pack" file).

For example, the following provides Spanish display names for the members of the 0-BACnetDeviceObjectReference
type, which was defined elsewhere.

<Definitions>
 <Sequence overlays="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier">
 <DisplayName locale="es">Identificador del Dispositivo</DisplayName>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier">
 <DisplayName locale="es">Identificador del Objeto</DisplayName>
 </ObjectIdentifier>
 </Sequence>
</Definitions>

X.3.1.5 'displayName'

This optional attribute, of type xs:string, provides a brief human-readable text to associate with the value of an element.
This is intended to be a short descriptive identifier (approximately 30 characters or less) for this data element usable for
human interface displays like dialog boxes and menus. The text consists of a single line of plain printable characters with
no formatting markup. Because the XML representation may wrap and indent attribute values, all contiguous whitespace
should be collapsed into a single space for display. The text provided in the “displayName” attribute is in the default
locale. The <DisplayName> child element is used to provide display names in alternate locales.

The default value for this attribute is the value of the 'name' attribute, or "" (empty string) if no 'name' attribute is present.

For example, in the following, the default locale is set to "en", so the 'displayName' attribute provides the English display
names, and <DisplayName> child elements are used to provide display names for other locales.

<CSML defaultLocale="en">
 <Definitions>
 <Sequence name="0-BACnetDeviceObjectReference" >
 <ObjectIdentifier name="deviceIdentifier" displayName="Device Identifier">
 <DisplayName locale="es">Identificador del Dispositivo</DisplayName>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier" displayName="Object Identifier">
 <DisplayName locale="es">Identificador del Objeto</DisplayName>
 </ObjectIdentifier>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 8

 </Sequence>
 </Definitions>
<CSML>

X.3.1.6 'description'

This optional attribute, of type xs:string, provides a human readable description of an element. This is intended to be a
reasonably complete description of the purpose or use of an element, but does not provide for any “rich text” formatting
capabilities. It could be usable as “hover text”, “tool tip” or “pop-up help”. The text consists of plain printable characters
with no formatting markup or line breaks. Because the XML representation may wrap and indent attribute values, all
contiguous whitespace should be collapsed into a single space for display. The text provided in the 'description' attribute
is in the default locale. The <Description> child element is used to provide descriptions in alternate locales. Full “rich
text” formatted documentation is provided by the <Documentation> child element.

The default value for this is "" (empty string).

For example, in the following, the default locale is set to "en", so the 'description' attribute provides the English
descriptions, and <Description> child elements are used to provide descriptions for other locales.

<CSML defaultLocale="en">
 <Definitions>
 <Sequence name="0-BACnetDeviceObjectReference" >
 <ObjectIdentifier name="deviceIdentifier" description="The unique device identifier of the
 device containing the referenced object">
 <Description locale="es">El identificador de dispositivo único del dispositivo que contiene
 el objeto referido</Description>
 </ObjectIdentifier>
 <ObjectIdentifier name="objectIdentifier" description="The object identifier of the referenced
 object">
 <Description locale="es">El identificador del objeto del objeto referido</Description>
 </ObjectIdentifier>
 </Sequence>
 </Definitions>
<CSML>

X.3.1.7 'comment'

This optional attribute, of type xs:string, provides a human-readable comment for an element. This is usually a technical
note intended for readers of the XML itself, rather than users of the data, as DisplayName, Description, and
Documentation are intended. Due to its limited audience, it is not localizable.

The default value for this is "" (empty string).

For example, in the following, an internal comment copied from Clause 21 is intended for readers of the XML, not user
interfaces.

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier" />
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true"
 comment="Used only with array datatype. If omitted, the entire array is referenced."/>
 </Sequence>
</Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

9 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

X.3.1.8 'writable'

This optional attribute, of type xs:boolean, specifies whether the data value is generally expected to be writable. Security
concerns or temporary modes of operations may make the data value not writable at any given time, but this attribute
represents the general case.

The default value for this attribute is "false".

The following example declares a property of the File Object to be writable.

<Definitions>
 <Object name="0-FileObject">
 …
 <Boolean name="archive" writable="true" … />
 …
 </Object >
</Definitions>

X.3.1.9 'readable'

This optional attribute, of type xs:boolean, specifies whether the data value is generally expected to be readable using
simple value reading services (e.g. ReadProperty or getValue()). Security concerns or temporary modes of operations
may make the data value not readable at any given time, but this attribute represents the general case. An example where
this is "false" is the Log_Buffer property of the Trend Log object.

The default value for this attribute is "true".

This example shows that, while rare, some properties are not readable using the simple-value reading services.

<Definitions>
 <Object name="0-TrendLogObject">
 …
 <List name="log-buffer" readable="false" … />
 …
 </Object >
</Definitions>

X.3.1.10 'commandable'

This optional attribute, of type xs:boolean, specifies whether the data value is commandable using BACnet's command
prioritization mechanism described in Clause 19. While "commandable" often implies "writable", the two attributes
nonetheless have independent values. It is possible for a definition to declare that commandable="true" and
writable="false", meaning that, by default, the property is not externally writable, at any priority, but is nevertheless
commandable in nature.

The default value for this attribute is "false".

The following example declares that the Present Value of an Analog Output Object is writable and commandable.

<Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 10

 <Object name="0-AnalogOutputObject">
 …
 <Real name="present-value" writable="true" commandable="true" … />
 …
 </Object >
</Definitions>

The following example shows a present value that is not externally writable but is nevertheless commandable and, as
such, has a priority array and default value.

<Definitions>
 <Object name="999-InternalScheduleResult" >
 …
 <Real name="present-value" writable="false" commandable="true" … />
 <Array name="priority-array" … />
 <Real name="default-value" … />
 …
 </Object >
</Definitions>

X.3.1.11 'associatedWith'

This optional attribute, of type xs:string, indicates a peer element that this element is associated with. The value of this
attribute is equal to the value of the 'name' attribute of the referenced peer element. This is primarily for human user
interface purposes, to define hints for grouping related elements or to form a display hierarchy from an otherwise flat list
of peers. Only one such relationship can be formed for a given element, so that it is not possible to define multiple
associations that could result in a grouping conflict or the display of an element in more than one place.

This attribute appears on the dependent or subservient element(s) in a relationship, if such a relationship exists. For
example, if there is a many-to-one relationship, then the 'associatedWith' attribute is present on the "many" elements and
contains the name of the "one" element. If only two elements are involved, the one that is seen as secondary or
dependent is given the 'associatedWith' attribute, which refers to the name of the primary element.

An example is a commandable property in a BACnet object. The Priority_Array and Relinquish_Default properties both
have an 'associatedWith' attribute which refers to the name of the Present_Value property.

The choice of a "primary" element may be seem arbitrary in some groups of peers that have no clear hierarchy or
dependency relationship. However, the choice of a primary element is nonetheless important because it may influence a
user interface to put that selected element at the top of the list of associated peers. For example, all of the properties
associated with intrinsic alarming are equal peers, but they may wish to be "associated with" the Event_Enable property
as the "primary" since it exists for all algorithms.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers
of this XML syntax should be designed defensively to deal with malformed or circular relationships.

The association created by 'associatedWith' is distinct from 'requiredWith'. Elements that are "associated" with each
other are nonetheless still independently optional, whereas 'requiredWith' defines constraints to optionality.

The default value for this attribute is "" (empty string), which means that there is no association.

The following example associates the Priority Array property with the commandable Present Value property.

<Definitions>
 <Object name="0-AnalogOutputObject">

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

11 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

 …
 <Array name="priority-array" associatedWith="present-value" … />
 …
 </Object>
</Definitions>

X.3.1.12 'requiredWith'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is
tied to. When any of the named peer elements is present, then the current element will be present as well. No implication
is made about the reverse situation - if all of the peer elements are absent, the current element may be present or absent
for other reasons. The value of this attribute is equal to a semicolon-separated concatenation of the values of the 'name'
attributes of the referenced peer elements.

One of the purposes of this attribute is to allow clients to avoid attempts to read the "dependent" optional elements if the
"primary" optional element is known to be absent.

An example is the Inactive_Text property indicating that it is 'requiredWith' the Active_Text property.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers
of this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of two optional properties so that if either is present then they are both
present.

<Definitions>
 <Object name="0-BinaryInputObject">
 …
 <String name="inactive-text" optional="true" requiredWith="active-text" … />
 <String name="active-text" optional="true" requiredWith="inactive-text" … />
 …

 </Object>
</Definitions>

The following example connects the presence of three optional properties so that if any is present, then they are all
present.

<Definitions>
 <Object name="0-BinaryInputObject">
 …
 <DateTime name="change-of-state-time" optional="true"
 requiredWith="change-of-state-count,time-of-state-count-reset" … />
 <Unsigned name="change-of-state-count" optional="true"
 requiredWith="change-of-state-time,time-of-state-count-reset" … />
 <DateTime name="time-of-state-count-reset" optional="true"
 requiredWith="change-of-state-time,change-of-state-count" … />
 …
 </Object>
</Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 12

X.3.1.13 'requiredWithout'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is
tied to. When any of the named peer elements is absent, then the current element will be present. No implication is made
about the reverse situation - if all of the peer elements are present, the current element may be present or absent for other
reasons. The value of this attribute is equal to a semicolon-separated concatenation of the values of the 'name' attributes
of the referenced peer elements.

One of the purposes of this attribute is to allow clients to know that, if an optional element is absent, then another is
available, often as an alternative for a related purpose.

Since XML data exchanged between systems is often dynamic and thus not certifiably correct ahead of time, consumers
of this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of two optional properties so that if either is absent then the other shall be
present.

<Definitions>
 <Object name="0-ScheduleObject">
 …
 <String name="weekly-schedule" optional="true" requiredWithout="exception-schedule" … />
 <String name="exception-schedule" optional="true" requiredWithout="weekly-schedule" … />
 …

 </Object>
</Definitions>

X.3.1.14 'notPresentWith'

This optional attribute, of type xs:string, indicates a list of peer optional elements that an optional element's presence is
tied to in a negative way. When any of the named peer elements is present, then the current element will be absent. No
implication is made about the reverse situation. If all of the peer elements are absent, the current element may be present
or absent for other reasons. The value of this attribute is equal to a semicolon-separated concatenation of the values of
the 'name' attributes of the referenced peer elements.

This attribute usually appears on the dependent element(s) in a relationship. For example, if there is a many-to-one
relationship, then the 'notPresentWith' attribute is present on the "many" elements and contains the name of the "one"
element. If only two elements are involved, then the one that is seen as dependent is given the 'notPresentWith' attribute,
which refers to the name of the primary element. If neither is dependent, then the choice of primary is arbitrary, or they
may each refer to each other.

One of the purposes of this attribute is to allow clients to know which sets of properties are mutually exclusive and to
thus avoid attempts to read the "dependent" optional elements if the "primary" optional element is known to be present.

Since XML data exchanged between systems is often of dynamic in origin and thus not certifiably correct ahead of time,
consumers of this XML syntax should be designed defensively to deal with malformed or circular relationships.

The default value for this attribute is "" (empty string), which means that there is no dependency.

The following example connects the presence of three optional properties where two are present as a pair but are
mutually exclusive with a third.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

13 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

<Definitions>
 <Object name="999-ExampleObject">
 …
 <Real name="high-limit" optional="true" requiredWith="low-limit" notPresentWith="limits" … />
 <Real name="low-limit" optional="true" requiredWith="high-limit" notPresentWith="limits" …/>
 <Sequence name="limits" optional="true" notPresentWith="high-limit;low-limit" … />
 …
 </Object>
</Definitions>

X.3.1.15 'writableWhen'

This optional attribute, of type xs:restriction of xs:string, indicates the conditions under which the data value may be
writable. The choices for the value and their meanings are defined in the following table.

Table X-x1. Standard Rules for Writability Requirements

Attribute Value Meaning
"out-of-service" When Out_Of_Service is TRUE
"commandable" When this property is commandable
"other" Non-standard requirement. Descriptive text should be provided by

<WritableWhen> elements

The default value for this attribute is "" (empty string) unless one or more <WritableWhen> child elements is specified,
in which case, the default value is "other". Therefore, a <WritableWhen> child element may be present without requiring
the presence of the 'writableWhen' attribute. However, if a value for the 'writableWhen' attribute is specified and is not
equal to "other", then <WritableWhen> child elements are not inherited and no <WritableWhen> child elements shall be
specified in the same context.

When this attribute is equal to "other", optional <WritableWhen> elements can be used to provide localized text to
describe the nonstandard condition.

A common case in Clause 12 objects is the requirement that Present Value be writable when Out Of Service is true.

<Definitions>
 <Object name="0-AnalogInputObject">
 …
 <Real name="present-value" writableWhen="out-of-service" … />
 …
 </Object>
</Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 14

X.3.1.16 'requiredWhen'

This optional attribute, of type xs:restriction of xs:string, indicates the conditions under which optional elements shall be
present. The choices for the value and their meanings are defined in the following table.

Table X-x2. Standard Rules for Presence Requirements

Attribute Value Meaning
"intrinsic-supported" If the object supports intrinsic reporting
"cov-notify-supported" If the object supports COV reporting
"cov-subscribe-supported" If the device supports execution of either the SubscribeCOV or

SubscribeCOVProperty service
"present-value-commandable" If Present_Value is commandable
"segmentation-supported" If Segmentation of any kind is supported
"virtual-terminal-supported" If Virtual Terminal services are supported
"time-sync-execution" If the device supports the execution of the TimeSynchronization service
"utc-time-sync-execution" If the device supports the execution of the UTCTimeSynchronization

service
"time-master" If the device is a Time Master
"backup-restore-supported" If the device supports the backup and restore procedures
"slave-proxy-supported" If the device is capable of being a Slave-Proxy device
"slave-discovery-supported" If the device is capable of being a Slave-Proxy device that implements

automatic discovery of slaves
"other" Non-standard requirement. Descriptive text should be provided by

<RequiredWhen> elements

The default value for this attribute is "" (empty string) unless one or more <RequiredWhen> child elements is specified,
in which case, the default value is "other". Therefore, a <RequiredWhen> child element may be present without
requiring the presence of the 'requiredWhen' attribute. However, if a value for the 'requiredWhen' attribute is specified
and is not equal to "other", then <RequiredWhen> child elements are not inherited and no <RequiredWhen> child
elements shall be specified in the same context.

When this attribute is equal to "other", optional <RequiredWhen> elements can be used to provide localized text to
describe the nonstandard condition.

Many properties in Clause 12 objects have their presence dependent on a standard condition.

<Definitions>
 <Object name="0-DeviceObject">
 …
 <Unsigned name="max-segments-accepted" optional="true"
 requiredWhen="segmentation-supported" … />
 …
 </Object>
</Definitions>

X.3.1.17 'writeEffective'

This optional attribute, of type xs:restriction of xs:string, is an indication of when a write to this value will be effective.
The choices are: "immediately", "delayed", "on-program-restart", and "on-device-restart". The actual time delay

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

15 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

associated with the "delayed" case is not specified, but it is nonetheless an indication that the effect of the write should
not be expected to be immediate.

The default value for this attribute is "immediately".

This example shows that a setting controlling how much memory is allocated to audit logs is effective only after the next
device restart.

<Definitions>
 <Object name="999-MemoryControlObject ">
 …
 <Unsigned name="max-audit-log-space" units="percent" writeEffective="on-device-restart" … />
 …
 </Object>
</Definitions>

X.3.1.18 'optional'

This optional attribute, of type xs:boolean, used only in definitions, indicates that this element may not be present in an
instance of this definition. This attribute can only be set to "true" when an element is initially defined. Subsequent
definitions that inherit the element may set the value to "false" if the element will always be present in instances of that
new definition, or they may set the 'absent' attribute to "true" to indicate that the element will never be present in an
instance of that new definition.

An example case for this is where the standard definition of a BACnet Analog Input declares the Description property to
be optional by setting the 'optional' attribute to "true", but a specific vendor's extension to that type declares that every
instance will have a Description property present by setting the 'optional' attribute to "false", or it declares that every
instance will never have a Description property present by setting the 'absent' attribute to "true".

The default value of this attribute is "false".

See the description of the 'absent' attribute for an example of the interaction between the 'optional' and 'absent' attributes.

X.3.1.19 'absent'

This optional attribute, of type xs:boolean, used only in definitions, indicates that an optional element will not be present
in instances of that definition.

The default value of this attribute is "false".

An example of the use of this attribute is where the standard definition for BACnetDeviceObjectReference has the
'deviceIdentifier' field marked as optional, but a specific vendor's device does not support references outside the device,
so it can derive a new definition from the standard definition and set the 'absent' attribute on the 'deviceIdentifier' field to
be "true" so that clients of that device do not try to write a deviceIdentifier to it.

In a standard definitions file:

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" optional="true" … />
 <ObjectIdentifier name="objectIdentifier" optional="true" … />
 </Sequence>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 16

</Definitions>

In a vendor-specific file:

<Definitions>
 <Sequence name="999-LimitedDeviceObjectReference" extends="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" absent="true" />
 </Sequence>
</Definitions>

X.3.1.20 'variability'

This optional attribute, of type xs:restriction of xs:string, indicates when and how the value of this element is expected to
change over time. The choices are: "constant", "configuration-setting", "operation-setting", and "status". A value marked
as "constant" is expected to not change, so clients can just read it once or use the value provided in XML. Values
marked as "configuration-setting" are expected to be non-volatile settings that are made only during configuration or
commissioning. Values marked as "operation-setting" are user settings like setpoints, alarm limit, etc. that are expected
to change relatively infrequently, whether by operator or programmed control events. Values marked "status" are
potentially continuously variable values representing the live status of calculated or measured quantities.

The default value of this attribute is undefined, meaning that the variability of the element is unknown.

In this example, the definition of an object indicates that the "max-audit-log-space" property is a value that is intended to
be set when the device is commissioned, not as an on-going part of its operation, and therefore changes infrequently. It
also indicates that the "audit-log-alarm-limit" is expected to be changed by an outside entity occasionally during the
course of operation of the device, and that the "audit-log-space-used" is a status value that changes by itself at any time.

<Definitions>
 <Object name="999-MemoryControlObject ">
 …
 <Unsigned name="max-audit-log-space" variability="configuration-setting" … />
 <Unsigned name="audit-log-alarm-limit" variability="operation-setting" … />
 <Unsigned name="audit-log-space-used" variability="status" … />
 …
 </Object>
</Definitions>

X.3.1.21 'volatility'

This optional attribute, of type xs:restriction of xs:string, indicates how values that are written are retained. The choices
are "volatile", "nonvolatile", and "nonvolatile-limited-writes". The "volatile" case indicates that a written value may be
forgotten over device resets and power failures. The "nonvolatile" case indicates that values are intended to survive
device resets and power failures. And the "nonvolatile-limited-writes" is an extension to "nonvolatile" that indicates that
the value is written to a form of memory that has a limited number of write cycles before wearing out, indicating to
clients that this value should not be continuously changed.

The default value of this attribute is undefined, meaning that the volatility of the element is unknown.

In this example, the definition of an object indicates that the "output-percent" property is a volatile commanded value
that will likely not survive a device reset or power failure and should therefore be checked or refreshed periodically as
needed. It also indicates that the "alarm-threshold" should not be continuously written to as a part of normal operation.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

17 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

<Definitions>
 <Object name="999-FanControlObject ">
 …
 <Unsigned name="output-percent" volatility="volatile" … />
 <Unsigned name="alarm-threshold" volatility="nonvolatile-limited-writes" … />
 …
 </Object>
</Definitions>

X.3.1.22 'contextTag'

This optional attribute, of type xs: nonNegativeInteger, indicates the context tag that should be used when encoding this
element in ASN.1 according to the rules in Clause 20. If this attribute is absent, then the element is "application tagged"
according to the rules in Clause 20.

If this attribute is absent, then the element is "application tagged" when encoding in ASN.1.

For example, because the deviceIdentifier field of the BACnetDeviceObjectReference construct is optional, the fields are
context tagged.

<Definitions>
 <Sequence name="0-BACnetDeviceObjectReference">
 <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true" />
 <ObjectIdentifier name="objectIdentifier" contextTag="1" />
 </Sequence>
</Definitions>

X.3.1.23 'propertyIdentifier'

This optional attribute, of type xs:nonNegativeInteger, indicates the property identifier that is to be used when accessing
this element’s value as a BACnet property.

If this attribute is absent, then the element is not intended to be accessed as a BACnet property.

The following example declares that the Present_Value of an Analog Output object is accessible with property identifier
85.

<Definitions>
 <Object name="0-AnalogOutputObject">
 …
 <Real name="present-value" propertyIdentifier="85" … />
 …
 </Object >
</Definitions>

X.3.2 Common Child Elements

All BACnet data elements share a common set of optional child elements. In addition to the common elements described
here, each primitive data element may also define a specific set of required or optional child elements of its own. This is
done in individual clauses that define those data elements.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 18

X.3.2.1 <DisplayName>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'displayName' attribute.
This element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value. Display
names in the default locale shall use the 'displayName' attribute. The <DisplayName> element is therefore only for
locales different from the default. The text consists of plain printable characters with no formatting markup or line
breaks.

See the description for the 'displayName' attribute for an example of the <DisplayName> element.

X.3.2.2 <Description>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'description' attribute. This
element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value. Descriptions
in the default locale shall use the 'description' attribute. The <Description> element is therefore only for locales different
from the default. The text consists of plain printable characters with no formatting markup or line breaks.

See the description for the 'description' attribute for an example of the <Description> element.

X.3.2.3 <Documentation>

This optional child element, of type "mixed content" (plain text and XHTML markup), is used to provide formatted "rich
text" documentation on the purpose and use of an element. This element has a optional 'locale' attribute, of type
xs:language, that identifies the locale for the text. Since there is no attribute form for the <Documentation> information,
the 'locale' attribute is optional for this element; its absence indicates that the text is for the default locale. The "mixed
content" type allows plain text combined with markup consisting of well-formed XML elements conforming to the
XHTML namespace "http://www.w3.org/1999/xhtml".

The following example shows some formatted text in a <Documentation> element.

<Definitions>
 <Object name="999-ExampleObject">
 <Real name="a-good-property" … >
 <Documentation locale="en">This property documentation contains bold words
 and is spread over several lines (all <i>white space</i> in XHTML is collapsed to a
 single space)</Documentation>
 </Real>
 </Object >
</Definitions>

X.3.2.4 <WritableWhen>

This optional child element, of type xs:string, is used to provide localized display text for the writability condition when
the 'writableWhen' attribute has the value of "other". This element has an optional 'locale' attribute, of type xs:language,
that identifies the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale. While the
'writableWhen' attribute is an enumeration of fixed strings as defined by this standard, the <WritableWhen> element
contains variable text consisting of plain printable characters with no formatting markup or line breaks.

For example, if the writability condition is not one of the standard conditions, then the 'writableWhen' attribute has the
value of "other" and the <WritableWhen> elements provide the display text (the default locale in this example is "en").

<Unsigned name="trendMemoryAllocation" writableWhen="other" >
 <WritableWhen>The Device object's Device Status property is "download required"</WritableWhen>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

19 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

</Unsigned>

If a <WritableWhen> element is present in a context without the 'writableWhen' attribute, the 'writableWhen' attribute is
implicitly assigned the value "other".

For example, the following shows that it is not necessary to include writableWhen="other" in a context with
<WritableWhen> elements.

<Unsigned name="aux-input" >
 <WritableWhen>The "Aux Disable" property is TRUE</WritableWhen>
</Unsigned>

X.3.2.5 <RequiredWhen>

This optional child element, of type xs:string, is used to provide localized display text for the presence requirements
when the 'requiredWhen' attribute has the value of "other". This element has an optional 'locale' attribute, of type
xs:language, that identifies the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale.
While the 'requiredWhen' attribute is an enumeration of fixed strings as defined by this standard, the <RequiredWhen>
element contains variable text consisting of plain printable characters with no formatting markup or line breaks.

For example, if the presence requirement is not one of the standard conditions, then the 'requiredWhen' attribute has the
value of "other" and the <RequiredWhen> elements provide the display text (the default locale in this example is "en").

<Unsigned name="auxbaud" optional="true" requiredWhen="other" >
 <RequiredWhen>The device is configured as a gateway</RequiredWhen>
</Unsigned>

If a <RequiredWhen> element is present in a context without the 'requiredWhen' attribute, then the 'requiredWhen'
attribute is implicitly assigned the value "other".

For example, the following shows that it is not necessary to include requiredWhen="other" in a context with
<RequiredWhen> elements.

<Unsigned name="aux-limit" >
 <RequiredWhen>The object is configured to supports aux input<RequiredWhen>
</Unsigned>

X.3.2.6 <Extensions>

This optional child element is used to hold extra information that is not directly supported by the elements and attributes
defined by this annex. Each extended piece of information, represented as child elements of the <Extensions> element,
is identified by its 'name' attribute. Extended data is not restricted in type or depth.

There are no requirements for processing extensions. Consumers of the XML defined in this annex are allowed to
consume extensions that are known to the consumer and to ignore the rest.

Extension mechanisms are described more fully in Clause X.7.

X.3.3 Named Values

Most primitive data elements can have special values that are represented by textual identifiers rather than, or in addition
to, their raw value form. Some of these values may have special meanings and can actually be outside the normal

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 20

restricted range of values. For example, a number normally restricted to a range of 0 to 100 may use 255 as a special
value to indicate "invalid" or "unused".

In all cases, the mapping from the underlying value form to the human presentation form is done by an optional
<NamedValues> child element, the children of which provide the individual mappings. Note that the main element's
'value' attribute remains appropriately formatted for its datatype, and, with the exception of the <Enumerated> element,
does not become equal to the 'name' attribute of the named value. Rather, it simply matches the 'value' attribute of a
named value. The <Enumerated> element is the exception to this because it's 'value' attribute can be formatted to match
either the string 'name' of a named value or a named value's numeric 'value' attribute.

X.3.3.1 <NamedValues>

The container element for the definition of named values is <NamedValues>. The types of the child elements of
<NamedValues> are appropriate to the mapping that is required and are described in the table below.

Table X-x3. Types and Meanings of the Child Elements of <NamedValues>

Data Element Type Child Element
Type

Meaning of Child Elements

<Enumerated> <Unsigned> The value of the <Unsigned> element provides the
numeric value for the encoded enumeration choice,
and the 'displayName' attribute can be used to
provide a textual presentation of the enumeration
choice. If a value is not provided, the next
available value is automatically assigned, starting
at 0, in the order of the child elements in the XML.

<Boolean> <Boolean> Two <Boolean> elements, one with a value of
"true" and the other with a value of "false", may be
use to provide a 'displayName' attribute that can be
used as an alternate textual presentation the
underlying values of "true" and "false".

<BitString>
<Date>
<DatePattern>
<DateTime>
<DateTimePattern>
<Double>
<Integer>
<ObjectIdentifier>
<ObjectIdentifierPattern>
<OctetString>
<Real>
<String>
<Time>
<TimePattern>
<Unsigned>
<WeekNDay>

(same as enclosing
element)

The child elements provide the definition of special
values. These values may be outside the range of
valid values created by 'maximum' and 'minimum'
and 'resolution' attributes.

The 'displayName' attributes of these special values
may be used in place of the actual underlying
value, if desired and appropriate, or this
information may simply be used to allow the
special values to be considered valid even though
they are otherwise outside the valid range.

An example <Enumerated> shows the use of <Unsigned> child elements to define textual names for the enumerated
values states and assign the equivalent numeric value.

<Enumerated name="0-BACnetObjectType" minimum="128" maximum="1023" … >

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

21 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

 <NamedValues>
 <Unsigned name="accumulator" value="23" … />
 <Unsigned name="analog-input" value="1" … />
 …
 <Unsigned name="trend-log" value="20" … />
 </NamedValues>
</Enumerated>

An example <Boolean> shows the use of <Boolean> child elements to assign alternate text for the boolean states "true"
and "false". Also shown is an example usage of the <NamedValues>.

<Boolean name="issueConfirmedNotifications" … >
 <NamedValues>
 <Boolean name="confirmed" value="true" displayName="Confirmed" … />
 <Boolean name="unconfirmed" value="false" displayName="Unconfirmed" … />
 </NamedValues>
</Boolean>

<Boolean name=”issueConfirmedNotifications” value=”true”…>

Note that in the example of an instance value immediately above, the actual value of the ‘issueConfirmedNotifications’
<Boolean> is not “confirmed”. Rather the value is “true”, since its type is xs:boolean. However, the true value may be
mapped by a Human Interface to "Confirmed" for display purposes. The <Boolean> elements in the <NamedValues> are
given names for inheritance and overlay reasons, not for use as the value of the main <Boolean>. The <NamedValues>
element can only appear in a definition context because adding new named values constitutes a structural change to the
data. When inheriting a <NamedValues> element from a definition, the newly specified child elements are logically
added to the end of the list of existing child elements of the inherited <NamedValues>. The order of the child elements
is significant since it is used for auto numbering. See Clause X.5 for more on definitions and inheritance.

While likely rare, named values can be used for bit strings to represent specific combinations of bits. As always, named
values are for human interface purposes and do not affect the 'value' attribute of an instance of the BitString.

<Definitions>
 <BitString name=”999-WidgetStatusFlags” length=”2”>
 <NamedBits>
 <Bit bit=”0” name=”too-hot”/>
 <Bit bit=”1” name=”too-cold”/>
 <NamedBits>
 <NamedValues>
 <BitString name="ok" displayName="All is well" value="">
 <BitString name="error" displayName="Confused" value="too-hot;too-cold">
 <NamedValues>
 </BitString>
</Definitions>

When primitive data elements are used as child elements of <NamedValues>, there are optional attributes,
'displayNameForWriting', 'notForWriting' and 'notForReading', and an optional child element,
<DisplayNameForWriting>, that are available to them to provide extra information specifically for their use in the
context of <NamedValues>. These attributes and this child element have no meaning outside of that context.

X.3.3.2 'displayNameForWriting'

This optional attribute, of type xs:string, provides an alternate display name for use when the named value is used for
writing, as opposed to when it is presented as a result of reading.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 22

An example of this is an Enumeration representing alarm states where the value zero is presented as "No Alarm" when
read, and "Reset" when written.

The default value of this attribute is the value of the 'displayName' attribute.

In this example, the "false" state has a different presentation when read than it does when written. This can be used to
provide the "adjective for reading, verb for writing" pattern.

<Boolean name="tripwire">
 <NamedValues>
 <Boolean name="tripped" value="true" displayName="Tripped" … />
 <Boolean name="armed" value="false" displayName="Armed" displayNameForWriting="Reset"/>
 </NamedValues>
</Boolean>

X.3.3.3 'notForWriting'

This optional attribute, of type xs:boolean, is an indicator that a special value or a mapped enumeration value is not to be
used for writing. It may appear when read, but an attempt to write it will likely be unsuccessful.

The default value of this attribute is "false".

An example of this is an Enumeration representing alarm states where the value zero is the only value that can be
written. In this case, every child of <NamedValues> other than the one for the value zero is marked as 'notForWriting'.

Using the "tripwire" example from the description of the 'displayNameForWriting' attribute , if the "tripped" state is not
allowed to be written, then that fact can be declared by using the 'notForWriting' attribute on the "true" state.

<Boolean name="tripwire">
 <NamedValues>
 <Boolean name="tripped" value="true" displayName="Tripped" notForWriting="true" />
 <Boolean name="armed" value="false" displayName="Armed" displayNameForWriting="Reset"/>
 </NamedValues>
</Boolean>

X.3.3.4 'notForReading'

This optional attribute, of type xs:boolean, is an indicator that a special value is not to be used when displaying a value as
a result of reading. It may appear as a special writable choice, but the corresponding underlying value should be
presented when read.

The default value of this attribute is "false".

An example of this is an Unsigned value representing the number of records collected, where zero is displayed
numerically along with all other values, but the only value that is writable is a special value named "Clear" which also
has the numeric value of zero but is marked 'notForReading' so that it is only used as a named choice for writing and is
not used when the read value is zero.

<Unsigned name="recordCount" minimumForWriting="0" maximumForWriting="0">
 <NamedValues>
 <!-- this is marked notForReading, so 0 will show as "0" when read -->
 <Unsigned name="clear" value="0" displayNameForWriting="Clear" notForReading="true"/>
 </NamedValues>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

23 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

</Unsigned>

X.3.3.5 <DisplayNameForWriting>

This optional child element, of type xs:string, is used to provide alternate locale values for the 'displayNameForWriting'
attribute. This element has a required 'locale' attribute, of type xs:language, that identifies the locale for the string value.
Display names for writing in the default locale shall use the 'displayNameForWriting' attribute. The
<DisplayNameForWriting> element is therefore only for locales different from the default.

X.3.4 Named Bits

A Bit String data element can have a textual representation of its constituent bits. In this case, the mapping from the
underlying bit position value to the human presentation form is done by an optional <NamedBits> child element, the
children of which provide the individual mappings.

X.3.4.1 <NamedBits>

The container element for the definition of named bits for a <BitString> element is the optional child element
<NamedBits>. The child elements of <NamedBits> are <Bit> elements.

X.3.4.2 <Bit>

This optional child element of <NamedBits> provides an individual bit definition for the <BitString> data element. It is
not usable by any other data element. The <Bit> element indicates a bit position with the ‘bit’ attribute, and optionally a
bit name with the ‘name’ attribute. The ‘bit’ attribute, of type xs:nonNegativeInteger, is required in initial definitions,
and is used to specify the bit position, with bit 0 being the least significant bit. The ‘name’ attribute, of type xs:string. is
optional and provides a name for use in referencing the bit by name in the 'value' attribute or the <Value> child element
of the <BitString>. For bits in bit strings defined in the standard, the name shall exactly match the bit name specified in
the Clause 21 ASN.1 production for the enclosing datatype.

The following example shows a definition of the BACnetLogStatus bit string. The bits are named, so they may be
referenced by instances of this type. The example instance of this bit string type has two of the bits set.

<Definitions>
<BitString name=”0-BACnetLogStatus” length=”3”>
 <NamedBits>
 <Bit bit=”0” name=”log-disabled” displayName="Disabled"/>
 <Bit bit=”1” name=”buffer-purged” displayName="Purged"/>
 <Bit bit=”2” name=”log-interrupted” diaplayName="Interrupted"/>
 <NamedBits>
</BitString>

</Definitions>

<BitString name=”logStatus” type=”0-BACnetLogStatus” value="buffer-purged,log-interrupted" />

The value of a <BitString> can also be represented in a <Value> child element of the <BitString>. In this case,
individual <Bit> elements are used to indicate which bits are true. The following is equivalent to the preceeding:

<BitString name=”logStatus” type=”0-BACnetLogStatus” >
 <Value>
 <Bit name="buffer-purged"/>
 <Bit name="log-interrupted"/>
 </Value>
</BitString>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 24

An instance cannot add new bits, change bit positions, or exceed the length of its type definition. If an instance of a
<BitString> has no type definition, however, it can use the <Value> element to give names and assign positions to the
bits on-the-fly. Note that in this case, it is required to specify the length because it cannot get the length from its
definition.

<BitString name=”nodef” length="5">
 <Value>
 <Bit name="high-speed" bit="2"/>
 <Bit name="overheated" bit="4"/>
 </Value>
</BitString>

If it is not necessary or possible to name the individual bits or to refer to an existing definition, a bit string can be
represented numerically in the following fashions with no definition for the bits:

<BitString name=”referenced-bitstring” length=”3” value=”1;2”/>

<BitString name=”referenced-bitstring” length="3">
 <Value>
 <Bit bit="1"/>
 <Bit bit="2"/>
 </Value>
</BitString>

X.3.5 Primitive Values

The primitive data elements, other than <Null>, each have a way to represent their value in XML. Most use only the
'value' attribute of an appropriate type, but the <String> and <OctetString> also have extended forms of value for large
or multi-locale values.

The primitive data elements <BitString>, <Boolean>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>,
<Double>, <Enumerated>, <Integer>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <Real>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay> all can specify their values in attribute form as described in this clause.
In addition to the attribute form of value, the data elements <OctetString> and <String> can also specify their values in
element form using the <Value> child element.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

25 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

X.3.5.1 'value'

This optional attribute, of the type specified in Table X-x4, provides the value for the data element.

Table X-x4. XML Datatype for 'value' Attribute

Data Element 'value' Attribute Type

<Null> n/a
<Boolean> xs:boolean
<Unsigned> xs:nonNegativeInteger
<Integer> xs:integer
<Real> xs:float
<Double> xs:double
<OctetString> xs:hexBinary
<String> xs:string
<BitString> xs:string
<Enumerated> xs:string
<Date> xs:date
<DatePattern> xs:string
<DateTime> xs:dateTime
<DateTimePattern> xs:string
<Time> xs:time
<TimePattern> xs:string
<ObjectIdentifier> xs:string

<ObjectIdentifierPattern> xs:string

<WeekNDay> xs:string

For the <OctetString> element, the 'value' attribute, of type xs:hexBinary, is in hexadecimal format, which is easier to
process both for humans and machines, but is not as succinct as xs:base64Binary for large amounts of data. If a short
amount of data is to be conveyed, the attribute form should be used. However, if a large amount of data is to be
conveyed, the optional <Value> child element, of type xs:base64Binary, should be used. The threshold to select between
the two methods is a local matter. Since the 'value' attribute and the <Value> child element are two ways to specify the
same value, they are mutually exclusive in the same XML context, and when one is present, it overrides the other that
may have been inherited.

For the <String> element, the 'value' attribute represents the data value in the default locale. Values in other locales, or
values containing character data unsuitable for XML attributes, are represented using the optional child element
<Value>. Since the 'value' attribute and a <Value> child element specifying the default locale are two ways to specify
the same value, they are mutually exclusive in the same XML context, and when one is present, it overrides the other that
may have been inherited.

For the <BitString> element, the ‘value’ attribute represents the concatenation of all bits that are set (equal to true). If a
short amount of data is to be conveyed, the attribute form should be used. However, if a large amount of data is to be
conveyed, the optional <Value> child element should be used. The threshold to select between the two methods is a
local matter. Since the ‘value’ attribute and the <Value> child elements are two ways to specify the same value, they are
mutually exclusive in the same XML context, and when one is present, it overrides the other that may have been
inherited.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 26

X.3.5.2 'unspecifiedValue'

This optional attribute, of type xs:boolean, indicates that a value for a <Date>, <DateTime>, <Time> or
<ObjectIdentifier> is unspecified. For <Date>, <DateTime> and <Time>, this condition is encoded in binary as all octets
equal to 255. For <ObjectIdentifier>, the binary encoding for the type portion is a local matter and the instance portion
shall be set to 4194303.

For example, in this pair of date properties, only the start date is specified.

<Date name="start-date" value="2008-06-15" />
<Date name="end-date" unspecifiedValue="true" />

This attribute applies only to the <Date>, <DateTime>, and <Time> data elements. Its default value is "true" but
becomes "false" when a 'value' attribute is provided.

The 'value' attribute, the <Value> element, and the 'unspecifiedValue' attribute are all mutually exclusive and shall not be
present in the same context. The presence of any one of them in an instance overrides any one that was inherited from a
definition.

X.3.5.3 'charset'

This optional attribute, of type xs:nonNegativeInteger, describes the character set that was used to encode BACnet
character string data.

This attribute applies only to <String> elements. If not present, then the character set is unknown or undefined. It is
used only for recording the character set encoding used by a BACnet device.

The 'charset' attribute is indivisibly part of the value of the element and is not specified or inherited separately from the
'value' attribute or the <Value> element. If a 'value' attribute or <Value> element is specified in an instance without a
'charset' attribute, then the character set reverts to unknown or undefined. The 'charset' attribute shall not be specified
without also specifying the 'value' attribute or the <Value> element in the same context.

X.3.5.4 'codepage'

This optional attribute, of type xs:nonNegativeInteger, describes the code page that was used to encode BACnet
character string data. This attribute has meaning only when the 'charset' attribute has the value "dbcs". This attribute
applies only to the string value in the default locale.

This attribute applies only to <String> elements and shall be present if and only if the 'charset' attribute is present and has
the value "dbcs".

The 'codepage' attribute is indivisibly part of the value of the element and is not specified or inherited separately from the
'value' attribute or the <Value> element. If a 'value' attribute or <Value> element is specified in an instance without a
'codepage' attribute, or the 'charset' attribute is present and does not have the values of "dbcs", then the 'codepage'
attribute reverts to undefined. The 'codepage' attribute shall not be specified without also specifying the 'value' attribute
or the <Value> element in the same context.

X.3.5.5 'length'

This optional attribute, of type xs:nonNegativeInteger, specifies the length of Bit String data, in bits. This is the length
of the actual data bits and does not include any extra encoding overhead.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

27 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

The default value of this attribute is undefined, meaning the length of the Bit String is variable or not known. An
unknown length is acceptable for definitions when a value for the <BitString> is not provided. However, the length of a
<BitString> value is required to be known to properly process the value. Therefore, if a 'length' attribute is not specified
on the definition of a <BitString>, then it shall be present on any instance that contains a value.

This attribute only applies to <BitString> elements.

X.3.5.6 <Value>

This optional child element provides the value for the <String> and <OctetString> data elements. It is not usable by any
other data element.

For the <String> element, the optional <Value> child element, of type xs:string, contains the value for a particular locale.
If the optional 'locale' attribute, of type xs:language, is specified, then the value is for that locale. If the 'locale' attribute is
missing, then the value is for the default locale.

The 'value' attribute, when used, represents the value in the default locale. Short values in the default locale should use
the attribute form, while longer values should use the element form. The threshold to select between the two is a local
matter.

Values in other locales, or values containing character data unsuitable for XML attributes, are represented using the
optional child element <Value>.

For the <OctetString>, the 'value' attribute, of type xs:hexBinary, is in hexadecimal format which is easier for human
creation and consumption but is not as efficient as xs:base64Binary for large amounts of data. If a short amount of data
is to be conveyed, the attribute form is simpler to process. However, if a large amount of data is to be conveyed, the
optional <Value> child element, of type xs:base64Binary, can be used to reduce the size of the XML.

X.3.6 Range Restrictions

Primitive data that expresses a continuous range of values can have that range restricted by optional attributes. These
attributes can be used to specify the high and low ends of the range and the minimum increment of the values.

The attributes that are used for restricting the range of primitive data elements are specified in the following clauses. In
the case of the <ObjectIdentifier> element, the range restrictions apply to the instance portion of the value only.

The type and applicability of the range restriction attributes are summarized in Table X-x5.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 28

Table X-x5. Range Restriction Attributes

Data Element Attribute Name Attribute Type

<Date> minimum
maximum
minimumForWriting
maximumForWriting

xs:date

<DateTime> minimum
maximum
minimumForWriting
maximumForWriting

xs:dateTime

resolution xs:time
<Double> minimum

maximum
minimumForWriting
maximumForWriting
resolution

xs:double

<Enumerated> minimum
maximum
minimumForWriting
maximumForWriting

xs:nonNegativeInteger

<Integer> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:integer

<ObjectIdentifier> minimum
maximum
minimumForWriting
maximumForWriting

xs:nonNegativeInteger

<Real> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:float

<Time> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:time

<Unsigned> minimum
maximum
minimumForWriting
maximumForWriting
resolution

xs:nonNegativeInteger

X.3.6.1 'minimum'

This optional attribute, of the type specified in Table X-x5, provides the inclusive lower bound on the continuous range
of values.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

29 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

The default value of this attribute is undefined, meaning that the value is unlimited or that the limit is unknown.An
example of this attribute is given in the description of the 'maximumForWriting' attribute.

X.3.6.2 'maximum'

This optional attribute, of the type specified in Table X-x5, provides the inclusive upper bound on the continuous range
of values.

The default value of this attribute is undefined, meaning that the value is unlimited or that the limit is unknown.An
example of this attribute is given in the description of the 'maximumForWriting' attribute.

X.3.6.3 'minimumForWriting'

This optional attribute, of the type specified in Table X-x5, provides the inclusive lower bound on the continuous range
of values when the value is written.

The default value of this attribute is the value of the 'minimum' attribute.An example of this attribute is given in the
description of the 'maximumForWriting' attribute.

X.3.6.4 'maximumForWriting'

This optional attribute, of the type specified in Table X-x5, provides the inclusive upper bound on the continuous range
of values when the value is written.

The default value of this attribute is the value of the 'maximum' attribute.An example of this is a value that has separate
read and write ranges. This <Unsigned> can read values up to 150%, but can't be written with a value greater than 100%.

<Unsigned name="motor-speed" minimum="0" maximum="150" units="percent"
 minimumForWriting="0" maximumForWriting="100" />

X.3.6.5 'resolution'

This optional attribute, of the type specified in Table X-x5, provides the minimum increment that occurs between values.
If this attribute is specified, then the value will be in increments of this attribute, starting at the value of the 'minimum'
attribute if it is specified, or starting at zero if the 'minimum' attribute is not specified.

The default value of this attribute is undefined, meaning that the resolution of the value is set by the capabilities of the
underlying XML data type of the 'value' attribute.

In this example, a normally continuous <Real> declares that it only represents values in increments of 10, starting at -35.
So the valid values are -35, -25, -15, -5, 5, 15, 25, and 35.

<Real name="position" minimum="-35.0" maximum="35.0" resolution="10.0" />

X.3.7 Engineering Units

Primitive data elements that express a continuous range of values often have known engineering units associated with
those values. The attributes and child element defined here only apply to the numeric data types <Double>, <Integer>,
<Real>, and <Unsigned>.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 30

X.3.7.1 'units'

This optional attribute describes the engineering units for the numeric value, if known. The value of the attribute is an
x:string. This string is either a decimal formatted number, in the same form as xs:nonNegativeInteger, or a string that
matches exactly one of the ASN.1 enumeration names of the BACnetEngineeringUnits production in Clause 21 (i.e.,
“meters-per-second-per-second”, “square-meters”, … “watts-per-square-meter-degree-kelvin”).

The default value of this attribute is “no-units”. See the description of the <Units> element for an example usage.

X.3.7.2 <Units>

This optional child element, of type xs:string, is used to provide localized display text for the units. This element has an
optional 'locale' attribute, of type xs:language, that identifies the locale for the text. If the 'locale' attribute is absent, then
the text is for the default locale. While the string form of the 'units' attribute is an enumeration of fixed strings as defined
by this standard, the <Units> element is a free-form plain text whose content is a local matter.

As an example of usage of standard engineering units, a property in a temperature sensor might be:

<Real name="temperature" units="degrees-Celsius" >
 <Units locale=”en”>ºC</Units>
 <Units locale="de">Grad Celsius</Units>
</Real>

If the engineering units is not one of the standard units, then the 'units' attribute is a decimal formatted number, in the
same format as xs:nonNegativeInteger, and the <Units> elements may be used to provide the display text (the default
locale in this example is "en").

<Real name="snailspeed" units="1000" >
 <Units>Inches/Week</Units>
 <Units locale="de">Zoll/Woche</Units>
</Real>

X.3.8 Data Validity

Data elements that express live data from measurements or calculations may become unreliable or unavailable for some
reason and this syntax supports additional qualifiers to indicate the validity of the data values.

These data validity qualifiers are allowed on any primitive data element and apply to the value of that element. They are
also allowed on any constructed data element and apply to the values of all the child elements that constitute the value of
the construction, unless overridden by a child element's individual data validity qualifiers.

Values may have varying degrees of validity. Data that is known to be in error is represented with the 'error' attribute,
while the 'valueAge' attribute can be used to let the client gauge the staleness of a value that was retrieved or calculated
successfully at some point in the past.

Display text for nonstandard error conditions is provided with optional child elements.

X.3.8.1 'valueAge'

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

31 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

This optional attribute, of type xs:nonNegativeInteger, indicates the number of seconds since the last successful update
of the value of an element. Note that, like the value of a dynamic quantity itself, the value of this attribute is only
accurate at the moment the XML is generated.

Absence of this attribute indicates that the age of the value is unknown. This attribute is not inherited from a definition,
so its presence in a definition is meaningless.

X.3.8.2 'error'

This optional attribute, of type xs:nonNegativeInteger, indicates an error that affects the validity of the value of an
element. If the 'error' attribute is present, then the value of the element should not be trusted to be valid. The error
numbers are defined Clause N.13. When this attribute is equal to 0, meaning "unspecified error", optional <Error>
elements can be used to provide localized text to describe the error condition.

When no known error condition exists, this attribute shall be absent. This attribute is not inherited from a definition, so
its presence in a definition is meaningless.

See the description of the <Error> element for an example usage.

X.3.8.3 <Error>

This optional child element, of type xs:string, is used to provide localized display text for the error condition when the
'error' attribute is present and has the value zero. This element has an optional 'locale' attribute, of type xs:language, that
identifies the locale for the text. If the 'locale' attribute is absent, then the text is for the default locale. The <Error>
element is a single line plain text string whose contents is a local matter.

For example, if an error is not caused by one of the standard conditions, then the 'error' attribute has the value of zero and
the <Error> elements can be used to provide the display text (the default locale in this example is "en").

<Real name="zone-temp" error="0" >
 <Error>The device is not feeling well today</Error>
 <Error locale="de">Es ist heute nicht gesund</Error>
</Real>

When no known error condition exists, the <Error> elements and the 'error' attribute shall be absent. The 'error' attribute
and the <Error> elements are not inherited from a definition. However, the 'error' attribute and/or <Error> elements may
be specified without specifying a value to indicate that a value inherited from a definition is no longer valid.

If an <Error> element is present in a context without the 'error' attribute, the 'error' attribute is implicitly assigned the
value "0".

For example, the following shows that it is not necessary to include error="0" in a context with <Error> elements.

<Real name="aux-temp" >
 <Error>No aux device attached</Error>
</Real>

X.3.9 Length Restrictions

Primitive data elements that have variable length, <String>, <BitString>, and <OctetString>, can have their length
restricted by optional attributes.

The attributes that are used for restricting the length of primitive data elements are specified in the following clauses.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 32

The type and applicability of the range restriction attributes are summarized in Table X-x6.

Table X-x6. Length Restriction Attributes

Data Element Attribute Name Attribute Type

<BitString> minimumLength
maximumLength
minimumLengthForWriting
maximumLengthForWriting

xs:nonNegativeInteger

<OctetString> minimumLength
maximumLength
minimumLengthForWriting
maximumLengthForWriting

xs:nonNegativeInteger

<String> minimumLength
maximumLength
minimumLengthForWriting
maximumLengthForWriting
minimumEncodedLength
maximumEncodedLength
minimumEncodedLengthForWriting
maximumEncodedLengthForWriting

xs:nonNegativeInteger

X.3.9.1 'minimumLength'

This optional attribute, of the type specified in Table X-x6, provides the inclusive lower bound on the length of the
value. For the <String> element, this indicates the length, in characters, as represented in XML. For the <OctetString>
element, this represents the length in octets of the underlying binary data, not its character representation in XML. For
the <BitString> element, this represents the length in bits of the underlying binary data, not including any binary
encoding overhead, and not its character representation in XML.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is
unknown.

X.3.9.2 'maximumLength'

This optional attribute, of the type specified in Table X-x6, provides the inclusive upper bound on the length of the
value. For the <String> element, this indicates the length, in characters, as represented in XML. For the <OctetString>
element, this represents the length in octets of the underlying binary data, not its character representation in XML. For
the <BitString> element, this represents the length in bits of the underlying binary data, not including any binary
encoding overhead, and not its character representation in XML.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is
unknown.

X.3.9.3 'minimumLengthForWriting'

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

33 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

This optional attribute, of the type specified in Table X-x6, provides the inclusive lower bound on the length of the value
when written. For the <String> element, this indicates the length, in characters, as represented in XML. For the
<OctetString> element, this represents the length in octets of the underlying binary data, not its character representation
in XML. For the <BitString> element, this represents the length in bits of the underlying binary data, not including any
binary encoding overhead, and not its character representation in XML.

The default value of this attribute is the value of the 'minimumLength' attribute.

X.3.9.4 'maximumLengthForWriting'

This optional attribute, of the type specified in Table X-x6, provides the inclusive upper bound on the length of the value
when written. For the <String> element, this indicates the length in characters, as represented in XML. For the
<OctetString> element, this represents the length in octets of the underlying binary data, not its character representation
in XML. For the <BitString> element, this represents the length in bits of the underlying binary data, not including any
binary encoding overhead, and not its character representation in XML.

The default value of this attribute is the value of the 'maximumLength' attribute.

X.3.9.5 'minimumEncodedLength'

This optional attribute, of the type specified in Table X-x6, provides the inclusive lower bound on the length of the
encoded value, in octets, when it is encoded for BACnet as described in Clause 20. This attribute is applicable only to the
<String> element.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is
unknown.

X.3.9.6 'maximumEncodedLength'

This optional attribute, of the type specified in Table X-x6, provides the inclusive upper bound on the length of the
encoded value, in octets, when it is encoded for BACnet as described in Clause 20. This attribute is applicable only to the
<String> element.

The default value of this attribute is undefined, meaning that the length of the value is unlimited or that the limit is
unknown.

X.3.9.7 'minimumEncodedLengthForWriting'

This optional attribute, of the type specified in Table X-x6, provides the inclusive lower bound on the length of the
encoded value, in octets, when it is encoded for writing with BACnet as described in Clause 20. This attribute is
applicable only to the <String> element.

The default value of this attribute is the value of the 'minimumEncodedLength' attribute.

X.3.9.8 'maximumEncodedLengthForWriting'

This optional attribute, of the type specified in Table X-x6, provides the inclusive upper bound for writing on the length
of the encoded value, in octets, when it is encoded for writing with BACnet as described in Clause 20. This attribute is
applicable only to the <String> element.

The default value of this attribute is the value of the 'maximumEncodedLength' attribute.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 34

X.3.10 Collections

Some constructed values are variable sized collections of elements of the same type. The three types of collections
defined in this annex are <Array>, <List>, and <SequenceOf>.

Structurally in XML, these three are identical. The difference between them is in their use for modeling BACnet data,
where their names correspond to the types of access methods available through BACnet services. Following the
semantics of the like-named BACnet constructs, lists are not expected to contain identical members but Arrays and
SequenceOfs may. See Clause X.6.

All three types of collection have optional attributes that are specific to collections. These attributes can be applied to the
<Array>, <List>, and <SequenceOf> elements.

If the type of the members is not a built in type or a previously defined type, an anonymous type can be declared using
the <MemberTypeDefinition> child element instead of the 'memberType' attribute. The 'memberType' attribute cannot
be used simultaneously with the <MemberTypeDefinition> child element.

X.3.10.1 'minimumSize'

This optional attribute, of type xs:nonNegativeInteger, indicates the minimum size that the collection is likely to be able
to reach. Variable sized collections typically have zero as a minimum size, but fixed size collections do not. Fixed sized
collections shall specify both 'minimumSize' and 'maximumSize' as the same value.

The default value of this attribute is "0".

X.3.10.2 'maximumSize'

This optional attribute, of type xs:nonNegativeInteger, indicates the maximum size that the collection is likely to be able
to reach. Fixed sized collections shall specify both 'minimumSize' and 'maximumSize' as the same value.

The default value of this attribute is undefined, implying an unlimited or unknown maximum size.

X.3.10.3 'memberType'

This optional attribute, of type xs:string, indicates the name of the existing defined type that is to be used as the type of
the members of the collection. This can be either the name of a type defined elsewhere in XML, or the name of one of
the built-in types: "Any", "Array", "BitString", "Boolean", "Choice", "Date", "DatePattern", "DateTime",
“DateTimePattern”, "Double", "Enumerated", "Integer", "List", "Null", "Object", "ObjectIdentifier",
“ObjectIdentifierPattern”, "OctetString", "Real", "Sequence", "SequenceOf", "Time", "TimePattern", "Unsigned", or
"WeekNDay".

All members of the collection shall be of the same type. If a collection of different types is desired, then a
'memberType' of "Any" can be used.

If the type of the members is not a built-in type or a previously defined type, an anonymous type can be declared using
the <MemberTypeDefinition> child element instead of the 'memberType' attribute. The 'memberType' attribute cannot
be used simultaneously with the <MemberTypeDefinition> child element.

The default value of this attribute is "Any", unless the <MemberTypeDefinition> element is present, in which case the
value of this attribute is undefined.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

35 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

An inherited 'memberType' attribute cannot be changed, and a subsequent <MemberTypeDefinition> element cannot
override it. Therefore, once defined, the member type of a collection cannot change.

An example of the 'memberType' attribute is given in the description of the <MemberTypeDefinition> element.

X.3.10.4 <MemberTypeDefinition>

This optional child element is used to provide an anonymous in-line definition for the type of the members of a
collection. The <MemberTypeDefinition> element has a required single child element that defines the type for the
members. The child element may use the 'extends' attribute to refer to another type that it is extending. The 'name' of the
child element is ignored and the 'type' and 'overlays' attributes are not applicable.

This example shows the three kinds of member type definitions for three different <SequenceOf> elements. The
<SequenceOf> named "listOfEventSummaries" defines an anonymous type for its members using the
<MemberTypeDefinition> element, the <SequenceOf> named "eventTimeStamps" uses the 'memberType' attribute to
refer to a previously defined type, and the <SequenceOf> named "eventPriorities" uses the 'memberType' attribute to
refer to the built-in primitive type "Unsigned".

 <Sequence name="0-GetEventInformation-ACK">
 <SequenceOf name="listOfEventSummaries" …>
 <MemberTypeDefinition>
 <Sequence>
 …
 <SequenceOf name="eventTimeStamps" memberType="0-BACnetTimeStamp" … />
 …
 <SequenceOf name="eventPriorities" memberType="Unsigned" … />
 </Sequence>
 </MemberTypeDefinition>
 </SequenceOf>
 <Boolean name="moreEvents"…/>
</Sequence>

An inherited <MemberTypeDefinition> element cannot be changed, and a subsequent 'memberType' attribute cannot
override it. Therefore, once defined, the member type of a collection cannot change.

X.3.11 Representing Primitive Data

Primitive data is represented by a single XML element and its associated metadata. The data elements available for
modeling primitive BACnet data are: <BitString>, <Boolean>, <Date>, <DatePattern>, <DateTime>,
<DateTimePattern>, <Double>, <Enumerated>, <Integer>, <Null>, <ObjectIdentifier>, <ObjectIdentifierPattern>,
<OctetString>, <Real>, <Time>, <TimePattern>, <Unsigned>, <WeekNDay>. These are individually described more
fully in the following clauses.

X.3.11.1 <Null>

The BACnet Null data is encoded with the XML element <Null>. Other than the common attributes and child elements
described in Clauses X.3.1 and X.3.2, there are no other attributes or child elements for this element.

X.3.11.2 <Boolean>

BACnet Boolean data is encoded with the element <Boolean>. In addition to the common attributes and child elements
described in Clauses X.3.1 and X.3.2, the <Boolean> element can also have the value specifier described in Clause
X.3.5, and the named values described in Clause X.3.3.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 36

X.3.11.3 <Unsigned>

BACnet Unsigned Integer data is encoded with the element <Unsigned>. In addition to the common attributes and child
elements described in Clauses X.3.1 and X.3.2, the <Unsigned> element can also have the value specifier described in
Clause X.3.5, the range restrictions described in Clause X.3.6, the named values described in Clause X.3.3, and the units
specifier described in X.3.7.

X.3.11.4 <Integer>

BACnet Signed Integer data is encoded with the element <Integer>. In addition to the common attributes and child
elements described in Clauses X.3.1 and X.3.2, the <Integer> element can also have the value specifier described in
Clause X.3.5, the range restrictions described in Clause X.3.6, the named values described in Clause X.3.3, and the units
specifier described in X.3.7.

X.3.11.5 <Real>

BACnet Real data is encoded with the element <Real>. In addition to the common attributes and child elements
described in Clauses X.3.1 and X.3.2, the <Real> element can also have the value specifier described in Clause X.3.5,
the range restrictions described in Clause X.3.6, the named values described in Clause X.3.3, and the units specifier
described in X.3.7.

X.3.11.6 <Double>

BACnet Double data is encoded with the element <Double>. In addition to the common attributes and child elements
described in Clauses X.3.1 and X.3.2, the <Double> element can also have the value specifier described in Clause X.3.5,
the range restrictions described in Clause X.3.6, the named values described in Clause X.3.3, and the units specifier
described in X.3.7.

X.3.11.7 <OctetString>

BACnet Octet String primitive data is encoded with the element <OctetString>. In addition to the common attributes and
child elements described in Clauses X.3.1 and X.3.2, the <OctetString> element can also have the value specifier
described in Clause X.3.5, the length restrictions described in clause X.3.9, and the named values described in Clause
X.3.3.

X.3.11.8 <String>

BACnet Character String primitive data is encoded with the element <String>. In addition to the common attributes and
child elements described in Clauses X.3.1 and X.3.2, the <String> element can also have the value specifiers described in
Clause X.3.5, the length restrictions described in clause X.3.9, and the named values described in Clause X.3.3.

X.3.11.9 <BitString>

BACnet BitString primitive data is encoded with the XML element <BitString>. In addition to the common attributes
and child elements described in Clauses X.3.1 and X.3.2, the <BitString> element can also have the value specifiers
described in Clause X.3.5, the length restrictions described in clause X.3.9, and the named values described in Clause
X.3.3.

The value of a <BitString>, expressed in the ‘value’ attribute, is an xs:string containing a semicolon-separated list of
named or numeric bits that are "true". Identifiers for bits that are "false" are not present in the value string. The names
for the named bit values are defined as child <Bit> elements in the optional <NamedBits> element. The individual bits in
the value string are identified either by textual identifier, matching exactly the ‘name’ attribute of a <Bit> element, or
numerically, representing the numerical bit position within the bit string. For readability, the name form is preferred to
the numeric form, when possible.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

37 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

An alternate form of the value may be contained in an optional <Value> child element. The children of the <Value>
element are <Bit> elements. Only the <Bit> elements that are present are true. If the <BitString> has a defined type, the
<Bit> elements in the <Value> are restricted to the set that was defined in the type definition. . For readability, the name
form is preferred to the numeric form, when possible.
.

X.3.11.10 <Enumerated>

BACnet Enumerated primitive data is encoded with the element <Enumerated>. In addition to the common attributes and
child elements described in Clauses X.3.1 and X.3.2, the <Enumerated> element can also have the value specifier
described in Clause X.3.5, the range restrictions described in Clause X.3.6, and the named values described in Clause
X.3.3.

An extensible Enumerated data range may be defined with the range restrictions attributes. If neither 'minimum' nor
'maximum' are present, then the enumeration is not extensible and only the values specified by the named values are
possible.

The value of an <Enumerated> element is an xs:string. This string is either a decimal formatted number, in the same
form as xs:nonNegativeInteger, or a string that matches exactly the 'name' attribute of a child element of
<NamedValues>. For readability, the name form is preferred to the numeric form, when possible.

For nonextensible Enumerations, if the number format is used, it shall match the value of one of the child elements of
<NamedValue>. For extensible Enumerations, the numeric value is not restricted to match a child element of
<NamedValues>, but its value may be restricted by the 'minimum' and 'maximum' attributes, if present.

X.3.11.11 <Date>

BACnet Date data that represents either a single specific date or a wholly "unspecified" date is encoded with the element
<Date>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2, the <Date>
element can also have the value specifiers described in Clause X.3.5, the range restrictions described in Clause X.3.6,
and the named values described in Clause X.3.3.

X.3.11.12 <DatePattern>

BACnet Date data that is allowed to contain individually "unspecified" fields is encoded with the element
<DatePattern>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2, the
<DatePattern> element can also have the value specifier described in Clause X.3.5 and the named values described in
Clause X.3.3.

The value of a <DatePattern> element is an xs:string. The format of the string value is "YYYY-MM-DD" or "YYYY-
MM-DD W", where:

YYYY is either a four-digit year or a single asterisk ("*") character to indicate "unspecified",

MM is either a two-digit month or a single asterisk ("*") character to indicate "unspecified",

DD is either a two-digit day of the month or a single asterisk ("*") character to indicate "unspecified",

W is either the one-digit day of the week (1=Monday) or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The YYYY, MM and DD fields
are separated by a single dash ("-") character and the optional W field is separated from the DD field by a single space
character. It the W field is not present, then neither is the space separator.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 38

The W field is required to be present if any of the YYYY, MM, or DD fields is "unspecified". It is allowed to be absent
only if the YYY, MM, and DD specify a single date and the W field can thus be calculated unambiguously. When a field
is "unspecified", it is encoded for BACnet binary communications as the value 255.

The allowed special values for the date fields are defined in Clause 21.

X.3.11.13 <DateTime>

BACnet DateTime data that represents either a single specific date and time or a wholly "unspecified" date and time is
encoded with the element <DateTime>. In addition to the common attributes and child elements described in Clauses
X.3.1 and X.3.2, the <DateTime> element can also have the value specifiers described in Clause X.3.5, the range
restrictions described in Clause X.3.6, and the named values described in Clause X.3.3.

X.3.11.14 <DateTimePattern>

BACnet DateTime data that is allowed to contain individually "unspecified" fields is encoded with the element
<DateTimePattern>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2, the
<DateTimePattern> element can also have the value specifier described in Clause X.3.5 and the named values described
in Clause X.3.3.

The value of a <DateTimePattern> element is an xs:string. The format of the string value is "YYYY-MM-DD
hh:mm:ss.nn " or "YYYY-MM-DD W hh:mm:ss.nn ", where:

YYYY is either a four-digit year or a single asterisk ("*") character to indicate "unspecified",

MM is either a two-digit month or a single asterisk ("*") character to indicate "unspecified",

DD is either a two-digit day of the month or a single asterisk ("*") character to indicate "unspecified",

W is either the one-digit day of the week (1=Monday) or a single asterisk ("*") character to indicate "unspecified",

hh is either a two-digit hour or a single asterisk ("*") character to indicate "unspecified",

mm is either a two-digit minute or a single asterisk ("*") character to indicate "unspecified",

ss is either a two-digit second or a single asterisk ("*") character to indicate "unspecified",

nn is either the two-digit hundredths or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The YYYY, MM and DD fields
are separated by a single dash ("-") character and the optional W field is separated from the DD field and from the hh
field by a single space character. It the W field is not present, then neither is the preceding space separator. The hh, mm,
and ss fields are separated from each other by a single colon (":") character and the nn field is separated from the ss field
by a single period (".") character. When a field is "unspecified", it is encoded for BACnet binary communications as the
value 255.

The W field is required to be present if any of the YYYY, MM, or DD fields is "unspecified". It is allowed to be absent
only if the YYY, MM, and DD specify a single date and the W field can thus be calculated unambiguously. When a field
is "unspecified", it is encoded for BACnet binary communications as the value 255.

The allowed special values for the date fields are defined in Clause 21.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

39 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

X.3.11.15 <Time>

BACnet Time data that represents either a single specific time or a wholly "unspecified" time is encoded with the
element <Time>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2, the
<Time> element can also have the value specifiers described in Clause X.3.5, the range restrictions described in Clause
X.3.6, and the named values described in Clause X.3.3.

X.3.11.16 <TimePattern>

BACnet Time data that that is allowed to contain individually "unspecified" fields is encoded with the element
<TimePattern>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2, the
<Time> element can also have the value specifier described in Clause X.3.5 and the named values described in Clause
X.3.3.

The value of an <TimePattern> element is an xs:string. The format of the string value is "hh:mm:ss.nn", where:

hh is either a two-digit hour or a single asterisk ("*") character to indicate "unspecified",

mm is either a two-digit minute or a single asterisk ("*") character to indicate "unspecified",

ss is either a two-digit second or a single asterisk ("*") character to indicate "unspecified",

nn is either the two-digit hundredths or a single asterisk ("*") character to indicate "unspecified".

The numeric fields shall have leading zeros to achieve the number of digits specified. The hh, mm, and ss fields are
separated by a single colon (":") character and the nn field is separated from the ss field by a single period (".") character.
When a field is "unspecified", it is encoded for BACnet binary communications as the value 255.

X.3.11.17 <ObjectIdentifier>

BACnet Object Identifier primitive data is encoded with the element <ObjectIdentifier>. In addition to the common
attributes and child elements described in Clauses X.3.1 and X.3.2, the <ObjectIdentifier> element can also have the
value specifiers described in Clause X.3.5, the range restrictions described in Clause X.3.6, and the named values
described in Clause X.3.3.

The value of an <ObjectIdentifier> elements is an xs:string. The format of this string is "T,N", where

T represents the type and is either a decimal number with no leading zeroes, or a standard type name exactly equal
to the names specified in the definition for BACnetObjectTypes in Clause 21, or from the XML definition of "0-
BACnetObjectType", if available.

N represents the instance number and is a decimal number with no leading zeroes.

When the "unspecifiedValue" attribute is true, the value encoded for BACnet binary communications for the type field is
a local matter and the instance field shall be encoded as the value 4194303.

X.3.11.18 <ObjectIdentifierPattern>

BACnet Object Identifier primitive data that allows independent specification of type and instance is encoded with the
element <ObjectIdentifierPattern>. In addition to the common attributes and child elements described in Clauses X.3.1
and X.3.2, the <ObjectIdentifierPattern> element can also have the value specifiers described in Clause X.3.5, the range
restrictions described in Clause X.3.6, and the named values described in Clause X.3.3.

The value of an <ObjectIdentifierPattern> elements is an xs:string. The format of this string is "T,N", where

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 40

T is either a type identifier or a single asterisk ("*") character to indicate "unspecified", The type identifier is either a
decimal number with no leading zeroes, or a standard type name exactly equal to the names specified in the
definition for BACnetObjectTypes in Clause 21, or from the XML definition of "0-BACnetObjectType", if
available.

N is either an instance number or a single asterisk ("*") character to indicate "unspecified". The instance number is a
decimal number with no leading zeroes.

When the type is "unspecified", the value encoded for BACnet binary communications is a local matter. When the
instance number is "unspecified", it shall be encoded for BACnet binary communications as the value 4194303.

X.3.11.19 <WeekNDay>

BACnetWeekNDay primitive data is encoded with the element <WeekNDay>. In addition to the common attributes and
child elements described in Clauses X.3.1 and X.3.2, the <WeekNDay> element can also have the value specifier
described in Clause X.3.5 and the named values described in Clause X.3.3.

The value of an <WeekNDay> elements is an xs:string. The format of the string value is "M,W,D", where:

M is either a decimal month identifier or an asterisk ("*") character to indicate "unspecified",

W is either a decimal week identifier or an asterisk ("*") character to indicate "unspecified",

D is either a decimal day-of-week identifier or an asterisk ("*") character to indicate "unspecified".

The numeric fields do not have leading zeros. The M, W, and D fields are separated by a comma (",") character. The
range and meaning of the numeric values for M, W and D is described in the BACnetWeekNDay production in Clause
21. When a field is "unspecified", it is encoded for BACnet binary communications as the value 255.

X.3.12 Representing Constructed Data

Constructed data is represented by an XML element that contains one or more child elements that provide the value for
the construct.

X.3.12.1 <Sequence>

BACnet SEQUENCE constructed data is encoded with the element <Sequence>. In addition to the common attributes
and child elements described in Clauses X.3.1 and X.3.2, the <Sequence> element can also have optional child elements
representing the members of the sequence.

For modeling BACnet data, the allowed child elements of <Sequence> are: <Any>, <BitString>, <Boolean>, <Choice>,
<Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>, <Integer>, <Null>,
<ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay>. For modeling abstract data, <Sequence> additionally allows the child
elements <Array>, <List>, and <Object>.

The 'name' attribute of a child element in a <Sequence> is significant. It is used to match this child element with a
corresponding child element in a type definition. The name of a child element in a <Sequence> shall be unique among
the sibling elements of the <Sequence>.

Named child elements provided in an instance shall exist in the type definition and shall be of the same element type,
with the exception that the <Any> element in a definition can be replaced by any appropriate data element in an instance.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

41 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

The order of definition of sequence members in XML is significant, as it is in Clause 21. New named elements added as
part of a new definition using the 'extends' attribute are added to the end of the existing elements in the sequence. The
order of sequence members in an instance is not significant, because the members are matched by their corresponding
'name' attribute and not by position.

X.3.12.2 <Choice>

BACnet CHOICE constructed data is encoded with the element <Choice>. In addition to the common attributes and
child elements described in Clauses X.3.1 and X.3.2, the <Choice> element can also have an optional <Choices> child
element that defines the available choices and a single child data element holding the currently chosen data.

The single named child data element provides the value for the <Choice> and shall exist in the <Choices> element and
shall be of the same element type, with the exception that the <Any> element in a definition can be replaced by any data
element in an instance.

A single named child data element provided in a definition of a <Choice> can be used to provide a default value for the
type. A child data element in an instance of that type replaces the default child data element from the definition since
there can only be one chosen element at a time.

X.3.12.2.1 <Choices>

The list of possible choices for a <Choice> type is provided by the <Choices> element, which is an optional child
element of <Choice>. All of the child elements of <Choices> shall have non-empty 'name' attributes with values unique
among their sibling elements.

For modeling BACnet data, the allowed child elements of <Choices> are the data elements: <Any>, <BitString>,
<Boolean>, <Choice>, <Date>, <DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>,
<Integer>, <Null>, <ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>,
<String>, <Time>, <TimePattern>, <Unsigned>, and <WeekNDay>. For modeling abstract data, <Choices> additionally
allows the child data elements <Array>, <List>, and <Object>.

The order of the definition of choice members in <Choices> is not significant. The ‘name’ attributes of the child
elements are significant and are used to match the child element in an instance or overlay with a corresponding child
element in a type definition. The names shall be unique among sibling elements.

The <Choices> element can only appear in a definition context, since adding new choices constitutes a structural change
to the data. When inheriting a <Choices> element from a definition, the newly specified child elements are logically
added to the list of existing child elements of the inherited <Choices> but in no prescribed order.

X.3.12.2.2 'allowedChoices'

This optional attribute, of type xs:string, indicates a restricted list of the available choices that are allowed to be present
in an instance. The value of this attribute is a semicolon-separated concatenation of the 'name' attributes of the child
elements of the <Choices> element. This is typically used by a derived type to restrict the available choices that it
inherited from its definition.

The default value for this attribute is "" (empty string), which means that there are no restrictions on what child elements
of <Choices> can be present in an instance.

X.3.12.3 <Array>

The BACnetARRAY construct is encoded with the element <Array>. In addition to the common attributes and child
elements described in Clauses X.3.1 and X.3.2, the <Array> element can also have the additional capabilities of
Collections elements described in Clause X.3.10.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 42

The child elements in a <Array> are not required to have 'name' attributes, and the order of the elements in an instance is
significant. When 'name' attributes are not provided, the child elements specify the values for the array, in order, starting
with array index 1.

Although the child elements of <Array> are not required to have 'name' attributes, when provided, the 'name' attribute
indicates the indexed position in the array for which the child element is providing a value. This provides for a compact
representation in XML where the majority of the array members are equal to their default values. Array positions that
are not provided a value with an appropriately named child element retain their default value from their definition. If a
'name' attribute is provided, it shall be formatted as an xs:nonNegativeNumber, indicating the index position in the array.
The first position in an array is index 1. If the 'name' attribute is omitted, then the child element is assigned to the next
higher index in the array, starting with index 1.

Child elements provided in a type definition of a <Array> can be used to provide a default value for the type. However,
any child elements in an instance of that type completely replace the default child elements since instance values of
Collections are not merged with their definition.

X.3.12.4 <List>

The "List of" construct is encoded with the element <List>. In addition to the common attributes and child elements
described in Clauses X.3.1 and X.3.2, the <List> element can also have the additional capabilities of Collections
elements described in Clause X.3.10.

The child elements in a <List> do not have 'name' attributes, and the order of the elements in an instance is not
significant.

Child elements provided in a type definition of a <List> can be used to provide a default value for the type. However,
any child elements in an instance of that type completely replace the default child elements since instance values of
Collections are not merged with their definition.

X.3.12.5 <SequenceOf>

BACnet SEQUENCE OF constructed data that is not designated as a BACnetARRAY or a "List of" is encoded with the
element <SequenceOf>. In addition to the common attributes and child elements described in Clauses X.3.1 and X.3.2,
the <SequenceOf> element can also have the additional capabilities of Collections elements described in Clause X.3.10.

The child elements in a <SequenceOf> do not have 'name' attributes, and the order of the elements in an instance is
significant.

Child elements provided in a type definition of a <SequenceOf> can be used to provide a default value for the type.
However, any child elements in an instance of that type completely replace the default child elements since instance
values of Collections are not merged with their definition.

X.3.13 Representing Data of Unknown Type

Data whose type is not known or not restricted by a definition is represented by BACnet in ASN.1 as ABSTRACT-
SYNTAX.&Type, and is represented in XML using the <Any> element.

X.3.13.1 <Any>

The BACnet ABSTRACT-SYNTAX.&Type place-holder is represented with the XML element <Any>. In addition to
the common attributes and child elements described in Clauses X.3.1 and X.3.2, the <Any> element can also have an
attribute, 'allowedTypes', that defines which actual types are allowed to replace the <Any>. The <Any> element is only
allowed in a definition context. Instances shall replace the <Any> with an actual primitive or constructed data type,
subject to the 'allowedTypes' restrictions.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

43 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

X.3.13.1.1 'allowedTypes'

This optional attribute, of type xs:string, indicates a list of types that are allowed to be substituted for an <Any> element.
This attribute is only allowed on an <Any> element. The value of this attribute is equal to a semicolon-separated
concatenation of the strings suitable for use as a 'type' attribute value.

The default value for this attribute is "" (empty string), which means that there are no restrictions on what datatypes can
be substituted for the <Any>.

X.4 Expressing BACnet Objects and Properties in XML

BACnet objects are represented in XML by the <Object> element. The properties of a BACnet object are expressed as
child elements of the <Object> element and use the 'propertyIdentifier' attribute to specify the property identifier to use
when accessing the property using BACnet binary services.

X.4.1 <Object>

BACnet Objects are represented by the <Object> element. In addition to the common attributes and child elements
described in Clauses X.3.1 and X.3.2, the <Object> element can also have child elements representing the properties of
the object.

The allowed child elements of <Object> are: <Any>, <Array>, <BitString>, <Boolean>, <Choice>, <Date>,
<DatePattern>, <DateTime>, <DateTimePattern>, <Double>, <Enumerated>, <Integer>, <List>, <Null>,
<ObjectIdentifier>, <ObjectIdentifierPattern>, <OctetString>, <Real>, <Sequence>, <SequenceOf>, <String>, <Time>,
<TimePattern>, <Unsigned>, and <WeekNDay>.

The 'name' attribute of the child elements is significant and is used to match a child element in an instance with a
corresponding child element in a type definition. The names shall be unique among sibling elements.

Named child elements provided in an instance shall exist in the type definition and shall be of the same element type,
with the exception that the <Any> element in a definition can be replaced by any appropriate data element in an instance.

The order of the definition of child elements in <Object> is not significant. New named elements added as part of a new
definition using the 'extends' attribute are added to the list of child elements in no prescribed order.

X.5 Definitions, Types, Instances, and Inheritance

This annex specifies not only an XML syntax, but also an underlying data model that is expressed by the XML. This data
model has a type and instance system similar to many programming languages.

An element's "type" defines the set of attributes and child elements that it is allowed to have. Every element has a type,
whether explicitly or implicitly specified.

A "definition" is a named element that can be referred to by another element by using the 'type', 'extends', or 'overlays'
attribute. To alert the processor that a named type definition is being created, elements that are to be used as definitions
are declared within a "definition context", which means that the element is a direct child element of a <Definitions>
element. There are no limits on the number of definition contexts in an XML document. However, to simplify
processing, there is a requirement that definitions be declared before they are used. Because definitions cannot be
redefined, and are not scoped by context or depth, they are required to be globally unique. Because of this, if a definition
is encountered that has already been processed, it shall be discarded. Overlays may be used to augment existing
definitions without changing them structurally, See Clause X.3.1.4.

The terms "type" and "definition" are mostly synonymous and are often used interchangeably in this annex, but the term
"definition" always refers to a referenceable element (a "typedef" in some languages), whereas the term "type" can also
refer to anonymous types created inline within another definition and to the built-in types like "String".

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 44

An "instance" is an element that refers to a definition element using the 'type' attribute. If no 'type' attribute is provided,
the element's definition is implicitly identified by the element's XML tag name. For example, <String name="foo"> is
equivalent to <String name="foo" type="String">. So, every element has a definition even when the 'type' attribute is not
explicitly given.

The syntax defined in this annex is used for both definitions and instances. The two contexts are mostly identical:
definitions can have values, which can be considered their "default values", and instances can change previously defined
metadata like 'maximum'. However, there are some restrictions that are noted in this clause and elsewhere. For example,
an instance cannot add new child elements to <NamedValues> or add new members to a <Sequence>. Those actions can
only take place in a definition context.

Elements "inherit" from their definition by logically copying every attribute and child element of the definition into
themselves and then adding or overlaying the attributes and child elements that are specified for the element itself. Most
attributes and child elements are inherited without modification, but there are a few exceptions, such as the interactions
between 'value' and <Value>. These exceptions are described in the individual clauses that define the attributes or child
elements involved.

Even though some attributes, like 'requiredWith', are interpreted as a concatenated list of strings, newly specified
attribute value are not merged with inherited values. Attribute values are replaced in their entirety when a new value is
specified. Element-based lists, like <NamedValues>, <NamedBits>, and <Choices>, however, are merged with their
definitions, with new child elements being logically added to the list of exiting child elements.

Because of this logical copying behavior, the term "inherit" is used in this annex to mean not only the process of
adopting the existing members of a <Sequence> or <Object> when making an extension, as is the common use of the
term in Object Oriented languages, but also the process of receiving all the attributes and child elements logically from
an element's definition. In this data model, even elements that represent "primitive" data, like <Unsigned> are actually
composed of multiple parts, like 'maximum' and 'value', each of which would be modeled in Object Oriented languages
as individual properties or member variables of an "Unsigned" class or type and which may have default values that were
defined when they were declared or that were overridden by subsequent definitions or constructors. Those properties or
member variables are all logically part of any instance of that type and retain ("inherit" in this annex) their default values
unless overridden by the instance. This XML syntax and data model is designed to support that expected behavior.

For example, given this definition for a Real element named "999-Percent":

<Definitions>
 <Real name="999-Percent" value="50" minimum="0" maximum="100" units="percent" />
</Definitions>

Consider the following two other definitions.

<Definitions>
 <Real name="999-LimitedPercent1" type="999-Percent" minimum="10" maximum="90"/>
</Definitions>

<Definitions>
 <Real name="999-LimitedPercent2" value="50" minimum="10" maximum="90" units="percent"/>
</Definitions>

The types defined by "999-LimitedPercent1" and "999-LimitedPercent2" are logically equivalent because 999-
LimitedPercent1 inherited the 'value' and 'units' attributes from its definition, "999-Percent", and overrode the 'minimum'
and 'maximum' attributes to new values, while the "999-LimitedPercent2" specifies all attributes itself without the use of
a previous definition.

The above example also shows that a definition can specify any attributes that are allowed by its type, including 'value'.
So consider some instances of "999-Percent":

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

45 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

<Real type="999-Percent" />

<Real type="999-Percent" value="50" />

<Real type="999-Percent" value="25" />

<Real type="999-Percent" value="25" maximum="50" />

The first two instances are identical because the all of the attributes of the definition "999-Percent" are inherited by all
instances, making the value="50" in the second instance redundant. However, the third instance changes the value and so
the 'value' attribute is required. The fourth instance shows not only that values can be changed in instances but that any
non-structural metadata can be changed as well. The meaning of "nonstructural" is defined in the description of the 'type'
attribute.

Therefore, those four instances of "999-Percent" are logically equivalent to these four elements, respectively.

<Real value="50" minimum="0" maximum="100" units="percent" />

<Real value="50" minimum="0" maximum="100" units="percent" />

<Real value="25" minimum="0" maximum="100" units="percent" />

<Real value="25" minimum="0" maximum="50" units="percent" />

The copying behavior of the definition is cascaded as needed until elements with inherent definitions are reached. If,
while copying a set of child elements, one of the child elements itself has a 'type' or 'extends' attribute, before that child
element's own attributes and child elements are considered, the contents of its definition are logically copied into it.

For example, given these three definitions:

<Definitions>
 <Unsigned name="999-UnlimitedPercent" units="percent" />
 <Unsigned name="999-NormalPercent" type="999-UnlimitedPercent" maximum="100"/>
 <Unsigned name="999-LimitedPercent" type="999-NormalPercent" minimum="10" maximum="90"/>
</Definitions>

These two instances are logically equivalent:

<Unsigned type="999-LimitedPercent" value="75"/>
<Unsigned value="75" minimum="10" maximum="90" units="percent"/>

So far, these examples have been making new definitions by making nonstructural changes to existing definitions. In
these cases, the 'type' attribute was used within the definition context, rather than 'extends'. This is because an action like
specifying maximum="100" in the definition for "999-NormalPercent" above was not changing the data model. The
'maximum' attribute is always part of the data model for the <Unsigned> element, so this is a nonstructural change.

When structural changes are needed, the 'extends' attribute is used instead. This alerts the processor that changes to the
data model are allowed and, typically, that new child elements of a <Sequence>, <Object>, <Choices>, or
<NamedValues> element are being added.

For example, consider this definition for the type named "999-base".

<Definitions>
 <Sequence name="999-base">
 <Real name="foo"/>
 </Sequence>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 46

</Definitions>

The following extension creates a new definition for a type named "999-derived", which is based on "999-base".

<Definitions>
 <Sequence name="999-derived" extends="999-base">
 <Real name="bar"/>
 </Sequence>
</Definitions>

An instance of "999-derived" thus contains the members defined in "999-base" as well as those added in "999-derived".

<Sequence type="999-derived">
 <Real name="foo" value="1.0"/>
 <Real name="bar" value="2.0"/>
</Sequence>

The 'extends' attribute is only used in the definition context, but is not limited to the outermost element that is defining
the new type. When used on an inner element, a new anonymous type is created as an extension of the referenced type.
Thus, anonymous types are either fully defined in-line without the use of the 'extends' attribute, or are an extension of an
existing type by using the 'extends' attribute.

The following example shows all four methods of assigning a type for a new member. The "simple-member" uses a
built-in type with no need for the 'type' or 'extends' attributes. The "typed-member" refers to the "999-derived" type using
the 'type' attribute. The "full-anonymous-type-member" fully defines its anonymous type in-line, also without the use of
the 'type' or 'extends' attributes. The "extension-anonymous-type-member" extends an existing type using the 'extends'
attribute.

<Definitions>
 <Sequence name="999-example-1">
 <Real name="simple-member"/>
 <Sequence name="typed-member" type="999-derived"/>
 <Sequence name="full-anonymous-type-member">
 <Real name="foo" />
 <Real name="bar" />
 </Sequence>
 <Sequence name="extension-anonymous-type-member" extends="999-base">
 <Real name="bar" />
 </Sequence>
 </Sequence>
</Definitions>

The result is that the last three members defined above all have child members named "foo" and "bar". The first three
methods are all used in Clause 21 data structures; the fourth is a capability only of this XML syntax, since no Clause 21
data structure is an extension of another.

An instance of that sequence, providing a value for each member, looks like this.

<Sequence type="999-example-1">
 <Real name="simple-member" value="55"/>
 <Sequence name="typed-member"
 <Real name="foo" value="1"/>
 <Real name="bar" value="2" />
 </Sequence>
 <Sequence name="full-anonymous-type-member">
 <Real name="foo" value="1"/>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

47 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

 <Real name="bar" value="2" />
 </Sequence>
 <Sequence name="extension-anonymous-type-member">
 <Real name="foo" value="1"/>
 <Real name="bar" value="2" />
 </Sequence>
</Sequence>

The 'type' attribute on an element is required only where it cannot be determined from the context in which the element
appears. In the above example, the 'type' attribute for the three structured members of "999-example-1" was not given,
because child elements are always matched by name with their corresponding child element in the definition of their
parent element. This matching continues up the ancestor chain until the context cannot be determined, at which point a
'type', 'extends', or 'overlays' attribute shall be present to provide a context for all the descendant elements. The 'type'
attribute is not disallowed in contexts where it can be inferred, but it is not required, and should be left off where brevity
of XML is desirable.

In this example, the 'type' attribute is required to define the type for the member "propertyIdentifier".

<Definitions>
 <Sequence name="0-BACnetPropertyReference">
 <Enumerated name="propertyIdentifier" contextTag="0" type="0-BACnetPropertyIdentifier/>
 <Unsigned name="propertyArrayIndex" contextTag="1" optional="true" />
 </Sequence>
</Definitions>

In an XML representation of a value of that member, the use of the 'type' attribute on the outer element sets the context for
interpretation of the inner element; therefore, the 'type' attribute is not needed on the "propertyIdentifier" member because it
is known from the definition of 0-BACnetPropertyReference.

<Sequence type="0-BACnetPropertyReference" >
 <Enumerated name="propertyIdentifier" value="present-value" />
</Sequence>

The use of the 'type' attribute indicates that an element is an instance of a previously defined type definition and that its
attributes and child elements do not cause any structural changes. Conversely, the use of the 'extends' attribute indicates
that structural changes are allowed and expected. Consequently, the 'type' attribute can be used in any context, but the
'extends' attribute can only be used in a definition context where a new type is being created.

A "structural change" is defined as one that adds a new member to a <Sequence> or <Object>, adds a new choice to a
<Choice>, changes the member type of an <Array>, <List> or <SequenceOf>, adds any new named values, or changes
the 'optional', 'absent', or 'contextTag' attributes. Changes other than this are considered nonstructural. Typically, non-
structural changes are limited to assigning a value for the data, but in some cases, other nonstructural metadata may be
changed as well. See Clause X.x for more on contexts, and see Clause X.x for more on types and prototypes.

For an example of a nonstructural change, consider the definition:

<Definitions>
 <Sequence name="999-base">
 <Real name="foo"/>
 </Sequence>
</Definitions>

A new definition can be made from that without making structurally changes to "999-base" by using the 'type' attribute in
a definition context. Below, the existing member is only given new metadata; in this case, new limits.

<Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 48

 <Sequence name="999-limited-base" type="999-base">
 <Real name="foo" minimum="0.0" maximum="100.0" />
 </Sequence>
</Definitions>

If, however, a structure change is needed, the 'extends' attribute is used instead of the 'type' attribute. Below, the derived
type adds a new member.

<Definitions>
 <Sequence name="999-limited-base" extends="999-base">
 <Real name="bar" />
 </Sequence>
</Definitions>

Inheriting <NamedValues> is only allowed in a definition context and involves overlaying existing child elements and
adding new ones to the end.

For example, this enumeration definition creates an enumeration where red=0, green=1, and blue=6.

<Definitions>
 <Enumerated name="999-base-enum">
 <NamedValues>
 <Unsigned name="red" />
 <Unsigned name="green" />
 <Unsigned name="blue" value="6"/>
 </NamedValues>
 </Enumerated>
</Definitions>

An extension to that enumeration adds displayName attributes to the existing red, green, and blue named values and adds
new named values for purple and yellow. The order of existing named values is deliberately skewed in this example to
illustrate that it does not matter since they have already been assigned values, but the order of the newly added purple
and yellow is significant.

<Definitions>
 <Enumerated name="999-extended-enum" extends="999-base-enum">
 <NamedValues>
 <Unsigned name="green" displayName="Green"/>
 <Unsigned name="purple" displayName="Purple"/>
 <Unsigned name="blue" displayName="Blue"/>
 <Unsigned name="yellow" displayName="Yellow"/>
 <Unsigned name="red" displayName="Red"/>
 </NamedValues>
 </Enumerated>
</Definitions>

The above extension logically has an ordered list of named values.

 <NamedValues>
 <Unsigned name="red" displayName="Red" />
 <Unsigned name="green" displayName="Green" />
 <Unsigned name="blue" displayName="Blue" value="6"/>
 <Unsigned name="purple" displayName="Purple" />
 <Unsigned name="yellow" displayName="Yellow" />
 </NamedValues>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

49 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

This ordering means that the automatically assigned values for purple and yellow will be 7 and 8, respectively. Since this
was not obvious from the definition of "999-extended-enum", enumerations should explicitly assign values when those
enumerations are mapped to external data or where the numerical values are otherwise significant outside of XML.

Inheriting <Choices> is only allowed in a definition context and involves overlaying existing child elements and adding
new ones to the list of choices (order is not significant).

For example, this choice definition creates two choices and defines the default value of the choice itself to be the "joe"
choice.

<Definitions>
 <Choice name="999-base-choice">
 <Choices>
 <Unsigned name="fred" displayName="Fred"/>
 <Real name="joe" displayName="Joe"/>
 </Choices>
 <Real name="joe"/>
 </Choice>
</Definitions>

An extension to that choice changes a displayName of the existing choices and adds a new "bob" choice. Additionally, it
changes the default value of the choice itself to be "bob" rather then the default value for "999-base-choice", which was
"joe". The order of existing choices is deliberately skewed in this example to illustrate that it does not matter, and the
order of the resulting list of choices is not significant either.

<Definitions>
 <Choice name="999-extended-choice" extends="999-base-choice">
 <Choices>
 <Real name="joe" displayName="Joseph"/>
 <Double name="bob" displayName="Robert"/>
 <Unsigned name="fred" displayName="Frederick"/>
 </Choices>
 <Real name="bob"/>
 </Choice>
</Definitions>

X.6 Binary Encoding and Access Rules

The BACnet binary encoding of the primitive data elements defined in this annex is implied by the element's name and
matches expected encoding for the like-named structures and primitives defined in Clauses 20 and 21.

The <DateTime> and <DateTimePattern> elements are considered "primitive" data in XML but are actually encoded in
binary as the BACnetDateTime sequence defined in Clause 21. When encoding the weekday field of a <DatePattern> or
<DateTimePattern> element, if the weekday field is not specified in the XML, it shall be calculated to the appropriate
value for encoding in the binary.

The 'contextTag' attribute provides the context tag to use when required and its absence implies that the appropriate
application tag shall be used instead.

The accessibility of the data using BACnet services is also implied by the element's name and the 'propertyIdentifier'
attribute. When used as child elements of an <Object>, the <List> and <Array> elements imply the appropriate behavior
for BACnet "List of" and "BACnetARRAY of" properties when accessed using BACnet binary services. Individual
members of <Array> and <List> types may thus be addressable through the use of array indexes or list manipulation
services, whereas <SequenceOf> types are always treated as a whole. For all child elements of an <Object>, the

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 50

'propertyIdentifier' attribute provides the property number that can be used to access the data with BACnet binary
services.

X.7 Extensibility

Both the XML syntax and the data it represents can be extended.

X.7.1 XML extensions

Documents conforming to this standard can be extended through the use of XML attributes and elements from other
XML namespaces. XML attributes from other namespaces are allowed on any standard element, and elements from other
namespaces are allowed under any standard element that already has child elements defined for it in this standard. With
the exception of the <Documentation> element, this standard does not use mixed content, so any element other than
<Documentation> that uses body text may not be extended with elements from other namespaces.

X.7.2 Data Model Extensions

Extensions to the data represented by this standard XML syntax is accomplished with the <Extensions> element defined
in Clause X.3.2.6. Normally, these extensions represent data that is beyond what is accessible through standard BACnet
binary services but which may be of interest to the consumer of the XML, or they may represent extended data that is
accessible through BACnet Web services or by other means.

Standard elements and attributes can both be extended with proprietary attributes. The names of proprietary attributes
shall begin with a period character (".") to prevent conflict with standard attribute names. While not required, it is
recommended that proprietary attributes also use a vendor-specific prefix, following the required period character, to
prevent conflicts among proprietary attributes.

Standard attributes, like displayName, can be extended with standard attributes that are appropriate to their datatypes.
While this clause provides the syntax and method for extending the standard attributes, it makes no requirement that
consumers of this XML understand or process any of these extensions. When extending standard attributes, the names
used for the extensions use the naming convention of the corresponding attributes in the Annex N data model and are
shown in the following table. The table also indicates an "effective type" which defines the standard element type that
shall be used as the child of <Extensions> when extending the standard attribute.

Table X-x7. Standard Attribute Extensibility

Attribute Name Extension Name Effective Type
type n/a1 n/a1
extends n/a1 n/a1
overlays n/a1 n/a1
displayName "DisplayName" <String>
displayNameForWriting "DisplayNameForWriting" <String>
description "Description" <String>
writable "Writable" <Boolean>
readable "Readable" <Boolean>
commandable "Commandable" <Boolean>
associatedWith "AssociatedWith" <String>
requiredWith "RequiredWith" <String>
requiredWithout "RequiredWithout" <String>
notPresentWith "NotPresentWith" <String>
writableWhen "WritableWhen" <String>
requiredWhen "RequiredWhen" <String>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

51 ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008

writeEffective "WriteEffective" <Enumerated>
optional "Optional" <Boolean>
absent "Absent" <Boolean>
variability "Variability" <Enumerated>
volatility "Volatility" <Enumerated>
contextTag "ContextTag" <Unsigned>
propertyIdentifier "PropertyIdentifier" <Unsigned>
notForWriting "NotForWriting" <Boolean>
notForReading "NotForReading" <Boolean>
minimum "Minimum" varies2
maximum "Maximum" varies2
minimumForWriting "MinimumForWriting" varies2
maximumForWriting "MaximumForWriting" varies2
resolution "Resolution" varies2
minimumLength "MinimumLength" <Unsigned>
maximumLength "MaximumLength" <Unsigned>
minimumLengthForWriting "MinimumLengthForWriting" <Unsigned>
maximumLengthForWriting "MaximumLengthForWriting" <Unsigned>
minimumEncodedLength "MinimumEncodedLength" <Unsigned>
maximumEncodedLength "MaximumEncodedLength" <Unsigned>
minimumEncodedLengthForWriting "MinimumEncodedLengthForWriting" <Unsigned>
maximumEncodedLengthForWriting "MaximumEncodedLengthForWriting" <Unsigned>
minimumSize "MinimumSize" <Unsigned>
maximumSize "MaximumSize" <Unsigned>
memberType "MemberType" <String>
allowedTypes "AllowedTypes" <String>
allowedChoices "AllowedChoices" <String>
bit "Bit" <Unsigned>
units "Units" <String>
value n/a1 n/a1
charset n/a1 n/a1
codepage n/a1 n/a1
length n/a1 n/a1
error n/a1 n/a1
locale n/a1 n/a1

1 The attributes marked as n/a are not extensible because they are not "metadata". They are either used to define
the data type or they are an indivisible part of the data value.
2 The effective type of the range restriction attributes is based on the enclosing element. The effective type is
<Unsigned> for the enclosing types <Enumerated>, <ObjectIdentifier>, and <ObjectIdentifierPattern>, and is
equal to the enclosing type for all others.

The following example shows the standard attribute, 'maximumLength', being extended with the standard attributes
'writable' and 'writeEffective', and the standard element <String> being extended with a proprietary attribute ".999-
WritePrivilegeLevel".

<Definitions>
 <Object name="999-ExampleObject">
 <String name="write-me" writable="true" maximumLength="50" >
 <Extensions>
 <Unsigned name="MaximumLength" writable="true" writeEffective="on-device-restart" />
 <Integer name=".999-WritePrivilegeLevel" value="6" />
 </Extensions>
 </Real>
 </Object >
</Definitions>

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only.
Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 135-2008 52

[Add a new entry to History of Revisions, p. 688]

(This History of Revisions is not part of this standard. It is merely informative and does not contain requirements
necessary for conformance to the standard.)

 HISTORY OF REVISIONS

Protocol Summary of Changes to the Standard
Version Revision

… … …
1 10 Addendum t to ANSI/ASHRAE 135-2008

Approved by the ASHRAE Standards Committee January 23, 2010; by the
ASHRAE Board of Directors January 27, 2010; and by the American
National Standards Institute January 28, 2010.

1. Add XML data formats.

POLICY STATEMENT DEFINING ASHRAE’S CONCERN
FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s
members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and
components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted
standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and
outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other
responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure,
continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new
and revised standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date standards and design considerations as the material is
systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek
out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and
guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s
intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope
operates. However, energy source selection and the possible environmental impact due to the energy source and energy
transportation will be considered where possible. Recommendations concerning energy source selection should be made by
its members.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

