Addressing visual comfort, daylight access and solar shading with fixed external shading devices: A simplified approach

Focus areas: Geometric approach-Early design stage-Daylight access(Sky view factor)-Visual comfort(Guth position index)-Radiation mitigation(SHGC)-Resultant Energy Use Intensity

Glare mitigation through Guth position index

3

4

- Guth position index allocates scores to view angles with respect to user direction and perception of glare
- Index diagram is projected on the shading device, creating a division in the parts of shading device as per the criticality gradation

Resultant LITERADE case: Overlapping of parameter

- Result includes overlap of Solar radiation logic & Guth position index gradation.
- Perforation sizes used as one of the methods to control light transmission as per criticality.
- Resultant Literade case balances daylight access, radiation control and glare mitigation.

Colour code	Radiation protection (Shaderade)	Glare protection (Guth position)	Daylight access	Design decision	
	Critical	Critical	Non-	Least light transmission	
			critical	(20% open)	
	Critical	Intermediate	Non-	Least light transmission	
			critical	(20% open)	
	Critical	Non-critical	Non-	Medium light	
			critical	transmission (40% open)	
	Not critical	Critical	Non-	Least light transmission	
			critical	(20% open)	
	Not critical	Intermediate	Non-	Medium light	
			critical	transmission (40% open)	
	Not critical	Non-critical	Non-	Maximum light	
			critical	transmission (80% open)	

LITERADE case (Proposed)

PERFORMANCE ANALYSIS

• For South oriented window, 10% improvement in Daylight autonomy from ECBC case and 12% improvement in DGP from SHADERADE case, hence balanced.

• Graph represents Solar radiation transmission through window annually. 13% reduction in annual Energy Use Intensity (EUI) observed

Submitted by Mokshika Arora Guided by Prof. Minu Agarwal CEPT University, India

