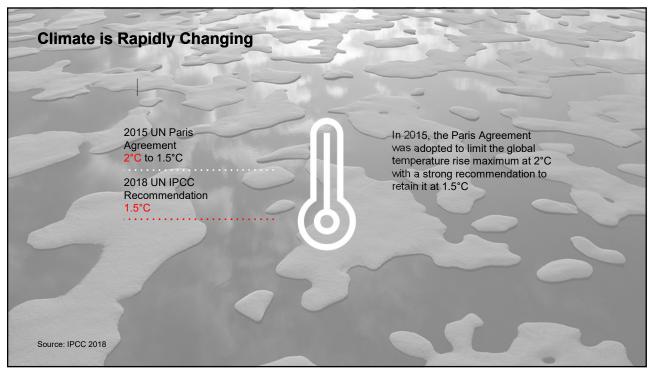
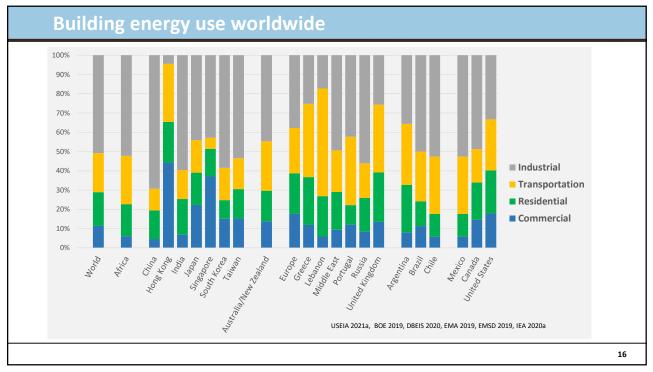
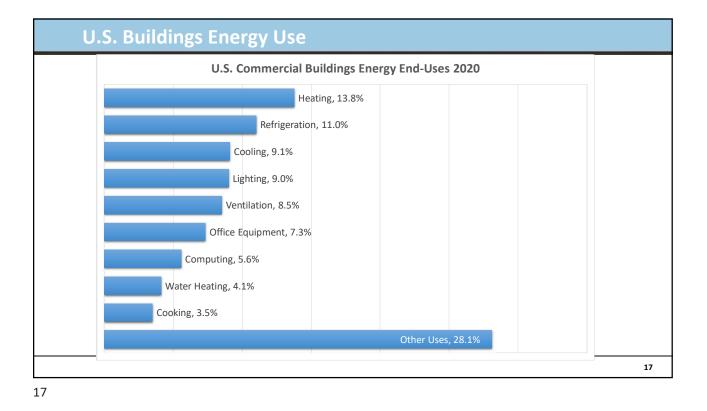
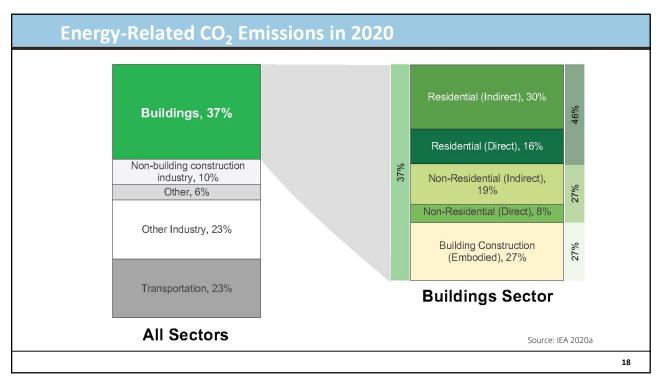
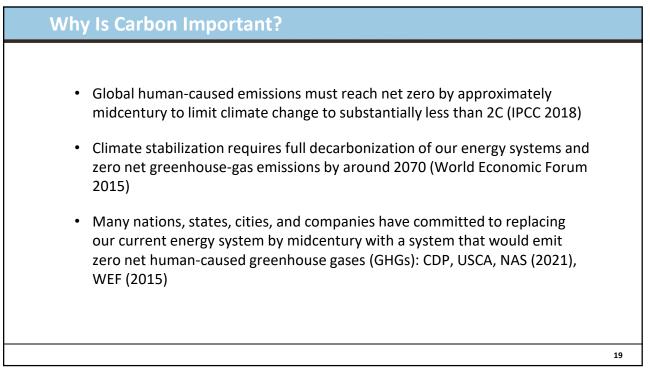

Acknowledgements	
Much of the material here comes from the many sources identified by members of	
the Task Force for Building Decarbonization. Thanks specifically to Kent Peterson, Ginger Scoggins, Don Brandt, Don Colliver, Tom Phoenix, Bing Liu, Katherine Hammack, Lance Davis, and Luke Leung for their	
Also, thanks to all the volunteers of the Task Force for Building Decarbonization	
who collectively have identified hundreds of resources and documents on decarbonization	
	9

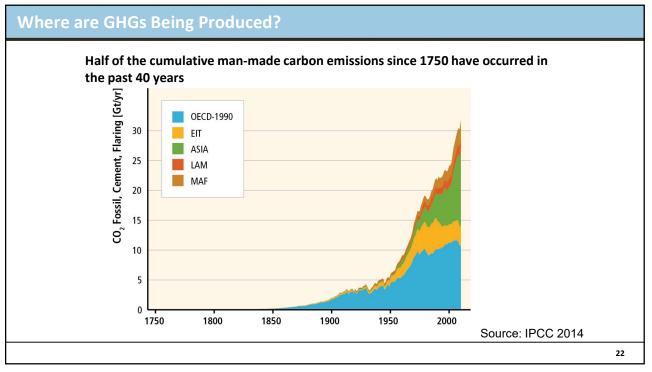

Course Outline

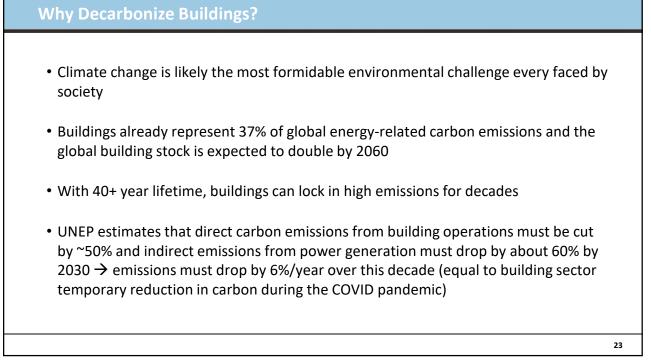

- Introduction
- Building Energy and Carbon
- Basic Building Decarbonization Terminology
- Carbon in Buildings
- Building Decarbonization
- ASHRAE Resources for Decarbonization

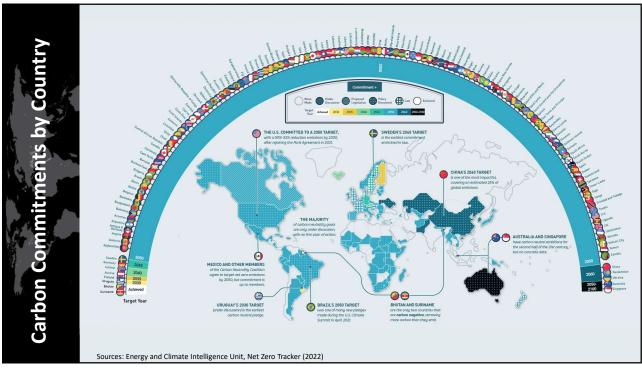


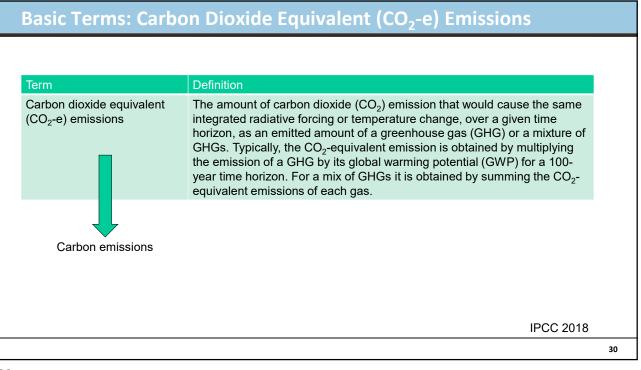




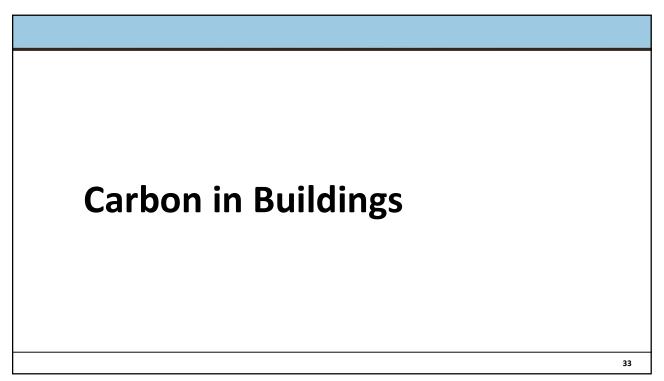


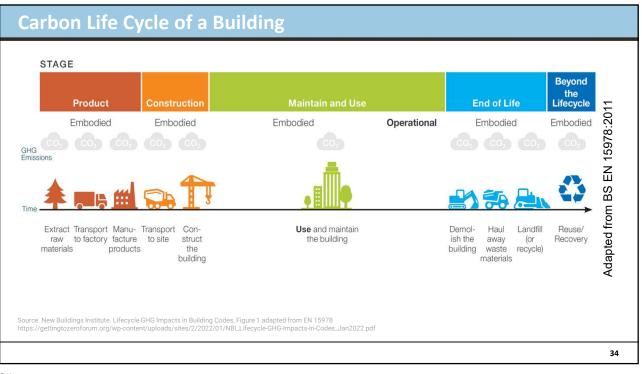






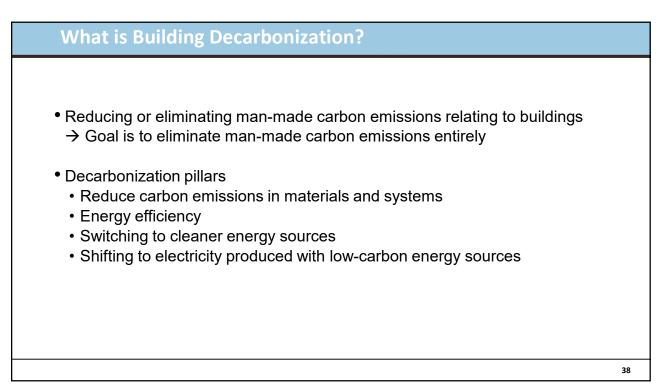
Basic Decarbonization Terminology

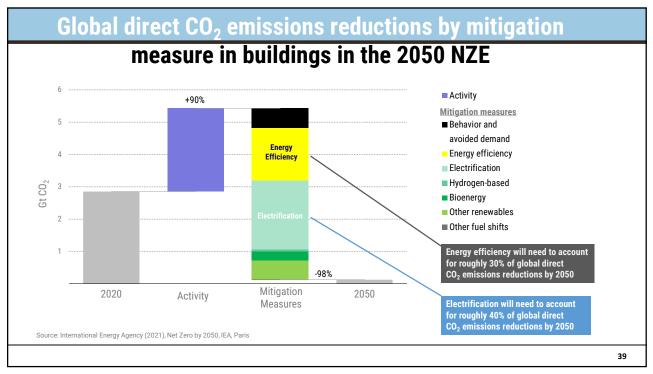

28

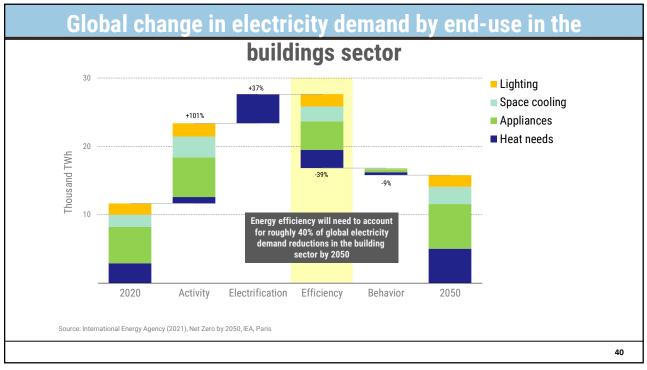

Term	Definition
Carbon dioxide (CO ₂)	A naturally occurring gas, CO_2 is also a by-product of burning fossil fuels (such as oil, gas and coal), of burning biomass, of land-use changes (LUC) and of industrial processes (e.g., cement production). It is the principal anthropogenic greenhouse gas (GHG) that affects the Earth's radiative balance. It is the reference gas against which other GHGs are measured and therefore has a global warming potential (GWP) of 1.
Global Warming Potential (GWP)	An index for estimating the relative global warming contribution of atmospheric emissions of a particular greenhouse gas compared to emissions of an equal mass of carbon dioxide (CO_2) .
Greenhouse Gases (GHG)	Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of terrestrial radiation emitted by the Earth's surface, the atmosphere itself and by cloudscausing the greenhouse effect. Water vapour (H ₂ O), carbon dioxide (CO ₂), nitrous oxide (N ₂ O), methane (CH ₄) and ozone (O ₃) are the primary GHGs in the Earth's atmosphere. Entirely human-made GHGs include halocarbons and other chlorine- and bromine-containing substances (Montreal Protocol). Kyoto Protocol covers CO_2 , N ₂ O and CH ₄ as well as sulphur hexafluoride (SF ₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).

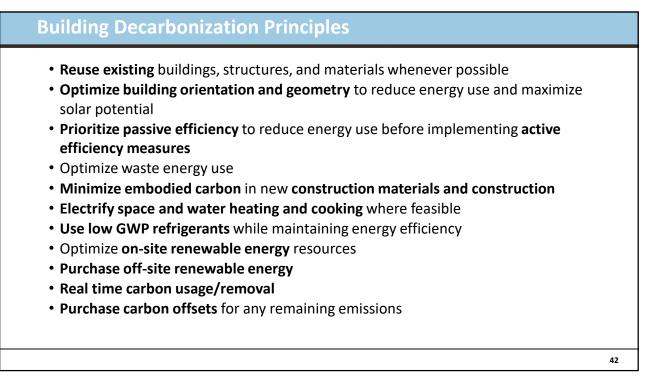


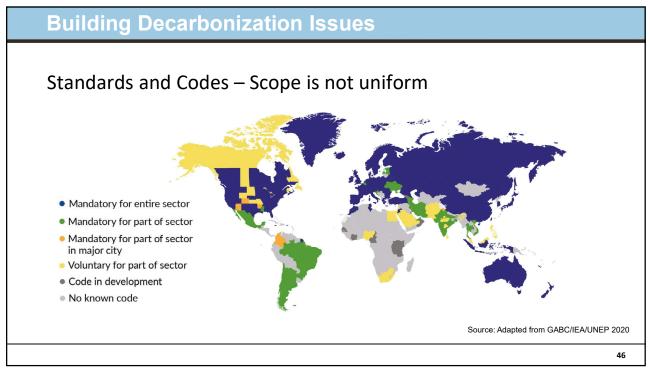
Term	Definition	
Operational Carbon	$\rm CO_2e$ emissions associated with energy and water used to operate the building/site or in the operation of infrastructure over its lifetime.	
Embodied Carbon	CO ₂ e emissions associated with materials and construction processes throughout the whole life cycle of a building.	
Direct Emissions	GHG emissions primarily from on-site combustion of fossil fuels	
Indirect Emissions	GHG emissions primarily from electricity generated off-site to power buildings, includes district energy supplied	
Electrification	Replacing direct fossil fuel use with electricity to reduce overall emissions and lower air pollutants.	

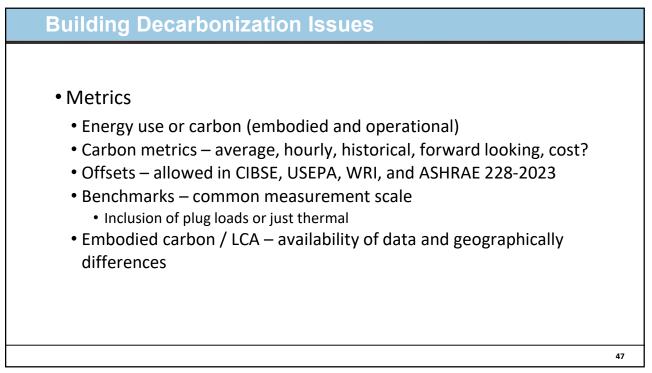

Term	Definition
Life Cycle Assessment (LCA)	Methodology for assessing potential environmental of a product, service, or building throughout its life cycle.
Environmental Product Declaration (EPD)	Independently verified and registered document that presents transparent and comparable information about the life-cycle environmental impact of products, enabling comparisons among products.
Carbon capture, utilization, and storage (CCUS)	Capturing carbon emission from sources such as coal-fired power plants and either reuse or store the carbon so that it does not enter the atmosphere.
Site Carbon Sequestration	Long-term process of capturing and storing carbon emissions in solid and dissolved forms at the site to prevent it from entering the atmosphere. Carbon sequestration can be biological (plants) and geological.
Building Performance Standards (BPS)	Government policy <u>(national, state or local)</u> that requires building owners to actively improve their building's performance over time to meet performance targets. Targets can include energy and/or emissions targets requiring improved energy efficiency, reduced climate impacts, <u>and</u> <u>renewable energy</u> .
	IPCC 2018



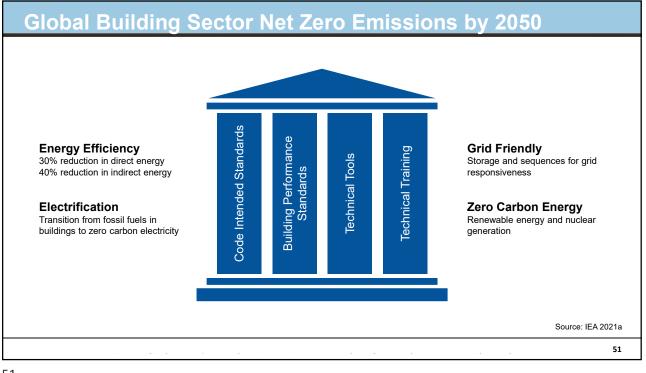


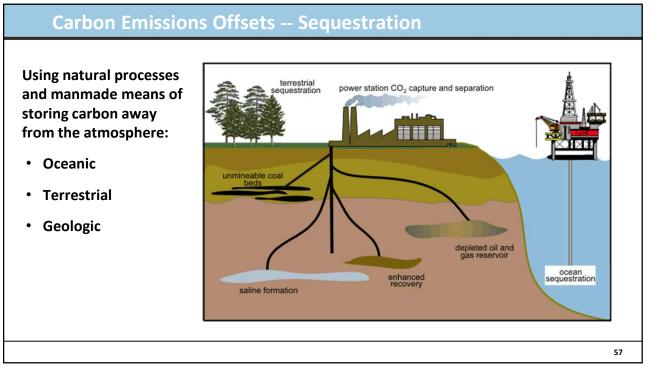


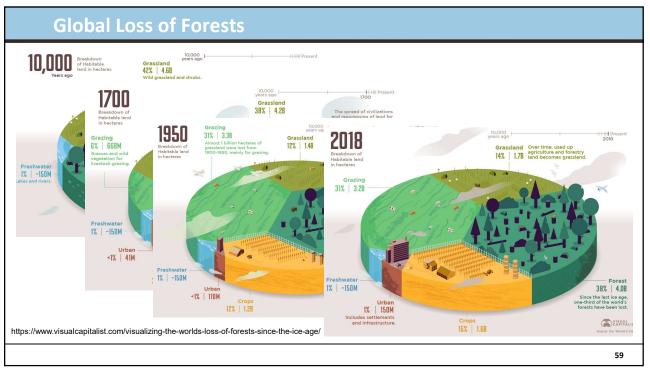


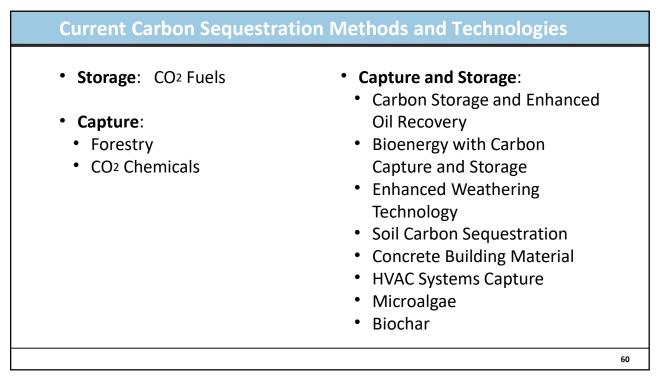


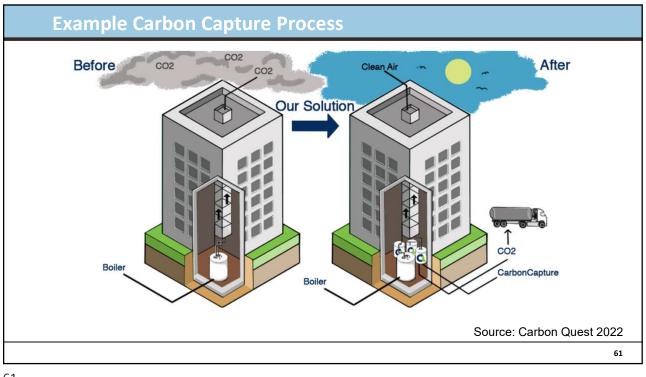

Building Decarbonization Issues

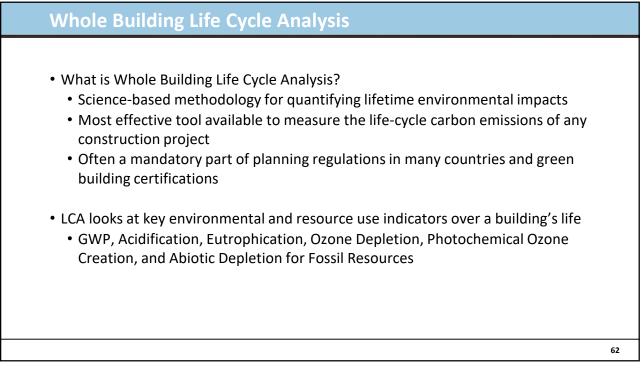

- One-size does not fit all
 - Residential commercial industrial
 - New vs retrofit (60-80% of buildings in 2050 are already built depending on the country)
 - Spectrum of existing generation fuel mix
 - Developed vs underdeveloped countries

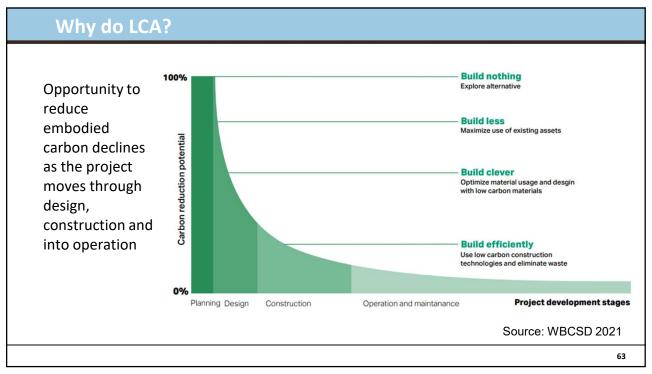

Refrigerant Leakage	
Application	Annual Leakage Rate
Domestic Refrigeration	0.1 – 0.5%
Stand-Alone Commercial Applications	1 – 10%
Medium and Large Commercial Refrigeration	10 – 30%
Transport Refrigeration	15 – 50%
Industrial Refrigeration including Food Processing and Cold Storage	e 7 – 25%
Chillers	2 – 15%
Residential and Commercial A/C, including Heat Pumps	1 – 5%
	10 – 20%
Mobile Air Conditioners	

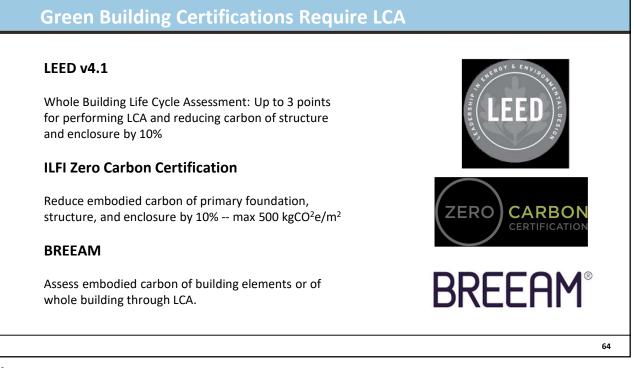


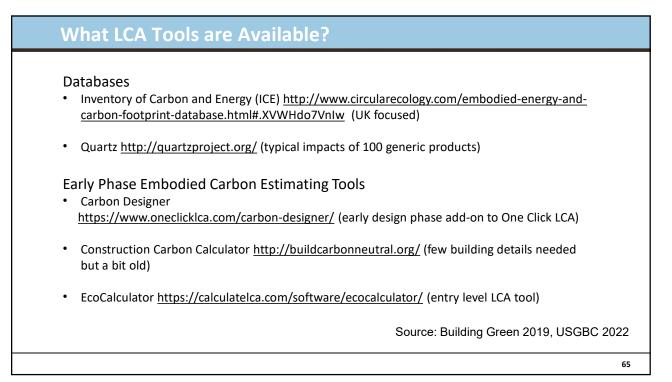


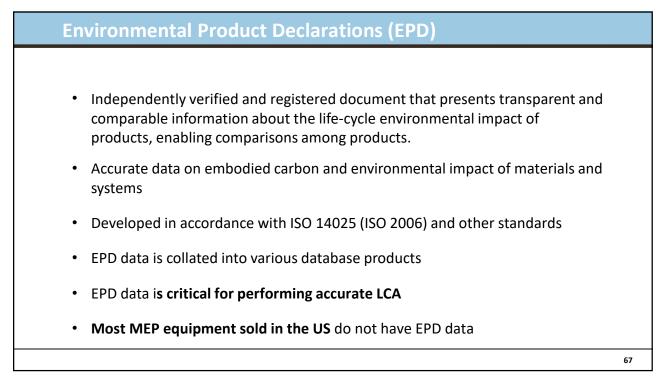

Building use	Emissions standard (kgCO ₂ e/SF/yr.)							
	2025 - 2029	2030-2034	2035-2039	2040-2044	2045-2049	2050-		
Assembly	7.8	4.6	3.3	2.1	1.1	0		
College/ University	10.2	5.3	3.8	2.5	1.2	(
Education	3.9	2.4	1.8	1.2	0.6	(
Food Sales & Service	17.4	10.9	8.0	5.4	2.7	(
Healthcare	15.4	10.0	7.4	4.9	2.4	(
Lodging	5.8	3.7	2.7	1.8	0.9	(
Manufacturing/ Industrial	23.9	15.3	10.9	6.7	3.2	(
Multifamily housing	4.1	2.4	1.8	1.1	0.6	(
Office	5.3	3.2	2.4	1.6	0.8	(
Retail	7.1	3.4	2.4	1.5	0.7	(
Services	7.5	4.5	3.3	2.2	1.1	(
Storage	5.4	2.8	1.8	1.0	0.4	(
Technology/Science	19.2	11.1	7.8	5.1	2.5	(
						Sou		

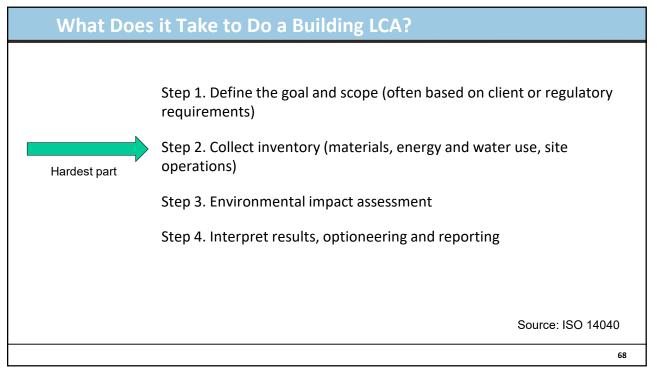


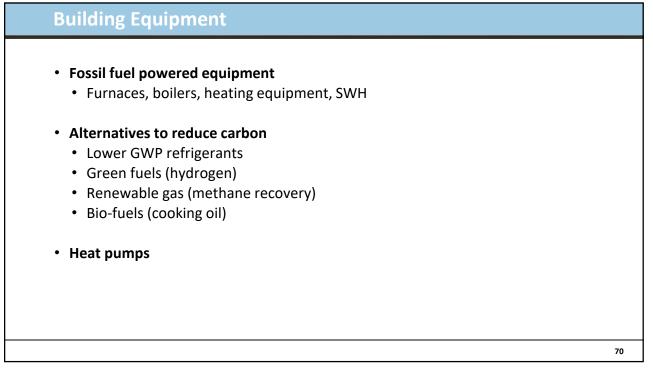


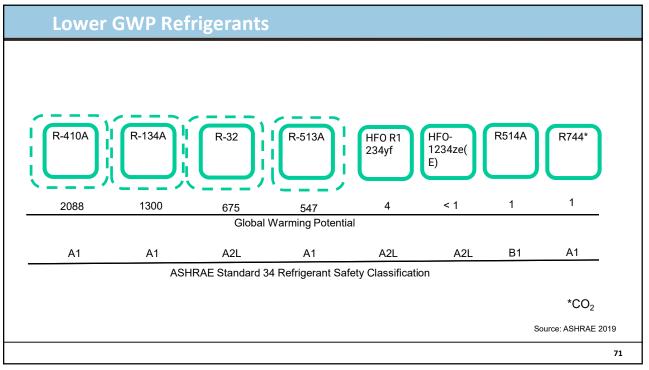








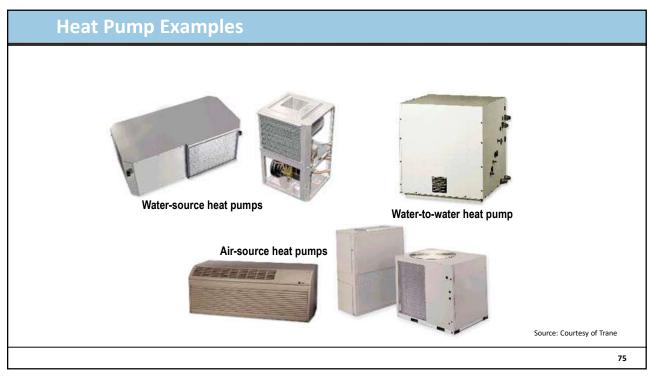


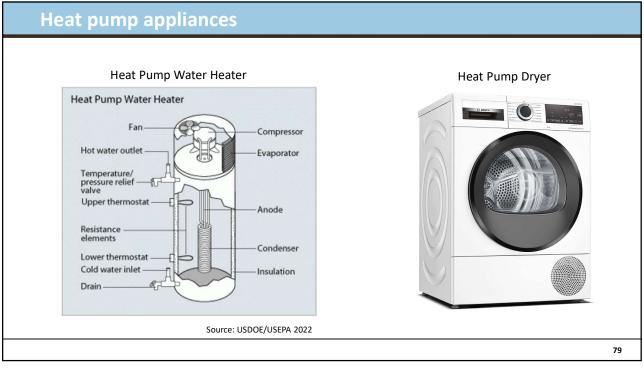


Whole Building Life-Cycle Assessment Tools
 Athena Impact Estimator http://www.athenasmi.org/our-software-data/impact-estimator/ (easy access to advanced life- cycle inventory data)
 One Click LCA https://www.oneclicklca.com/ (early to late LCA analysis, increasing detail throughout design)
 Tally https://choosetally.com/ (BIM plug-in for very detailed LCA analysis, embodied carbon not considered)
 EC3 (Embodied Carbon Construction Calculator) https://www.buildingtransparency.org/ (open access, free database of construction EPDs with building impact calculator)
Source: Building Green 2019, USGSA 202
66

Heat Pumps

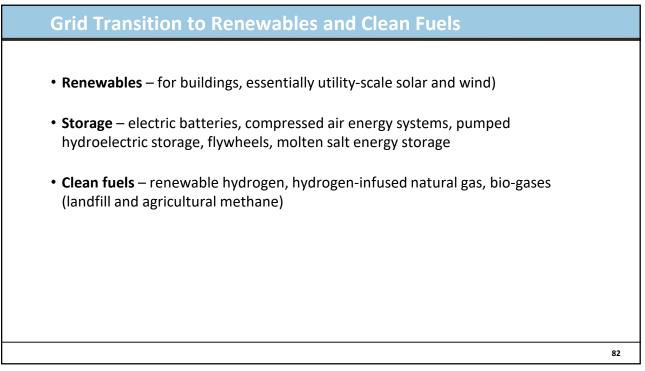
Thermodynamic heating/refrigerating system to transfer heat. The condenser and evaporator may change roles to transfer heat in either direction. By receiving the flow of air or other fluid, a heat pump is used to cool or heat. Heat pumps may be the air source with heat transfer between the indoor air stream to outdoor air or water source with heat transfer between the indoor air stream and a hydronic source (ground loop, evaporative cooler, cooling tower, or domestic water). (ASHRAE)

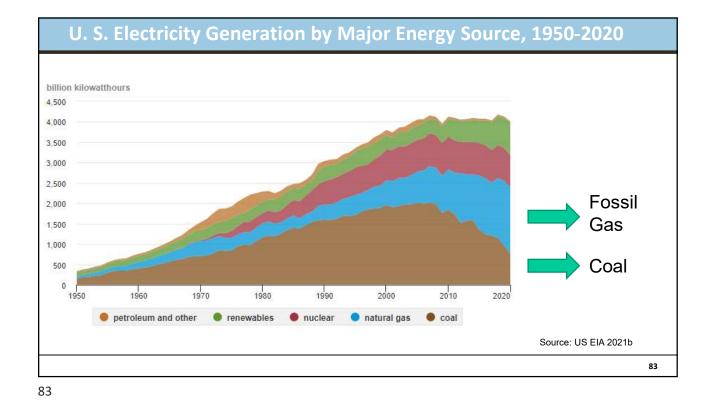

Heat pump sources and sinks include:

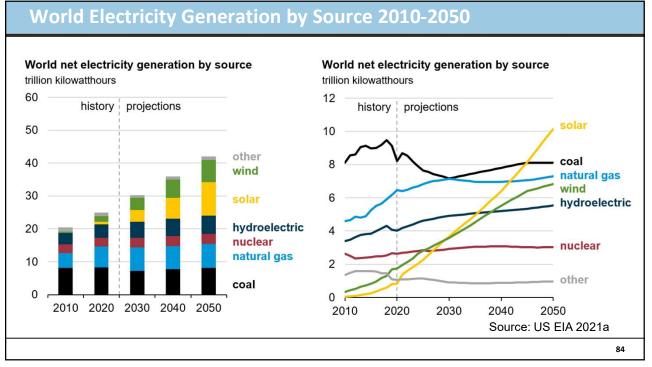

- Air
- Water
- Ground-coupled
- Solar Energy
- Industrial

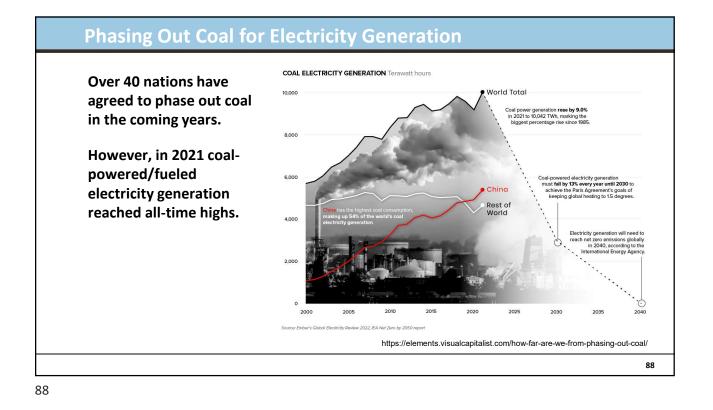
Product scale – everything from residential appliances to large heat recovery and HP chillers, and industrial HPs

Source: ASHRAE Terminology 2022a

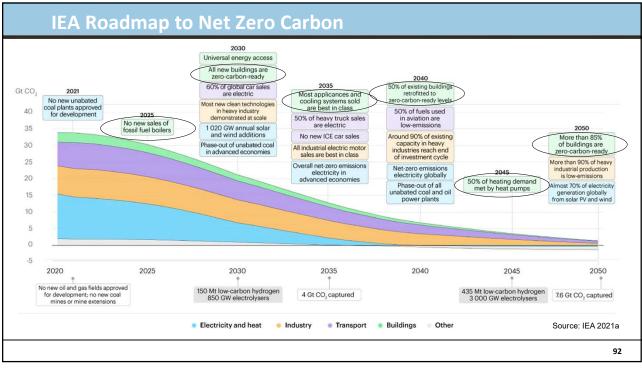

73

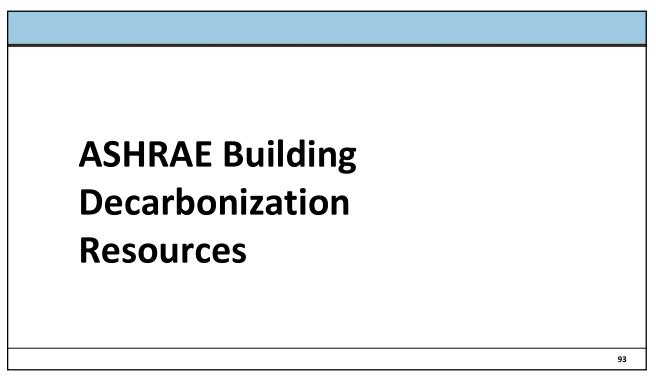


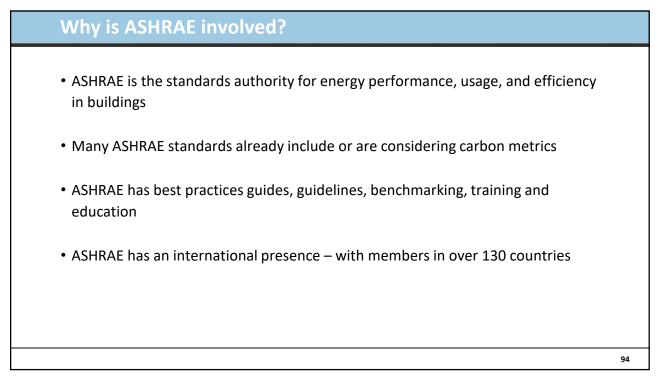


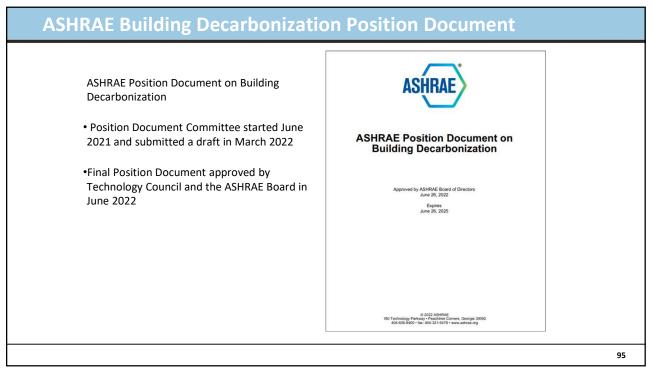

Suitability					Availability		Cost		Temperature		Common Practice	
Medium	Examples	Heat Source	Heat Sink	Location Relative to Need	Coincidence with Need	Installed	Operation and Maintenance	Level	Variation	Use	Limitations	
AIR												
Outdoor	Ambient air	Good, but efficiency and capacity in heating mode decrease with decreasing outdoor air temperature	Good, but efficiency and capacity in cooling mode decrease with increasing outdoor air temperature	Universal	Continuous	Low	Moderate	Variable	Generally extreme	Most common, many standard products	Defrosting and supplemental heat usually required	
Exhaust	Building ventilation	Excellent	Fair	Excellent if planned for in building design	Excellent	Low to moderate	Low unless exhaust is laden with dirt or grease	Excellent	Very low	Excellent as energy- conservation measure	Insufficient for typical loads	
					W	ATER						
Well *	Ground-water well may also provide potable water source	Excellent	Excellent	Poor to excellent; practical depth varies by location	Continuous	Low if existing well used or shallow wells suitable; can be high otherwise	Low, but periodic maintenance required	Generally excellent; varies by location	Extremely stable	Common	Water disposal and required permits may limit; may require double-wall exchangers; may foul or scale	
Surface	Lakes, rivers, oceans	Excellent for large water bodies or high flow rates	Excellent for large water bodies or high flow rates	Limited; depends on proximity	Usually continuous	Depends on proximity and water quality	Depends on proximity and water quality	Usually satisfactory	Depends on source	Available, particularly for fresh water	Often regulated or prohibited; may clog, foul, or scale	
Tap (city)	Municipal water supply	Excellent	Excellent	Excellent	Continuous	Low	Low energy cost, but water use and disposal may be costly	Excellent	Usually very low	Use is decreasing because of regulations	Use or disposal may b regulated or prohibited may corrode or scale	
Condens- ing	Cooling towers, re-frigeration systems	Excellent	Poor to good	Varies	Varies with cooling loads	Usually low	Moderate	Favorable as heat source	Depends on source	Available	Suitable only if heatin need is coincident wit heat rejection	
Closed loops	Building water- loop heat pump systems	Good; loop may need supplemental heat	Favorable; may need loop heat rejection	Excellent if designed as such	As needed	Low	Low to moderate	As designed	As designed	Very common	Most suitable for medium or large buildings	
Waste	Raw or treated sewage, gray water	Fair to excellent	Fair; varies with source	Varies	Varies; may be adequate	Depends on proximity; high for raw sewage	Varies; may be high for raw sewage	Excellent	Usually low	Uncommon; practical only in large systems	Usually regulated; may clog, foul, scale, or corrode	

Suitability Availability Cost Temperature Common Practice											Suitability		Suitability		Availability		Availability		oility Availa		Cost		Availability Cost Temperature Comm		Temperature		Temperature		Common Practice	
1edium	Examples	Heat Source	Heat Sink	Location Relative to Need	Coincidence with Need	Installed	Operation and Maintenance	Level	Variation	Use	Limitations																			
					GRO	UND.																								
ound- oupled	Buried or submerged fluid loops	Good if ground is moist; other-wise poor	Fair to good if ground is moist; other-wise poor	Depends on soil suitability	Continuous	High to moderate	Low	Usually good	Low, particularly for vertical systems	Rapidly increasing	High initial costs for ground loop																			
Direct- expan-sion	Refrig-erant circulated in ground coil	Varies with soil conditions	Varies with soil conditions	Varies with soil conditions	Continuous	High	High	Varies by design	Generally low	Extremely limited	Leak repair very expensive; requires large refrigerant quantities																			
					SOLAR	ENERGY																								
Direct or leated vater	Solar collectors and panels	Fair	Poor; usually un- acceptable	Universal	Highly intermittent; night use requires storage	Extremely high	Moderate to high	Varies	Extreme	Very limited	Supplemental source or storage required																			
						AL PROCESS																								
rocess leat or xhaust	Distillation, molding, refining, washing, drying	Fair to excellent	Varies; often impractical	Varies	Varies	Varies	Generally low	Varies	Varies	Varies	May be costly unless heat need is near rejected source																			
Groundwat	er-source heat pur	nps are also considered g	round-source heat pump	systems.																										

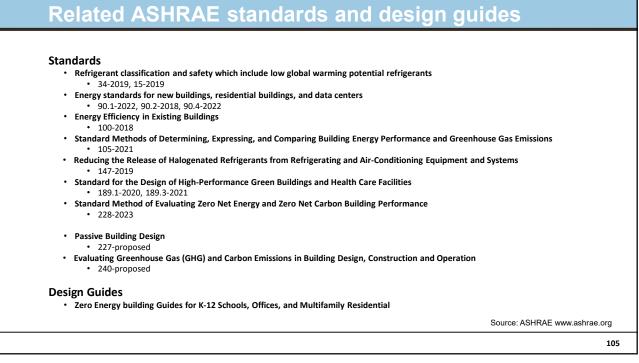


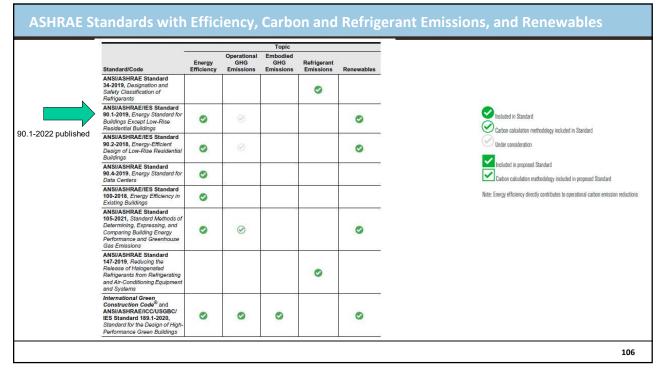


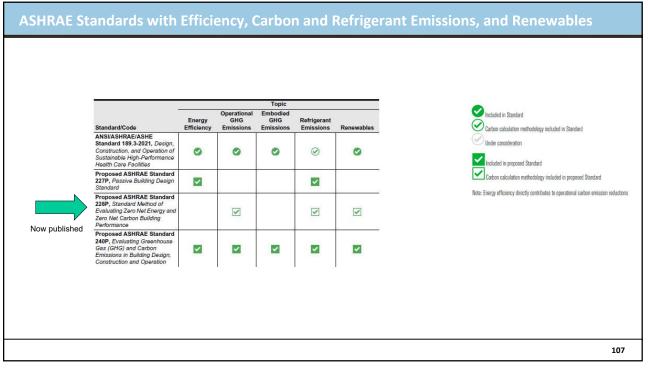


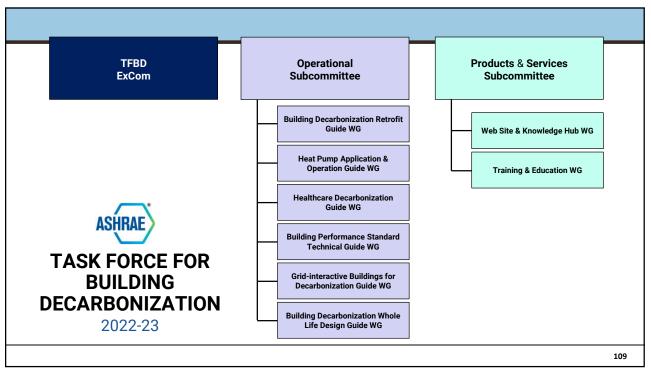


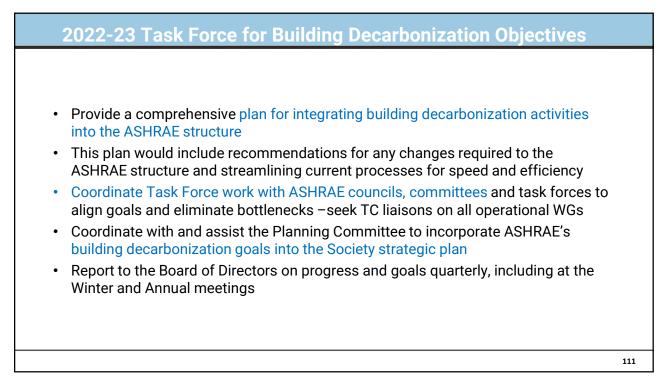
We have transitioned from other energy sources many times 2020 Global Primary En Fossil fuels accounted for Economic and technological advances 78% of the global energy over the last 200 years have mix in 2020. Oil demand st as gasoline vehicles transformed how we produce and took off, accounting consume energy. Here's the global for 40% of global energy consumption by 1970. mix of energy source since 1800. Coal usage increased with the growth of steam power and before coal-fired power plants. 1800 The first commercial oil Prior to the Industria well was drilled in Titusville, Revolution, humans Pennsylvania, U.S. mainly relied on biomass for heat and muscles for kinetic energy. https://elements.visualcapitalist.com/the-Traditiona history-of-energy-transitions/ 2000 1800 1850 1900 1950 90

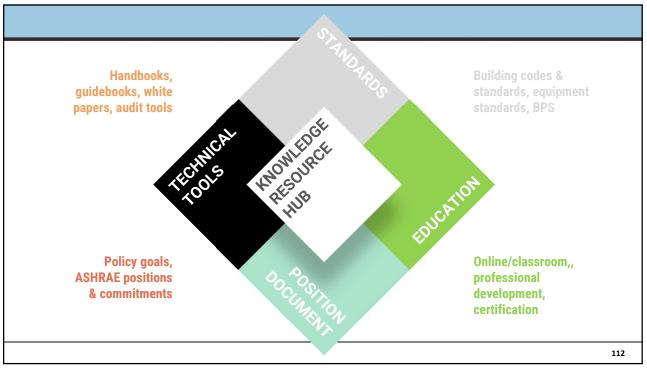


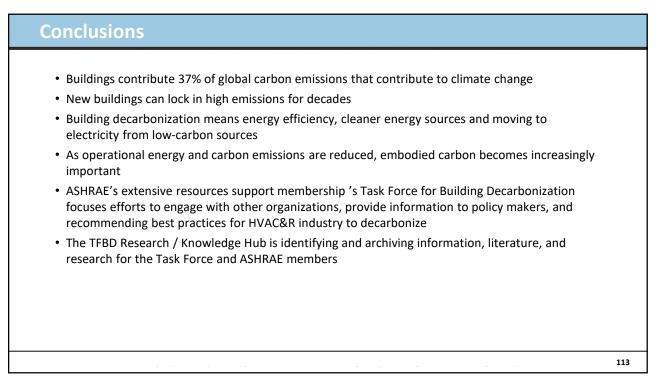


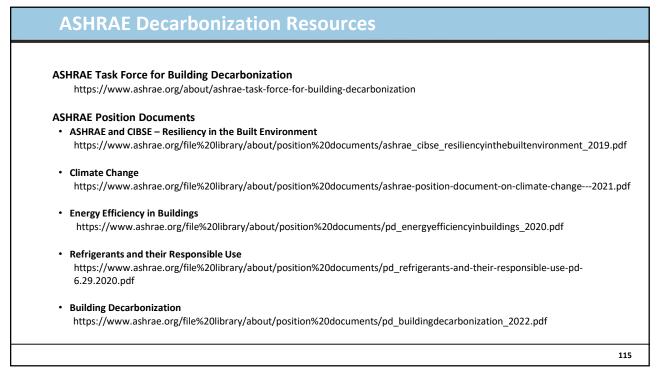



ASHRAE Building Decarbonization Position Document


- Eliminating greenhouse gas (GHG) emissions from the built environment is essential to address climate change.
- By 2030, the global built environment must halve its 2015 GHG emissions, whereby
 - all new buildings must be net-zero GHG emissions in operation,
 - widespread energy efficiency retrofit of existing assets must be well underway, and
 - embodied carbon of new construction must be reduced by at least 40 percent.
- By 2050, at the latest, all new and existing assets must be net zero emissions across the whole life cycle.
- ASHRAE is committed to continued efforts relating to building decarbonization in the following areas:
 - Research and standards development
 - Design and equipment applications
 - Technical guidance and training
 - · Regulatory guidelines and measures
 - · Educational resources and outreach







ASHRAE Decarbonization Resources ASHRAE Public Policy Issue Briefs Building Decarbonization https://www.ashrae.org/file%20library/about/government%20affairs/public%20policy%20resources/briefs/ppib-on-buildingdecarbonization.pdf **Resiliency in the Built Environment** https://www.ashrae.org/file%20library/about/government%20affairs/public%20policy%20resources/briefs/resiliency-in-thebuilt-environment.pdf · Climate Change and the Built Environment https://www.ashrae.org/file%20library/about/government%20affairs/public%20policy%20resources/briefs/climate-change-andthe-built-environment.pdf Refrigerants and Their Responsible Use https://www.ashrae.org/file%20library/about/government%20affairs/public%20policy%20resources/briefs/refrigerants-andtheir-responsible-use.pdf Utilizing Energy Metrics and Building Benchmarking to Improve Whole Building Energy Performance https://www.ashrae.org/file%20library/about/government%20affairs/public%20policy%20resources/briefs/building-energybenchmarking--assessments--and-performance-targets.pdf

116

ASHRAE Decarbonization Resources ASHRAE Standards ANSI/ASHRAE Standard 15-2022 Safety Standard for Refrigerant Systems https://www.techstreet.com/ashrae/standards/ashrae-15-2022-packaged-w-standard-34-2022?product_id=2504061 ANSI/ASHRAE Standard 34-2022 Designation and Safety Classification of Refrigerants https://www.techstreet.com/ashrae/standards/ashrae-15-2022-packaged-w-standard-34-2022?product id=2504061 ANSI/ASHRAE/IES 90.1-2022 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings https://www.ashrae.org/technical-resources/bookstore/standard-90-1 ANSI/ASHRAE Standard 90.2-2018 Energy Efficient Design of Low-Rise Residential Buildings https://www.techstreet.com/ashrae/standards/ashrae-90-2-2018?product_id=2030773 ANSI/ASHRAE 90.4-2022 Energy Standard for Data Centers https://www.techstreet.com/ashrae/standards/ashrae-90-4-2022?product_id=2524333 ANSI/ASHRAE Standard 105-2021 Expressing and Comparing Building Energy Performance and Greenhouse Gas Emissions https://www.techstreet.com/ashrae/standards/ashrae-105-2021?product_id=2242191 ANSI/ASHRAE/ICC/USGBC/IES 189.1-2020 Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings https://www.techstreet.com/ashrae/standards/ashrae-189-1-2020?product_id=2202993 ANSI/ASHRAE/ASHE Standard 189.3-2017 Design, Construction and Operation of Sustainable High Performance Health Care Facilities https://www.techstreet.com/standards/ashrae-189-3-2017?product_id=1952161 ANSI/ASHRAE Standard 228-2023 Standard Method of Evaluating Zero Net Energy and Zero Net Carbon Building Performance https://www.techstreet.com/ashrae/standards/ashrae-228-2023?product_id=2562375 117

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

American Institute of Architects	https://www.aia.org/	
BRE BREEAM	https://bregroup.com/products/breeam/	
Building Green	https://www.buildinggreen.com	
CDP North America	https://www.cdp.net/en	
Chartered Institute of Building Services Engineers	https://cibse.org/	
Energy & Climate Intelligence Unit	https://eciu.net/netzerotracker	
Global Alliance for Buildings and Construction	https://globalabc.org/	
Institute for Market Transformation	https://www.imt.org/	
International Energy Agency	https://www.iea.org/	
International Living Future Institute	https://living-future.org/	
Intergovernmental Panel on Climate Change (United Nations)	https://www.ipcc.ch/	
National Academy of Sciences	http://nasonline.org/	
National Institute of Building Sciences	https://www.nibs.org/	
Net Zero Tracker	https://zerotracker.net/	
New Buildings Institute	https://newbuildings.org/	
US Climate Alliance	https://www.usclimatealliance.org/	
US Green Building Council	https://www.usgbc.org/	
We Are Still In	https://www.wearestillin.com/	
World Business Council for Sustainable Development	https://www.wbcsd.org/	
World Economic Forum	https://www.weforum.org/	
World Green Building Council	https://www.worldgbc.org/	

References

American Council for an Energy-Efficient Economy. 2022. *State and Local Policy Database*. https://database.aceee.org/

Architecture 2030. 2022. Why the Built Environment. https://architecture2030.org/why-the-building-sector/

ASHRAE. 2022. ANSI/ASHRAE Standard 34-2022 Designation and Safety Classification of Refrigerants https://www.techstreet.com/ashrae/standards/ashrae-15-2022-packaged-w-standard-34-2022?product_id=2504061

ASHRAE. 2020a. ASHRAE Handbook – HVAC Systems and Equipment. https://www.techstreet.com/ashrae/standards/2020-ashrae-handbook-hvac-systems-and-equipment-ip?product_id=2121460

ASHRAE. 2020b. Smart Grid Application Guide: Integrating Facilities with the Electric Grid https://www.techstreet.com/standards/smart-grid-application-guide-integrating-facilities-with-the-electric-grid?product_id=2097813

ASHRAE. 2022a. ASHRAE Terminology http://www.ashrae.org/ashraeterms

ASHRAE. 2022b. ASHRAE Position Document on Building Decarbonization. https://www.ashrae.org/file%20library/about/position%20documents/pd_buildingdecarbonization_2022.pdf

ASHRAE. 2022c. ASHRAE Task Force for Building Decarbonization. https://www.ashrae.org/about/ashrae-task-force-for-building-decarbonization

120

121

120

References

ASHRAE. 2022d. ASHRAE Decarbonization Related Policies, Briefs, and Standards.

https://www.ashrae.org/about/ashrae-decarbonization-related-policies-briefs-and-standards#related

Building Green. 2019. *Embodied Carbon Tools: Assessing the Options* https://www.buildinggreen.com/news-analysis/embodied-carbon-tools-assessing-options

Bureau of Energy. 2017. Energy Statistics Handbook 2016. Taipei: BOE.

Carbon Quest. 2022. https://carbonquest.com/solution/

City of Boston. 2021. Building Energy Reporting and Disclosure Ordinance.

https://www.boston.gov/sites/default/files/file/2021/07/Docket%20%230775.PDF

Department for Business Energy and Industrial Strategy. 2017. Energy Consumption in the UK, London: BEIS.

District of Columbia Department of Energy & Environment. 2021. *Guide to the 2021 Building Energy Performance Standards*. Washington: DOEE.

https://doee.dc.gov/sites/default/files/dc/sites/ddoe/publication/attachments/1_Guide%20to%20the%20202 1%20BEPS%20v1%203-30-21.pdf

Electrical and Mechanical Services Department. 2017. *Hong Kong Energy End-Use Data 2017*, Hong Kong: EMSD.

References

Energy and Climate Intelligence Unit. 2022. https://eciu.net/netzerotracker

Energy Markets Authority. 2017. 2017 Singapore Energy Statistics, Singapore: EMA.

European Standards. 2011. *BS EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method.* https://www.en-standard.eu/bs-en-15978-2011-sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/

Global Alliance for Buildings and Construction, International Energy Agency, and United Nations Environment Programme. 2020. *GlobalABC Roadmap for Buildings and Construction 2020-2050*. https://iea.blob.core.windows.net/assets/6cca78af-2327-4e97-868c-

294d48cb66b3/GlobalABC_Roadmap_for_Buildings_and_Construction_2020-2050.pdf

Intergovernmental Panel on Climate Change. 2000. *Good Practice Guidelines and Uncertainty Management in National Greenhouse Gas Inventories*. https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/

Intergovernmental Panel on Climate Change. 2014. *Climate Change 2014: Mitigation of Climate Change,* Working Group III -IPCC Fifth Assessment Report. https://www.ipcc.ch/report/ar5/wg3/drivers-trends-and-mitigation/

References
Intergovernmental Panel on Climate Change. 2018. <i>Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty</i> [Masson-Delmotte, V., P. Zhai, HO. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Geneva: World Meteorological Organization
International Energy Agency. 2020a. <i>Global energy use and energy-related CO₂ emissions by sector, 2020</i> , IEA: Paris https://www.iea.org/data-and-statistics/charts/global-energy-use-and-energy-related-co2-emissions-by- sector-2020
International Energy Agency. 2020b. <i>Country Energy Balances by Sector</i> , Paris: IEA. https://www.iea.org/countries
International Energy Agency. 2021a. <i>Net Zero by 2050 –A Roadmap for the Global Energy Sector.</i> IEA: Paris. https://iea.blob.core.windows.net/assets/ad0d4830-bd7e-47b6-838c-40d115733c13/NetZeroby2050- ARoadmapfortheGlobalEnergySector.pdf
International Energy Agency. 2021b. <i>Tracking Buildings 2021</i> , Paris: IEA. https://www.iea.org/reports/tracking- buildings-2021

References

International Standards Organization. ISO 14025:2006 Environmental Labels and Declarations – Type III Environmental Declarations – Principles and Procedures. https://www.iso.org/standard/38131.html

Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer. 2001. *Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000*. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography: San Diego. https://scrippsco2.ucsd.edu/data/atmospheric_co2/icecore_merged_products.html https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html

National Academy of Sciences. 2021. Accelerating Decarbonization of the US Energy System. Washington: NAS. https://nap.nationalacademies.org/catalog/25932/accelerating-decarbonization-of-the-us-energy-system

Natural Resources Defense Council. 2022. *City Climate Commitments*. https://www.nrdc.org/sites/default/files/city-climate-commitments.pdf

Net Zero Tracker. 2022. https://zerotracker.net/analysis/post-cop26-snapshot/

Richardson, Brenda. 2022. Geothermal Heat Pumps are among the Most Earth-Friendly Home Energy Sources, Experts Say. March 29, 2022. Washington: Washington Post.

https://www.washingtonpost.com/business/2022/03/29/home-geothermal-heat-pumps/

United Nations. 2022. Global Issues: Population. https://www.un.org/en/global-issues/population

ι	JS Department of Energy. 2022. https://www.energy.gov/energysaver/heat-pump-water-heaters
	JS Energy Information Administration. 2021a. <i>International Energy Outlook 2021,</i> DOE/EIA-0484(2021). Vashington, DC: EIA. https://www.eia.gov/outlooks/ieo/
	JS Energy Information Administration. 2021b. <i>Annual Energy Outlook EIA-0383 (2021)</i> (2020 data) https://www.eia.gov/outlooks/aeo/
ŀ	JS Energy Information Administration. 2021c. <i>Monthly Energy Review</i> , Table 7.2a, January 2021 ittps://www.eia.gov/totalenergy/data/monthly/ and <i>Electric Power Monthly</i> , February 2021, preliminary data or 2020, https://www.eia.gov/electricity/monthly/
ι	JS Environmental Protection Agency. 2022. https://www.energystar.gov/products/heat_pump_dryer
	J S General Services Administration. 2022. <i>Sustainable Facilities Tool</i> https://sftool.gov/plan/403/life-cycle- ssessment-buildings
	/isual Capitalist. 2022a. <i>Mapped: Solar and Wind Power by Country</i> . https://elements.visualcapitalist.com/mapped-solar-and-wind-power-by-country/
	/isual Capitalist. 2022b. Visualizing the World's Loss of Forests Since the Ice-Age. https://www.visualcapitalist.com/visualizing-the-worlds-loss-of-forests-since-the-ice-age/

125

References

Visual Capitalist. 2022c. *How Far are We from Phasing Out Coal?* https://elements.visualcapitalist.com/how-far-are-we-from-phasing-out-coal/

Visual Capitalist. 2022d. Ranked: Emissions per Capita of the Top 30 U.S. Investor-Owned Utilities https://www.visualcapitalist.com/emissions-per-capita-of-top-30-u-s-investor-owned-utilities/

Visual Capitalist. 2022e. *The History of Energy Transitions*. https://elements.visualcapitalist.com/the-history-of-energy-transitions/

Wikipedia. 2022. https://en.wikipedia.org/wiki/Afforestation

WLCN/LETI/RIBA. 2021. Improving Consistency in Whole Life Carbon Assessment and Reporting: Carbon Definitions for the Built Environment, Buildings and Infrastructure, May 2021. RIBA: London. https://asbp.org.uk/wp-content/uploads/2021/05/LETI-Carbon-Definitions-for-the-Built-Environment-Buildings-Infrastructure.pdf

World Business Council for Sustainable Development. 2021. *Decarbonizing construction: Guidance for investors and developers to reduce embodied carbon.*

https://www.wbcsd.org/contentwbc/download/12455/185688/1

World Economic Forum. 2015. *What's the Path to Deep Decarbonization?* https://www.weforum.org/agenda/2015/12/whats-the-path-to-deep-decarbonization/