2022 Building Performance Analysis Conference and SimBuild
September 14th - September 16th, 2022

Wednesday, September 14

Wednesday, September 14, 8:10 AM - 9:00 AM
Keynote
Donnel Baird, BlocPower, Brooklyn, NY
Climate Justice and the Justice40 Environmental Impact Data Collective
Room: Adams Room, 5th Floor
Donnel Baird is the founder of BlocPower, a climate tech startup based in Brooklyn. BlocPowers tech platform analyzes, finances, and installs clean energy and building decarbonization upgrades in buildings in underserved communities. BlocPower creates jobs for qualified local low-income workers, energy savings for building owners, reduces carbon emissions and asthma rates, and provides financial returns to investors. In 2021, the company announced a historic partnership with Ithaca, New York to decarbonize 100% of the city’s buildings—the first such project in the United States. Baird is a graduate of Duke University and Columbia Business School.
Daylighting
Room: Monroe Room, 5th Floor
Chair: Nicole Peterson, Thornton Tomasetti, Portland, ME
This session introduces recent advances in daylighting analysis and design technologies. First, we consider a novel computational workflow to customize illuminance ranges and select target areas to examine local light levels in residential applications. Then, we explore the ability of vectorized computer languages to increase the speed of annual daylighting calculations. Finally, we show how parametric iterative algorithms can be used to design prismatic skylights that optimize useful daylight, glare reduction, and energy consumption.

1. Using Illuminance Ranges and Target Areas to Analyze Daylight in Multi-Dwelling Units (C001)
Guanzhou Ji and Azadeh O. Sawyer, Carnegie Mellon University, Pittsburgh, PA
2. Speeding up Annual Daylighting Simulation Using NumPy (C002)
Nathaniel Louis Jones, Associate, Arup, Boston, MA, United States
3. Energy and Daylight Simulation Analysis of an Innovative Horizontal Skylight System Incorporating a Bi-directional Scattering Distribution Function (BSDF) Prismatic Optical Layer (C003)
Mohammad Salamati¹, Wayne Place², Curtis Fentress³ and Masoome Haghani¹, (1)North Carolina State University, Raleigh, NC, (2)Fentress Architects, Denver, CO

An Effective Solution for Climate Change Adaptation, IAQ and Energy Considerations
Room: Chicago Room, 5th Floor
Chair: Jo Norris, Associate, Carbon Reform, Newark, DE
This session is an interactive exploration of climate change, carbon removal, energy use, and indoor air quality in the built environment. Through a participatory framework using a software tool to help facilitate conversation, we will simulate a methodology for assessing risks in the built environment, identifying pain points of building owners and occupants, and developing a novel solution for the identified energy, indoor air quality, and climate adaptation challenges. A technical background will be provided at the start of the session and then a series of questions will be asked to guide participants through the simulated product development experience.

1. An Effective Solution for Climate Change Adaptation, IAQ, and Energy Considerations
Jo Norris, Associate¹ and Nancy McClellan, MPH, CIH, CHMM, Member², (1) Carbon Reform, Newark, DE, (2) American Industrial Hygiene Association, Falls Church, VA

Modeling Existing Buildings
Room: Water Tower Parlor, 5th Floor
Chair: John Bynum, Ph.D., Member, ARUP, Dublin, Ireland
Modelling of existing buildings presents unique challenges which can differ quite substantially from one building to the next depending on many technical and non-technical factors. This session covers two tools for assessing existing buildings as well as one unique case study of a historic museum. The first tool discussed is focused on retrofitting opportunities for small to medium commercial buildings while the second is focused on rapid modelling for ESG assessments. The museum case study presents the use of specialized simulation techniques to solve the specific challenges facing the museum.

1. Frozen Paintings, Interior Gutters: Simulating a 1960s Museum
Graham Linn, P.E., HabLab, Madison, WI
2. A Simple Building Calculator (SBC) for Evaluating Commercial Building Performances
Weili Xu, Ph.D., Associate¹, Chitra Nambiar, Associate Member² and Reid Hart, P.E., Life Member³, (1)PNNL, United States of America, Seattle, WA, (2)PNNL, United States of America, (3)PNNL, United States of America, Richland, WA
3. Energy Modeling for Green Property Conditioning Assessment
Krishnan Gowri, Ph.D., BEMP, Fellow ASHRAE, Intertek Building Science Solutions, Bothell, WA
Occupant Health, Well-being and Comfort

Room: Adams Room, 5th Floor
Chair: Walter T Grondzik, P.E., Member, Ball State University, Muncie, IN

This session presents three studies that use advanced simulation and analysis techniques to assess the impacts of the built environment on human occupants. The first presentation investigates the variation of temperature across time and across space in single family residences and its impact on thermal comfort. This is followed by a study of the impact of thermal conditions on sleep for older occupants. The final presentation considers the impact on occupant behavior patterns of simulated building performance metrics.

1. The Impact of Bedroom Thermal Environment on Sleep in Community-Dwelling Older Adults
 Amir Baniassadi, Ph.D., Student1, Wanting Yu2, Ryan Day2, Angel Wong2, Thomas Travison, Ph.D.1, Lewis Lipsitz, M.D.1 and Brad Manor, Ph.D.1. (1)Harvard Medical School, Boston, MA, (2)Marcus Institute for Aging Research, Boston, MA

2. The Potential of Building Simulation Integrated into Behavioral Experiments
 JeeEun Lee, Student and Ying Hua, Ph.D., Cornell University, Ithaca, NY

Wednesday, September 14, 10:30 AM - 12:00 PM
Paper Session 2 (Intermediate)

Approaches to Modeling Future Weather, Climate and Extreme Events I

Room: Adams Room, 5th Floor
Chair: Drury B Crawley, PhD, Member, Bentley Systems, Inc., Washington, DC

This session discusses the role future weather, climate and other extreme climate events play in decisions concerning the nexus between energy efficiency, resiliency, and load flexibility. The first presentation discusses optimization approaches for building envelope to account for future climatic demands. The next presentation discusses the development of a simplified battery storage sizing tool to estimate storage needs for homes operating off-grid. The session discusses the importance of a stochastic model of future weather conditions, so that dynamics between resilience metrics and efficiency metrics can be fairly assessed. The final presentation evaluates the passive survivability under extreme weather events.

1. Building Envelope Optimization for Future Climatic Demands by Simple-Box Model Energy Simulation (C004)
 Mitra Azimi, Student and Juan Carlos Balthazar, Texas A&M University, College Station, TX

2. Development of a Battery Capacity Sizing Tool for Optimal Sizing of Residential-Scale Backup and Microgrid Energy Systems (C005)
 Kate Bren, E.I.T., Maya Viren Hazarika and Charles Upshaw, Positive Energy, Austin, TX

 Villa, Daniel L. Villa1, Juan Pablo Carvallo, Ph.D.2, Carlo Bianchi1 and Sang Hoon Lee, Ph.D.4, (1)Sandia National Laboratories, (2)Lawrence Berkeley National Laboratory, Berkeley, CA, (3)National Renewable Energy Laboratory, Golden, CO, (4)Lawrence Berkeley National Laboratory, United States of America

4. Evaluation of the Thermal Resilience of a Community Hub (C007)
 Aylin Ozkan, Ph.D.1 and Joel Good, P.Eng.2, (1)RWDI, Toronto, ON, Canada, (2)RWDI, Vancouver, BC, Canada

10:30 AM - 12:00 PM
Paper Session 3 (Intermediate)

CFD Applications for Architectural Decision Making

Room: Monroe Room, 5th Floor
Chair: Nathaniel Louis Jones, Associate, Arup, Boston, MA, United States

This session introduces some of the recent CFD applications, ranging from thermal comfort, health, to emergency management. First, speakers evaluate the thermal performance and thermal comfort provided by newly design thermally active student’s desk. Speakers also discuss the health-related applications, including using CFD to assess the COVID spread in a grocery store as well as discuss how to combine CFD with machine learning to accelerate the simulation of particulate modeling around buildings. Lastly, speakers explain how to use CFD to assist the safe evacuation analysis and means of egress layout for emergencies.

1. Numerical Investigation of Thermal Comfort of Thermally Active Students Desk (TASD) in a Historical Building (C008)
 Lobna Mitkees1, Mohammad Heidarinejad, Ph.D., P.E., Associate1 and Brent Stephens, Associate Member2, (1)Illinois Institute of Technology, Chicago, IL, (2)Illinois Institute of Technology, Chicago, IL, USA

2. A Computational Fluid Dynamics Model for the Assessment of Sars-cov-2 Aerosol Dispersion Inside A Grocery Store (C009)
Mingkan Zhang, Ph.D., Associate1, Prateek Shrestha1, Xiaobing Liu, Ph.D., Member1, Jason DeGraw, Ph.D., Member2, Dustin Schafer, P.E.3 and Nathan Love2, (1)Oak Ridge National Laboratory, Oak Ridge, TN, (2)Henderson Engineers, Lenexa, KS
Mehdi Ashayeri1 and Narjes Abbasabadi2, (1)Southern Illinois University, Carbondale, IL, (2)University of Texas, Arlington, TX
Chen, Xiaolei Chen, California State University

10:30 AM - 12:00 PM
Seminar 4 (Intermediate)
Modeling Advances: Tools and Workflows I
Room: Water Tower Parlor, 5th Floor
Chair: Aaron Patrick Boranian, Senior Energy Engineer, Associate, Big Ladder Software, Denver, CO
This session starts with discussing a new tool that assists designers by integrating commercial building energy surveys, recent ASHRAE research, and comparative analysis of historical vs. future weather data. This session also covers the predictability of future occupant presence based on collected occupancy sensor data, as well as the impact of tangential costs (repairing damaged interior finishes as part of a fenestration replacement project, e.g.) on results of Life-Cycle Cost Analysis (LCCA). The session concludes with a discussion of balancing simulation precision and detail with efficiency and profit margins via benchmarking, simplified analysis, and isolated test models.
1. Rapid Energy Design Tool: Research-Grade Energy and Climate Data for Energy-Conscious Design
Amir Rezaei-Bazkiaei, Ph.D., Associate1 and Brett Horin2, (1) CannonDesign, Buffalo, NY, (2) CannonDesign, Chicago, IL
2. Predictability Analysis of Occupant Presence in Residential Buildings
Kim Sunghyun and Cheol-Soo Park, Ph.D., Department of Architecture and Architectural Engineering, Seoul National University, Seoul, Korea, Republic of (South)
3. Building Enclosure Life-Cycle Cost Analysis: Examples of Bias and the Skewing of Results
Cheryl M Saldanha, P.E.1 and Abigail Sefah2, (1) Simpson Gumpertz & Heger, New York, NY, (2) Simpson Gumpertz & Heger, Boston, MA
4. Level of Detail Question in Building Simulations
Emir Aykut Pekdemir, BEMP, Associate Member, WSP USA, New York, NY

10:30 AM - 12:00 PM
Seminar 5 (Intermediate)
Open Source Modeling for District Energy Systems
Room: Chicago Room, 5th Floor
Sponsor: 4.7 Energy Calculations
Chair: Wangda Zuo, Member, Pennsylvania State University, State College, PA
This seminar introduces recent efforts in developing open source modeling tools for district energy systems based on URBANopt and Modelica Buildings library, which is a joint effort of NREL, LBNL and Penn State. We will introduce new Modelica models for steam-based district heating system and future low carbon systems. Then we will discuss the integration of URBANopt and Modelica. We will also demonstrate the usage of such tool with some real-world examples.
1. A Fast and Accurate Modeling Approach for Water and Steam Thermodynamics with Practical Applications in District Heating System Simulation
Kathryn Hinkelman, Pennsylvania State University, State College, PA
2. Design of Decarbonized District Energy Systems with the Modelica Buildings Library
Michael Wetter, Ph.D., Member, Lawrence Berkeley Lab, Berkeley, CA
Nicholas I Long, PE, Member, National Renewable Energy Laboratory, United States of America, Golden, CO
Wednesday, September 14, 1:00 PM - 1:30 PM

Vendor Demonstration (Basic)

ESTECO

Room: Grant Park Parlor, 5th Floor

Join Esteco for a 30 minute vendor demonstration!

Wednesday, September 14, 1:40 PM - 3:10 PM

Panel 1 (Basic)

Embodied Carbon of MEP Systems

Room: Chicago Room, 5th Floor

Chair: Ivan Jose, McKinstry, Seattle, WA

This panel will be a discussion on the embodied carbon of MEP systems. The panel includes industry experts from mechanical design firms that have worked on studies for projects on understanding the impact of MEP embodied carbon and refrigerants. The panel will also include a leader in the MEP 2040 Challenge, an initiative started by the Carbon Leadership Forum that sets commitments for firms to lower the embodied carbon of MEP systems. The panel will also include a member of the City of Chicago's decarbonization task force, discussing future policy decisions that can help lower a building's whole life carbon.

1. **Embodied Carbon Analysis**

 Luke C H Leung, PE, BEMP, Member, Skidmore, Owings, & Merrill LPP, Chicago, IL

2. **Leveraging MEP Supply Chains for Social Impact**

 Kayleigh Houde, BuroHappold, Los Angeles, CA

3. **Finding the Carbon Payback**

 Ante Vulin, Glumac, Portland, OR

1:40 PM - 3:10 PM

Paper Session 4 (Intermediate)

Innovations in Passive and Hybrid Heating and Cooling I

Room: Adams Room, 5th Floor

Chair: Wangda Zuo, Member, Pennsylvania State University, State College, PA

Authors in this session discuss several strategies evaluated for the City of Chicago to reduce residential heating loads, natural ventilation as a passive technology and shows two data-driven advanced control designs for natural ventilation, integrating algae photobioreactors into facades, to act as a passive HVAC system, and recover the heat generated by the system for space heating. Also presented are façade-integrated photovoltaics and an evaluation of different configurations which can impact the efficiency of the system as well as an innovative wall component integrating the flexible PV panels with the wall insulation system.

1. **Sun and Stone in the Windy City: New Evidence for Direct Solar Heating Performance in Greater Chicago (C012)**

 Alexandra R Rempel, Ph.D. and **Alan Rempel**, University of Oregon, Eugene, OR

2. **Winter Natural Ventilation Control With Operable Windows: Application Of Statistical Simulation In The Transformation From Predictive Control To Reinforcement Learning Control (C013)**

3. **Direct Integration of Flexible Photovoltaic with the Wall: A Simulation Approach to Determine Panel Performance (C014)**

 Dariusz Heim, Professor¹, **Anna Wieprzkowicz²** and **Dominika Knera²**, (1)Lodz University of Technology, Lodz, Poland, (2)Lodz University of Technology, Poland

4. **Performance of Energy Activated ETICS Applied in the Urban Environment of Street Canyons (C015)**

 Dominika Knera¹, **Dariusz Heim, Professor²** and **Anna Wieprzkowicz²**, (1)Lodz University of Technology, Poland, (2)Lodz University of Technology, Lodz, Poland

1:40 PM - 3:10 PM

Paper Session 5 (Intermediate)

Modeling Advances and Validation of Modeling Results

Room: Monroe Room, 5th Floor

Chair: Jeannie Kim, Argonne National Laboratory, Lemont, IL

This session covers various topics related to large-scale residential building analysis and validation of modeling results using empirical data. The first speaker covers a large-scale simulation methodology which evaluated the impact of trade-offs on building envelope performance. The second presentation introduces a methodology for using empirical data for residential...
buildings to validate predicated energy use results. Next, a random forest machine learning model to predict envelope assembly characteristics for existing buildings is presented. The final presentation evaluates the effects of a new daylighting system on the thermal and electric load of a typical office building.

1. Advancing Building Energy Code Using Large Scale Building Energy Simulation (C016)
Yulong Xie, Ph.D.¹, Victor Salcido², Yan Chen, Ph.D.², Todd Taylor², Benjamin Taube² and Michael Rosenberg, Fellow ASHRAE², (¹)Pacific Northwest National Laboratory, Richland, WA, (²)Pacific Northwest National Laboratory, Portland, OR

2. Improving Residential Building Simulations Through Large-Scale Empirical Validation (C017)
Ben Park, Associate¹, Scott Horowitz², Noel Merket¹ and Dave Roberts², (¹)NREL, Golden, CO, (²)NREL

3. A Method to Predict Building Envelope Construction from In-Situ Thermal Testing (C018)
Tyler James Pilet¹ and Tarek Rakha¹, (¹)Pacific Northwest National Laboratory, (²)Georgia Institute of Technology, Atlanta, GA

Anna Wieprzkowicz¹, Dominika Knera¹ and Dariusz Heim, Professor², (¹)Lodz University of Technology, Poland, (²)Lodz University of Technology, Lodz, Poland

Masoome Haghani¹, Behrouz Mohammad Kari² and Rima Fayaz³, (¹)NCSU, (²)Building and Housing Research Center (BHRC), Tehran, Iran, (³)Department of Architecture, Art University of Tehran, Iran
Building Operation, Performance and Controls
Room: Monroe Room, 5th Floor
Chair: Michael Wetter, Ph.D., Member, Lawrence Berkeley Lab, Berkeley, CA

Building performance depends on not only how the building is designed but also how the building is operated. In this regard, it is important to improve building operational performance by optimal controls, automatic fault detection and diagnosis, and machine learning. The first three papers cover input data uncertainty, sensor faults and the use of collected data for optimal building controls. The fourth paper investigates the dual fuel heat pump controls for energy and cost savings in residential buildings. Finally, the 5th paper presents the optimal demand response control for heat pump water heaters.

1. Evaluating the Impacts of Weather Forecast Inaccuracy on Performance of Model Predictive Control for Dynamic Facades (C026)
Peter Grant and Christoph Gehbauer, Lawrence Berkeley National Laboratory, Berkeley, CA

2. Incipient Sensor Fault Impacts on Building Performance through HVAC Controls (C027)
Yanfei Li, Ph.D., Associate1, Yeoboom Yoon2, Yeonjin Bae, Ph.D., Member2, Piljae Im, Ph.D., Member2 and Sangkeun Lee2, (1)ORNL, Oak Ridge, TN, (2)Oak Ridge National Laboratory, Oak Ridge, TN

Mohammad Heidarinejad, Ph.D., P.E., Associate1, Behzad Salimian Rizi, Student Member1, Greg Pavlak, Ph.D., Member2 and Vincent Cushing3, (1)Illinois Institute of Technology, Chicago, IL, (2)Penn State University, State College, PA, (3)QCoefficient, Inc., Chicago, IL

Yeoboom Yoon2, Yanfei Li, Ph.D.1, Piljae Im, Ph.D., Member1 and James Lyons2, (1)Oak Ridge National Laboratory, Oak Ridge, TN, (2)Newport Partners LLC, Davidson, MD

Aaron Patrick Boranian, Senior Energy Engineer, BEMP, Associate1, Ben Larson2 and Bruce A. Wilcox, P.E., Member3, (1)Big Ladder Software, Denver, CO, (2)Larson Energy Research, Menomonie, WI, (3)Bruce A. Wilcox, Berkeley, CA

Building Envelope Performance and Design Considerations for Energy Modelers
Room: Chicago Room, 5th Floor
Sponsor: 7.6 Building Energy Performance
Chair: Ali Yalaz, P.E., Simpson Gumpertz & Heger, New York, NY

High-performance buildings require mechanical systems that reduce energy consumption while maintaining indoor air quality. To achieve this, mechanical engineers must understand the role of building envelopes towards overall building performance. This seminar defines key design considerations of high-performance building envelope systems and address common missteps regarding building envelope performance values for energy models. Specifically, we will review fenestration and spandrel U-factor calculations, envelope thermal bridges and thermal comfort, mechanical system impact on surface condensation, and review envelope air leakage assumptions. The seminar includes case studies to provide practical examples of each topic.

Unique Topics
Room: Water Tower Parlor, 5th Floor
Chair: Lauren M. Wallace, Epsten Group, Atlanta, GA
This session covers several topics including CFD for grow houses, inequities in building energy use, lighting for demand response, and strategies for balancing IAQ and energy consumption. The first presentation introduces an approach using CFD to optimize grow house designs for plant growth. The second is a review of recent research on inequities in building energy use and guidance for how professionals can drive change. The third outlines the potential for using lighting as a distributed energy resource via demand response signals. The fourth is an evaluation of different contaminant removal strategies balancing indoor air quality and energy consumption.

1. What the Energy Modeling Community Can Do to Minimize Inequalities in Building Energy Usage
 Bryce Cox, P.E., BEMP, Associate, University of Wisconsin Platteville, Platteville, WI

2. How Can Demand Curves be Used to Configure Connected Lighting Systems to Respond to OpenADR Signals?
 Shat Prattoomratana and Michael Poplawski, Associate Member, Pacific Northwest National Laboratory, Portland, OR

3. Evaluating Ventilation Strategies to Balance the Indoor Quality Needs and Energy Consumption
 Wangda Zuo, Member, Pennsylvania State University, State College, PA

Wednesday, September 14, 5:00 PM - 5:30 PM
Vendor Demonstration (Basic)

DesignBuilder
Room: Grant Park Parlor, 5th Floor
Join DesignBuilder for a 30 minute vendor demonstration!

Thursday, September 15

Thursday, September 15, 7:30 AM - 8:00 AM
Vendor Demonstration (Basic)

NEO Net Energy Optimizer
Room: Grant Park Parlor, 5th Floor
Join NEO for a 30 minute vendor demonstration!

Thursday, September 15, 8:10 AM - 9:00 AM
Keynote
Luke C H Leung, PE, Member, Skidmore, Owings, & Merrill LPP, Chicago, IL
Whole Life Carbon Study
Room: Adams Room, 5th Floor
Optimization of a building now goes beyond energy modeling. In order to decarbonize our economy, we will need both energy and carbon matrices to form a whole life carbon study. Appendix G of ASHRAE Standard 90.1 has a new addition of carbon in its latest edition. Likewise, embodied carbon is being addressed in different regulations. In his presentation Luke looks at a whole life carbon study from Chicago's China Town Library. From the whole life carbon framework, to architectural, structural, MEP engineering and refrigerant impacts. Our modeling will need to change in order to inform a post-carbon world.
Thursday, September 15, 9:10 AM - 10:10 AM

Debate (Intermediate)

It’s Time to Revise the Standard Thermal Comfort Zone of ASHRAE Standard 55

Room: Chicago Room, 5th Floor
Moderator: Alexandra R Rempel, Ph.D., University of Oregon, Eugene, OR

With summer comes air-conditioning, and for many, that means packing an extra sweater to keep the goosebumps at bay. Winter can be equally challenging, as people in cold climates swelter in offices warmed to a toasty 72F. Is it possible that the ASHRAE 55 standard comfort zone is due for an update? The urgency of addressing climate change, the high energy consumption of space heating and cooling and the limited research base supporting the standard comfort zone suggest that, perhaps, it could be. In this debate, we’ll hear experts in the field debate the resolution.

1. Negative Team
Walter T Grondzik, P.E., Member and James Dirkes, (1) Freelance Consultant, Tallahassee, FL, (2) Foresight Management, Grand Rapids, MI

2. Affirmative Team
Mili Kyropoulou and Jonathan Yorke Bean, (1) University of Houston, Houston, TX, (2) University of Arizona, Tucson, AZ

9:10 AM - 10:10 AM

Paper Session 8 (Intermediate)

Building Envelope Design, Daylighting and Energy Performance

Room: Monroe Room, 5th Floor
Chair: Nathaniel Louis Jones, Associate, Arup, Boston, MA, United States

This session includes three papers which cover diverse but highly interesting topic. This session starts off with a presentation which explores visual comfort and daylight performance of an office building through metrics including sDA and ASE. The next presentation in this session evaluates how algae bio-reactive building envelopes can regulate a building’s natural lighting and demonstrates the significance of self-adaptive shading to a building’s heat gain and energy savings. The final presentation in this session introduces climate adaptive opaque building envelopes (CABEs) which dynamically exchange heat between indoor and outdoor environments to reduce energy demands for heating and cooling.

1. Algae Bio-reactive Building Envelope: Dynamic Lighting and Energy Aspects for Algae-based Building Skin (C031)
Jingshi Zhang, Alexandros Tsamis and Daniel Rosenberg, (1) The Pennsylvania State University, (2) Rensselaer Polytechnic Institute, (3) Carnegie Mellon University, Pittsburgh, PA

2. Modeling, Simulation, and Evaluation of a Double-Sided Hydronic Layer Embedded Opaque Climate-Adaptive Building Envelope (C032)
Youngjin Hwang, Student, Amogh Wasti, Theodorian Borca-Tasciuc, Justin Scott Shultz, Ph.D., Associate Member, Luigi Vanfretti and Alexandros Tsamis, (1) Rensselaer Polytechnic Institute, Troy, NY, (2) Rensselaer Polytechnic Institute, (3) EYP Architecture & Engineering, Washington, DC

3. Validation of IFC-based Geometric Input for Building Energy Performance Simulation (C033)
Veronika Elisabeth Richter, Avichal Malhotra, Eric Fichter, Anna Hochberger, Jérôme Frisch and Christoph van Treeck, Institute of Energy Efficiency and Sustainable Building (E3D), RWTH Aachen University, Germany

9:10 AM - 10:10 AM

Seminar 10 (Intermediate)

Approaches to Modeling Future Weather, Climate and Extreme Events II

Room: Adams Room, 5th Floor
Chair: Jill Kurtz, Page, Houston, TX

This session covers approaches to modeling future weather, climate, and extreme events. The first topic outlines data, analytics, and evaluation methodologies to identify populations that are especially vulnerable to extreme heat events, and possible mitigation strategies in both the long term and short term. The next topic visualizes and explore the nuances of different weather files, discuss their use in typical applications, and provide guidance on common mistakes. The final presentation explores a case study on solar heat gain coefficients to align building design with future energy generation, optimizing for both total and “net” annual electric demand.

1. Urban Thermal Diagnostics and Extreme Heat Vulnerability in Underrepresented Communities
Hala Alfalih, Student, WSP, Chicago, IL

Nishesh Jain, Ph.D., Member, University College London / DesignBuilder Software, London, United Kingdom

3. Aligning Building Design with Future Energy Generation: Case Study of Solar Heat Gain Coefficients
Holly Samuelson, Student\(^1\) and Amir Baniassadi, Ph.D., Student\(^2\), (1)Harvard Graduate School of Design, Cambridge, MA, (2)Harvard Medical School, Boston, MA

9:10 AM - 10:10 AM

Seminar 11 (Intermediate)

Modeling Advances: Tools and Workflows II

Room: Water Tower Parlor, 5th Floor

Chair: John Bynum, Ph.D., Member, ARUP, Dublin, Ireland

This session introduces modelling advances related to climate data, u-value calculations, and empirical validation of Building Performance Simulation (BPS) programs. The first presentation presents a detailed comparison of climate data derived from 5 ground stations and satellite data including simulation results for a prototype commercial office building. The second presentation presents a method for quantifying the discrepancy between measured and catalog-based U-value calculations. The third presentation focuses on the development and steady-state application of a test facility designed for empirical validation of thermal fabric models that seeks to help bring empirical validation to standard software evaluation procedures.

1. **Contrasting Ground Station Vs Satellite Climate Data Impacts on Building Simulation**
 Drury B Crawley, PhD, BEMP, Member\(^1\) and Linda Lawrie, Member\(^2\), (1) Bentley Systems, Inc., Washington, DC, (2)DHL Consulting LLC, Pagosa Springs, CO

2. **Filling the Gap: Measured Composite Envelope U-Values and How We Usually Calculate Them**
 Ji Hyun Kim, Ph.D., BEMP, Associate\(^1\), Joel Neymark, P.E., Member\(^1\) and Ralph Muehleisen, Ph.D., P.E., Member\(^1\), (1) Argonne National Laboratory, Lemont, IL, (2) J. Neymark & Associates, Golden, CO

3. **Empirical Validation with ETNA Data: In the Beginning ****
 Joel Neymark, P.E., Member\(^1\), Ji Hyun Kim, Ph.D., BEMP, Associate\(^2\), Ralph Muehleisen, Ph.D., P.E., Member\(^2\) and Timothy P McDowell, Member\(^1\), (1) J. Neymark & Associates, Golden, CO, (2) Argonne National Laboratory, Lemont, IL, (3) Thermal Energy Systems Specialists, Madison, WI

Thursday, September 15, 10:30 AM - 12:00 PM

Paper Session 9 (Intermediate)

Lifecycle Carbon Assessment

Room: Adams Room, 5th Floor

Chair: Carrie A Brown, Ph.D., Member, Resource Refocus, LLC, Oakland, CA

Understanding the carbon footprint of buildings is essential to reducing carbon emissions and combating climate change. This session details new techniques for quantifying embodied carbon and presents two case studies that examine the embodied carbon of building materials.

1. **Operational Carbon Emission Methodology Literature Review (C034)**
 Nathan Vader, PE, Atelier Ten, New York, NY

2. **Heuristic Urban-Scale Life Cycle Assessment of Districts to Determine their Carbon Footprints (C035)**
 Maximilian Schüldt, Johannes Linus Coupers, Avichal Malhotra, Maxim Shamovich, Jérôme Frisch and Christoph van Treeck, Institute of Energy Efficiency and Sustainable Building (E3D), RWTH Aachen University, Germany

3. **Realistic Estimation of CO2 Emission Reductions Due to Building Retrofit (C036)**
 Yingli Lou\(^1\), Yunyang Ye, Ph.D., Associate\(^1\), Wangda Zuo, Ph.D., Member\(^1\) and Yizhi Yang\(^1\), (1) University of Colorado, Boulder, (2) Pacific Northwest National Laboratory, Portland, OR, (3)Pennsylvania State University, State College, PA

4. **A Decarbonization Proforma of Modular Building Solutions (C037)**
 Noah Klammer, Associate\(^1\), Ankur Podder\(^1\), Kaufman Zoe\(^1\) and Shanti D. Pless, Member\(^3\), (1) Affiliated Engineers, Inc., (2) National Renewable Energy Lab, Golden, CO, (3)National Renewable Energy Laboratory, Golden, CO

5. **Locking in Carbon Reduction: A Life Cycle Assessment Case Study (C038)**
 Amol Mangrulkar Sr., Sr. Consultant\(^1\), Yogitha Miriyala\(^1\), Amanda Thounaojam\(^1\), Prasad Vaidya\(^1\) and Sanjay Prakash\(^2\), (1) Indian Institute for Human Settlements, Bangalore, India, (2) Studio for Habitat Futures, New Delhi, India
Advances in Modeling Tools, Approaches and Workflows

Room: Monroe Room, 5th Floor
Chair: Yunyang Ye, Ph.D., Associate, Pacific Northwest National Laboratory, Portland, OR

This session introduces developments and innovation in modeling tools and workflows. The first presentation discusses the development of occupancy schedules for school buildings. The second presentation introduces a python-based tool for pre-simulation validation of space boundaries and a semi-automatic process for correction of errors. The next speaker discusses a new set of tests for ASHRAE Standard 140. This is followed by a presentation on the development of a new VRF heat pump. Finally, we talk about the HVAC control modeling tools and control sequence implementations based on ASHRAE RP 1711.

1. Development of an Occupancy Schedule for OpenStudio Prototype College Building Model (C039)
Yeonjin Bae, Ph.D., Member, Yeobeom Yoon, Sungkyun Jung, Ph.D., Mini Malhotra, Ph.D. and Piljae Im, Ph.D., Member, Oak Ridge National Laboratory, Oak Ridge, TN

2. ASHRAE Standard 140 Weather Drivers Test Suite: Results Analysis (C040)
McDowell, Timothy P McDowell1 and Ralph Muehleisen, Ph.D., P.E., Member2, (1)Thermal Energy System Specialists, LLC, (2)Argonne National Laboratory, Lemont, IL

3. Validation Of A Variable Refrigerant Flow Heat Pump Model Using ASHRAE HQ Data (C041)
Aziz Mbaye, Student1 and Massimo Cimmino, Ph.D., P.E.2, (1)Polytechnique Montréal, Montréal, QC, Canada, (2)École Polytechnique de Montréal, Montréal, QC, Canada

4. Data Center Chiller Plant: Simulation-based Comparative Control Design Case Study (C042)
Milica Grahovac, Associate1, Paul Ehrlich, P.E.2, Jianjun Hu1 and Michael Wetter, Ph.D., Member3, (1)Lawrence Berkeley National Laboratory, Berkeley, CA, (2)Building Intelligence Group, Afton, MN, (3)Lawrence Berkeley Lab, Berkeley, CA

Optimizing Buildings for Zero Carbon Lifetime Operations: Part 2

Room: Chicago Room, 5th Floor
Chair: Jamy Bacchus, P.E., BEMP, Member, ME Engineers, Denver, CO

This session is a follow-up to our 2021 ASHRAE BPAC session: 30-yr GHG Forecasts Using Marginal and Average Emissions, where we sought to optimize office building design for minimal operational carbon by employing strategies including electrification, onsite renewables, and battery storage. This session will focus on analyzing multifamily buildings’ lifetime emissions using NREL’s hourly Cambium data and design optimization using the same intervention strategies. We will discuss updates to the Cambium data, which now includes upstream methane, and the impact on the previous results. We will also analyze the mechanical systems’ refrigerants and their Scope 1 emissions.

1. Optimizing Multifamily Buildings for Zero Carbon Lifetime Operations
Caitlin Anderson, P.E., Member, ME Engineers, Denver, CO

2. Optimizing Office Buildings for Zero Carbon Lifetime Operations (a review)
Jamy Bacchus, P.E., BEMP, Member, ME Engineers, Denver, CO

3. Analyzing Refrigerant Scope 1 Emissions for Lifetime Operations
Sedighehsadat Mirianhosseinabadi, Ph.D., Associate, ME Engineers, Golden, CO

Intelligent Building Operations: Efficiencies and Load Management II

Room: Water Tower Parlor, 5th Floor
Chair: Aaron Patrick Boranian, Senior Energy Engineer, Associate, Big Ladder Software, Denver, CO

This session focuses on new workflows and applications, starting with a progress report on how ASHRAE Standard 205P efficiently and accurately transfers HVAC equipment performance data into simulation programs. It will then discuss a new paradigm for automated output-based verification as well as novel uses of semantic models to map data contained in drawings, naming conventions, contract documents, and maintenance staff knowledge to building analytics applications. Balancing out these new workflows and applications is a case study evaluating the energy performance gains of replacing a conventional chiller-boiler plant with an air-to-water heat pump central plant.

1. A Progress Report on ASHRAE Standard 205P
Charles S Barnaby, Member, CSB Consulting, Moultonborough, NH

Christopher Anthony DesRoches, Associate1 and Krishnan Gowri, Ph.D., BEMP, Fellow ASHRAE2, (1)Mitsubishi Electric Sales Canada Inc., Markham, ON, Canada, (2)Intertek Building Science Solutions, Bothell, WA

3. A New Paradigm for Automatically Verifying Control Performance in Building Energy Model

Yan Chen, Ph.D.1, Jeremy Lerond, Affiliate2, Xuechen Lei, Ph.D., Associate Member2 and Yun Joon Jung1, (1)Pacific Northwest National Laboratory, Portland, OR, (2)Pacific Northwest National Laboratory, Richland, WA

Parastoo Delgoshaei, Associate, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

Thursday, September 15, 1:00 PM - 1:30 PM
Vendor Demonstration

Cove.tool
Room: Grant Park Parlor, 5th Floor
Join Cove.tool for a 30 minute vendor demonstration!

Thursday, September 15, 1:30 PM - 2:30 PM
LowDown ShowDown

ASHRAE LowDown Showdown
Room: Adams Room, 5th Floor
Chair: Walter T Grondzik, P.E., Member, Freelance Consultant, Tallahassee, FL
The 2022 LowDown Showdown model building is located in Albuquerque, NM. Teams were asked to design a K-5 school to serve 450 students in an educational setting that provides appropriate spaces for elementary education as well as community uses—and can be adapted to future challenges and changes.

Zero Heroes

Nathan Kegel (Captain)
Shona O Dea
Anthony Montez
Mahdi Afkhamiaghda
Andrew Eckhoff
Thu Nguyen
Danielle Steele
Rajat Wadhwa
Jill Malthy-Abbott
Xuyang Jin
Matt Conway
Chris Flynn

Thursday, September 15, 2:30 PM - 3:30 PM
Panel 2

Fishbowl Session
Room: Adams Room, 5th Floor
Chair: James Dirkes, Foresight Management, Grand Rapids, MI, Haley Booker-Lauridson, ASHRAE, Atlanta, GA and Ragan McHan, ASHRAE, United States of America, Atlanta, GA
This session is an informal, informative discussion among peers regarding modeling and modeling-related issues that affect us in a major way. The Fishbowl helps facilitate discussion by having 3-4 people in the center of the room, talk at any one time on the specified topic. Audience members are invited to participate by selecting a panelist to replace when they have a question or comment. Topics of discussion include:

- What are your biggest challenges? (Not only techniques, but processes, training, etc.)
- How do you manage multiple projects?
- How are your models used, and how can they become more useful?
Thursday, September 15, 3:30 PM - 4:00 PM

IES
Room: Grant Park Parlor, 5th Floor
Join IES for a 30 minute vendor demonstration!

Thursday, September 15, 4:00 PM - 5:00 PM

SoapBox Session
Room: Adams Room, 5th Floor
Chair: Dennis Knight, P.E., Fellow ASHRAE, Whole Building Systems, LLC, Mt. Pleasant, SC
In this session, attendees take center stage as they share their perspective on subjects that they feel are pertinent to the building performance analysis community such as carbon, renewables, weather data, risk assessment/uncertainty, etc. Attendees submit topics prior to the session and if chosen by the moderator, will be given 3-5 minutes to stand on their soapbox and present their topic. Don’t miss your chance to share your views with your colleagues and peers. Challenging views are encouraged, as well as the sharing of any projects or pieces of research likely to be of interest to the audience.

Thursday, September 15, 5:00 PM - 5:30 PM

TRANE
Room: Grant Park Parlor, 5th Floor
Join TRANE for a 30 minute vendor demonstration!

Friday, September 16

Friday, September 16, 7:30 AM - 8:00 AM

Big Ladder Software
Room: Grant Park Parlor, 5th Floor
Join Big Ladder Software for a 30 minute vendor demonstration!

Friday, September 16, 8:10 AM - 9:00 AM

Keynote (Intermediate)
Amber Mahone, Energy and Environmental Economics, Inc., San Francisco, CA
Implications of Net Zero: Buildings, the Grid, and the Future of Gas
Room: Adams Room, 5th Floor
Addressing climate change will require a complete transformation of energy use in buildings at an unprecedented pace, through efficiency, electrification, and low-carbon fuels. While building electrification can reduce greenhouse gases and energy bills in many jurisdictions, it can also significantly increase peak electricity demand and costs in cold climates. Delivering decarbonized fuels to buildings avoids retrofit costs and grid impacts but comes with high fuel costs and technology risks. Hybrid solutions may balance these costs and risks in colder climates. Amber discusses these tradeoffs using an integrated energy system approach.
Friday, September 16, 9:10 AM - 10:10 AM

Panel 4 (Intermediate)

Unmet Hours: LIVE!
Room: Chicago Room, 5th Floor
Chair: Aaron Patrick Boranian, Senior Energy Engineer, Associate, Big Ladder Software, Denver, CO
This session presents attendees with an opportunity to interact with their peers and "crowd source" answers to their burning questions. This is the same intent as unmethours.com -- the question-answer forum for building energy simulations -- but offered in a live, interactive, and dynamic format for conference attendees. Participants are given time to think of a challenge they are facing before presenting their problem to a group for brainstorming. This allows participants to seek out as well as provide peer-supported advice on solving each other's challenges. What answers will you find (or give) in Unmet Hours -- LIVE?

9:10 AM - 10:10 AM

Paper Session 11 (Intermediate)

Building Simulation Education and Quality Assurance
Room: Monroe Room, 5th Floor
Chair: Jayati Chhabra, Associate, cove.tool, Atlanta, GA
This session includes two papers with different but very interesting and important topics. The first paper presents an automated approach to help modelers quality check building energy models at the early design phase. The second paper talks about the integration of building performance simulation into the existing curricula of architectural education.

1. An Automated Approach for Quality Checking Early Design Phase Building Energy Models (C043)
Brett Horin, Student, CannonDesign, New York, NY

2. One Step at a Time: Why Confidence, Familiarity and Trust are Key to Building Performance Simulation in Architectural Education (C044)
Jonathan Yorke Bean, The University of Arizona, Tucson, AZ

9:10 AM - 10:10 AM

Seminar 13 (Intermediate)

Evolving Performance Indicators
Room: Water Tower Parlor, 5th Floor
Chair: Walter T Grondzik, P.E., Member, Ball State University, Muncie, IN
This session begins with a summary report of the energy use and effectiveness of several combinations of germicidal UV with HVAC systems in mitigating SARS-Cov-2. Assumptions from previous studies are discussed and future research suggested. The second presentation addresses the limitations of EUI (energy use intensity) as a performance indicator and provides suggestions for an alternative metric derived through analysis involving 800 simulations of various building configurations. This is followed by a proposal to consider additional, non-tradition metrics when engaged in the design and planning of cities—with a focus on the reduction of negative environmental impacts.

1. Comparing the Energy Use and Effectiveness of Upper Room Germicidal Ultraviolet Radiation and HVAC Strategies to Combat Sars-Cov-2
Belal Abboushi, Pacific Northwest National Laboratory, Portland, OR

2. Normalization of Building Energy Use Under Different Locations and Occupant Densities
Young-Seo Yoo¹, Dong-Hyuk Yi, Ph.D.², Deuk-Woo Kim, Ph.D.¹ and Cheol-Soo Park, Ph.D.¹, (1)Department of Architecture and Architectural Engineering, Seoul National University, Seoul, Korea, Republic of (South), (2)System & Energy Division in Korea Testing Laboratory, Korea, Republic of (South), (3)Department of Building Energy Research in Korea Institute of Civil Engineering and Building Technology, Korea, Republic of (South)

3. Performance Analytics of Net Zero City
Sukreet Singh, Director - Energy Analytics, BEMP, Associate, Cunningham, Las Vegas, NV
Innovations in Passive and Hybrid Heating and Cooling II

Room: Adams Room, 5th Floor
Chair: Alexandra R Rempel, Ph.D., University of Oregon, Eugene, OR

Wind, sunlight, solar heat, cool night air, and cold night skies are the renewable energy sources featured in this session, highlighting their potential to free the renewably-powered grid for uses that require electricity. Capturing and using these climatic resources to their greatest advantage through intelligent controls and optimizations is a rapidly evolving field, explored here in high desert, subtropical, Mediterranean, and cold continental climates.

1. Design of Murbs in a Hot and Dry Climate through Integrative Environmental Analysis
 Haobo Liu¹ and Saurabh Shrestha², (1) DIALOG Design, Vancouver, BC, Canada, (2) DIALOG Design, Toronto, ON, Canada

2. Outdoor Educational Spaces: Generative Shading Design for a Warming Climate
 Mili Kyropoulou, University of Houston, Houston, TX

Simulation Calibration and Validation

Room: Monroe Room, 5th Floor
Chair: Jian Zhang, Pacific Northwest National Laboratory, Richland, WA

Building simulation plays an important role in making informed decisions on building retrofits. When applying simulation models for existing buildings, the models need to be calibrated and validated against real operation data. This session discusses OpenStudio model calibration for a cross laminated timber building. The session also covers the EnergyPlus model validation for the Net-Zero Energy Residential Test Facility at NIST. The third paper investigates the use of a calibrated building model to certify a net positive energy building during the pandemic. The final paper presents a decision-support framework to maximize the retrofit impact for government-owned public buildings.

1. Highly Instrumented Cross Laminated Timber Building: Sub-metering from Panels to Desks (C045)
 Gabriel Miguel Flechas, Student, Paulo Cesar Tabares-Velasco, Ph.D., Associate Member and Gabe Fierro, Ph.D., Colorado School of Mines, Golden, CO

2. Empirical Validation of Whole Building Energy Simulation Program under Free-Floating Conditions (C046)
 Hyojin Kim, Ph.D., Associate¹, Elizabeth Scacifero¹, Minkyung Park¹, Piljae Im, Ph.D., Member², Lisa Chen Ng, Ph.D.³, Brian Dougherty, P.Eng.¹ and William V. (Vance) Payne, Ph.D., Member², (1) New Jersey Institute of Technology, Newark, NJ, (2) Oak Ridge National Laboratory, Oak Ridge, TN, (3) National Institute of Standards and Technology, Gaithersburg, MD

3. Operating and Certifying a Net Positive Energy Building During a Pandemic (C047)
 Jung-Ho Lewe, Georgia Institute of Technology

 Rashmi Baliga¹ and David Conant-Gilles², (1) Affiliated Engineers, Inc, Madison, WI, (2) Affiliated Engineers, Inc.

An Overview of Simplified Energy Modeling Approaches and Tools: Industry Applications

Room: Chicago Room, 5th Floor
Chair: Andrea Mengual, P.E., Pacific Northwest National Laboratory, Seattle, WA

Simplified Building Energy Modeling (S-BEM) is an approach to building energy simulation that aims to make energy modeling easier, faster, and more accessible to designers. Although most often used to inform early-stage design decisions, S-BEM is a powerful performance analysis tool that is gaining traction in industry and has the potential to provide an alternative to prescriptive options for incentive programs and code compliance. This session will discuss the motivation behind the development of a simplified modeling ruleset, the Simplified Performance Rating Method, as well as two S-BEM tools that are actively in use today.

1. Lessons Learned from a Decade of Simplified Modeling
 Christopher B Baker, AIA, BEAP and BEMP, Member, Willdan, Anaheim, CA

2. Sketchbox and Its Applicability in Industry
 Ben Heymer, P.E., Member, Slipstream, Chicago, IL

3. Simplified Performance Rating Method: Testing and Validation Results
 Andrea Mengual, P.E., Pacific Northwest National Laboratory, Seattle, WA
Modeling Advances: Tools and Workflows III
Room: Water Tower Parlor, 5th Floor
Chair: John Bynum, Ph.D., Member, ARUP, Dublin, Ireland
The use of parametric modelling to support building design is becoming more frequent across many disciplines including energy analytics. In this session, two presentations outline uses of parametric modelling: one for early design stage analytics including a case study of a manufacturing facility and another for large parametric studies using prototype models. Additionally, this session includes the presentation of a tool for assessing re-tuning measures in buildings using an EnergyPlus validated modelling procedure. Finally, this session also includes a presentation on the development of energy modelling guidelines specifically tailored to higher education buildings.

1. Standardizing Low Energy Buildings in Higher Education
 Ethan K Heil, P.E., Associate, University of Virginia, Charlottesville, VA

 Peter Ellis, Member, Big Ladder Software, Denver, CO

3. Providing Energy Modelling Tools for Building Owners to Inform Early-Stage Building Design
 Annie Marston, Ph.D., Associate¹ and Finlay Milliner², (1)REsustain Ltd, London, England, (2)Hydrock Consultants, Bristol, United Kingdom

4. Introducing the Building Re-Tuning Simulator
 Nick Edward Fernandez, Member, Pacific Northwest National Laboratory, Richland, WA

Modeling for Carbon and Embodied Energy
Room: Adams Room, 5th Floor
Chair: Jill Kurtz, Page, Houston, TX, Haley Booker-Lauridson, ASHRAE, Atlanta, GA and Ragan McHan
As jurisdictions continue to put into place fines and other financial incentives to decarbonize the built environment, the calculation of operational and embodied carbon is gaining increased attention among a variety of stakeholders. This session includes four presentations covering early-stage modelling for decarbonizing central plants, real time carbon tracking for a university seeking to meet its target of becoming carbon neutral by 2030, and the use of Cambium in estimating operational carbon during the design process. The fourth presentation covers the use of ice storage to shifting heat pump electrical load based on grid capacity and carbon emissions.

 Miles Hunter Martschink Jr, P.E., Associate¹, Tim Howard² and Snowil Lopes³, (1)RMF Engineering Inc., Charleston, SC, (2)Carbon Cents, Clemson, SC, (3)CEVAC, Clemson, SC

2. Ice Heating
 Brian McKinney, BEMP, Associate, Jaros Baum & Bolles, New York, NY

 Chris Savage, AIA, LMN Architects, Seattle, WA