Eminar 1

2017 Winter Conference Las Vegas, Nevada

> Stephanie Taylor, MD Taylor Healthcare Consulting MD@taylorcx.com phone: (860) 501-8950

40 is the new 20, balanced air-hydration for health!

Updating Scientific Evidence about the Effects of Low Humidity on People

Learning Objectives

- · Understand the effects of humidity on health, comfort and IAQ
- Understand the relationship between low indoor relative humidity and increased healthcare-associated infections in the hospital setting
- · Understand the human physiological reactions to low humidity
- Understand the effects of low humidity on human performance

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on crequest. This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endosrement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Outline

Overlap between engineering and medicine

A new study to test the impact of the building on occupant health

Dry building syndrome

Conclusions and best practices

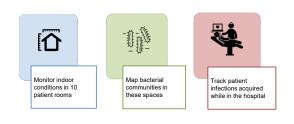
Outline

Engineers and physicians have much in common

- Many years of school!!!
- Technical vocabulary that excludes outsiders
- · Budgets control our jobs
- We both promote human health

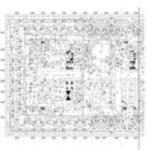
"ASHRAE is a global society advancing human well-being through sustainable technology for the built environment"

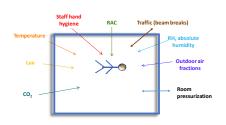
How does the building impact occupant health?


Hospitals are a perfect setting to study this

Patients are vulnerable

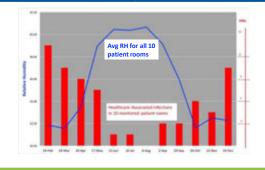
Outline Overlap between engineering and medicine Our study to test the impact of the building on occupant health Dry building syndrome Conclusions and best practices


Room conditions and patient outcomes

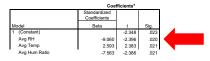

a 12 month study

The hospital building

- Built 2013, LEED Silver
- 1.2 million sq. feet (111,484 sq. meters)
- 100,000 sq. feet per floor (9,290 sq. meters)
- 240 single-occupancy inpatient rooms
- Green roof


Data collected from the patient room

Examples of new patient infections


Patient	Room	Clinical symptoms	HAI Organisms (if indicated)
хх	xx	pneumonia, viremia	Pseudomonas, Epstein-Barr virus (EBV)
хх	xx	pneumonia	Staphylococcus aureus
хх	xx	open wound of head, neck, and trunk	
хх	xx	bacteremia, organism unspecified	Citrobacter infection
хх	xx	infection due to vascular device	
хх	xx	cellulitis	Staphylococcus aureus
хх	xx	sepsis, cellulitis, abscess	
хх	xx	bacteremia, organism unspecified	
хх	xx	pneumonia, organism unspecified	
хх	xx	fever; bacteremia, organism unspecified	
хх	xx	viremia	Cytomegalovirus (CMV)
хх	xx	wound infection after surgery	
хх	xx	urosepsis, organism unspecified	
хх	xx	sepsis following cardiac surgery	
хх	xx	pneumonia, organism unspecified	
хх	xx	infection of skin and subcutaneous tissue	
хх	xx	colitis and diarrhea	Clostridium difficile
хх	xx	wound infection after surgery	
хх	xx	urosepsis, organism unspecified	
хх	xx	diarrhea	salmonella enteritis

As indoor RH went down, the patient infection rate went up

2

SPSS analysis of relationships between indoor conditions and infections

Outline		
1	Overlap between engineering and medicine	
2	A new study to test the impact of the building on occupant health	
3	Dry building syndrome	
4	Conclusions and best practices	

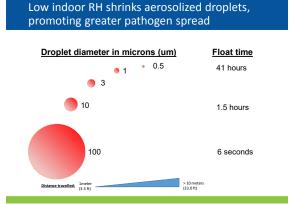
The invisible world

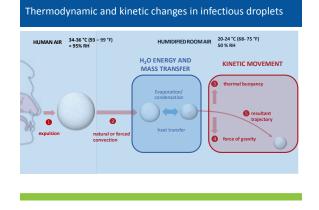
Low RH is harmful- Dry Building Syndrome

In air with 20% RH, an inactive 50 kg (110 lb) person loses 1 - 2% body weight in 8 hrs, becoming clinically dehydrated before thirst begins

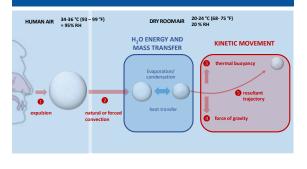
This mild dehydration results in:

Impaired immunity, increased infections Breached skin barrier & delayed wound healing Diminished brain function & performance

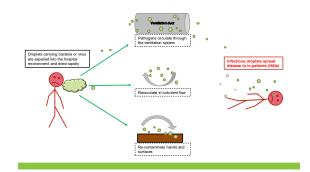

Dry Building Syndrome increases infections

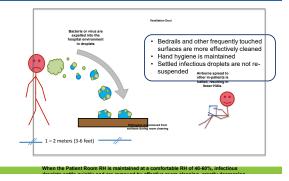


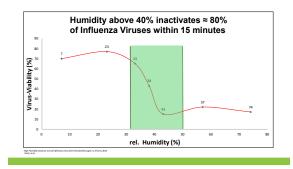
Will this cough infect others?

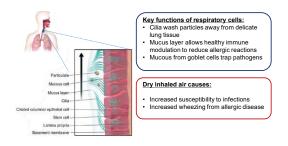


3



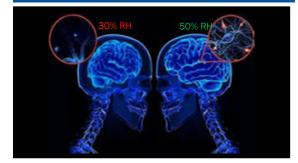

Thermodynamic and kinetic changes in infectious droplets


Indoor air with RH < 40% promotes pathogen transmission in tiny aerosolized droplets


With RH of 40%–60%, infectious droplets settle out of the air within a short distance of the source

Viability of many pathogens is reduced in air with RH 40%–60%

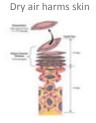
Appropriate humidity supports cell hydration needed for respiratory defense mechanisms

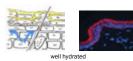

Children and seniors are especially vulnerable to the ill-health effects of low RH

- preventing dehydration Bedridden people have little autonomy
- Seniors often limit drinking in order to reduce toilet visits
- Non-active people often forget to drink

Dry Building Syndrome affects our brain

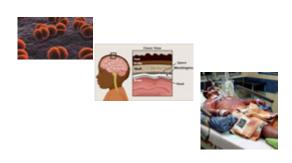
Dry Building Syndrome harms our skin



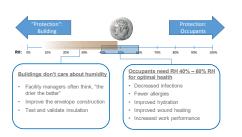

Skin functions are impaired:

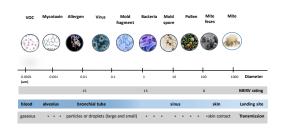
- wound healing immune system training
- protection from injury
- protection from infections
- preserving internal water

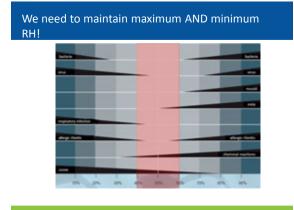
Dry Building Syndrome harms our skin



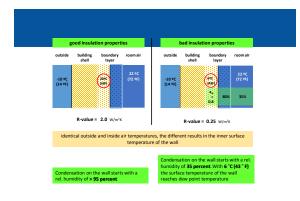
dehvdrated


Dry weather reliably predicts meningitis outbreaks


Dry weather reliably predicts meningitis outbreaks Bacteria spread when the outdoor humidity is low Once the humidity exceeds 40%, the epidemic ends


Outline 1 Overlap between engineering and medicine 2 A new study to test the impact of the building on occupant health 3 Dry building syndrome 4 Conclusions and best practices

The optimum indoor air RH: 40 is the new 20!


Things in the air that affect our health

They care about water activity !

Conclusions:

- New data correlates low indoor RH with occupant illness and decreased productivity
- Building codes should enforce both minimum and maximum indoor RH levels

Bibliography

- John D. Noti, Francoise M. Blachere, Cynthia M. McMillen, William G. Lindsley, Michael L. Kashon, Denzil R. Slaughter, Donald H. Beezhold. 2013. High Humidity Leads to Loss of Infectious Virus from Simulated Coughs. University of Illinois.
- Kempton MJ, Ettinger U, Foster R, Williams SC, Calvert GA, Hampshire A, Zelaya FO, O'Gorman RL, McMorris T, Owen AM, Smith MS. 2011. Dehydration affects brain structure and function in healthy adolescents. National Center for Biotechnology Information, U.S. National Library of Medicine.
- E.M. Sterling, A. Arundel, T.D. Sterling. 1985. Criteria for Human Exposure to Humidity in Occupied Buildings. ASHRAE Transactions. Vol. 91. Part 1.

QUESTIONS?

Stephanie Taylor, MD, M Arch, FRSPH(UK), MCABE MD@taylorcx.com

7