Yale University School of Medicine

SMNR 21

Low Ambient Humidity Impairs Barrier Function and Innate Resistance Against Influenza Infection

Eriko Kudo Yale university, school of medicine eriko.kudo@yale.edu

Acknowledgements

The Howard Hughes Medical Institute

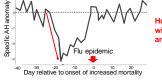
The Condair Group

The Naito Foundation

National Institutes of Health Grants

Learning objective

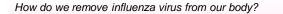
- Provide a data-driven description of indoor environmental factors that are associated with occupant health
- Explain the application of energy-saving and hygienic approaches to active humidification when supplementation is necessary as an intervention for dry air
- · Provide building owners a cost-benefit analysis of occupant health as a building performance metric
- identify the relationship between water in the liquid and vapor state and the human body

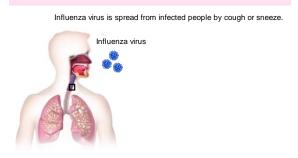

ASHRAE is a Registered Provider with The American Institu Systems. Credit earned on completion of this program v AIA members. Certificates of Completion for non-AIA red with the AIA/ASHRAE for conti itent that may be deemed or const naterial of construction or any me

Learning objective

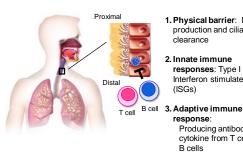
- Understand the importance of humidity for protection against influenza infection
- Understand the effect of humidity for immune system

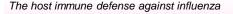
Seasonal influenza and winter months

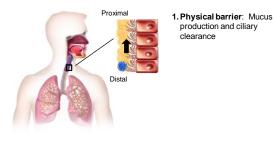

Humidity is correlated with influenza epidemic and transmission.


(Shaman et al, Plos Biol 2010)

Influenza virus

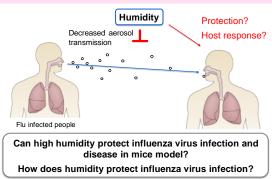

- Influenza is an infectious respiratory disease by influenza virus.
- Negative-sense single-strand RNA viruses with a segmented genome.
 - Influenza virus A Main cause of the seasonal influenza epidemic
 - Influenza virus B
 - · Influenza virus C
- Infects 5-10% of adults and 20-50% of children globally every year
- Annual epidemics of influenza result in ~1 billion infections, 3-5 million cases of severe illness and 300,000-500,000 deaths.
- Symptoms: fever, sore throat, runny nose, cough, headache, muscle pain, pneumonia

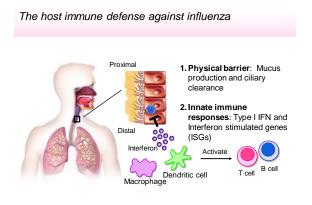

The host immune defense against influenza

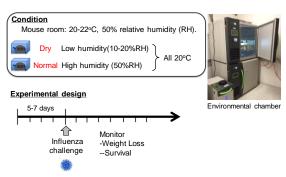


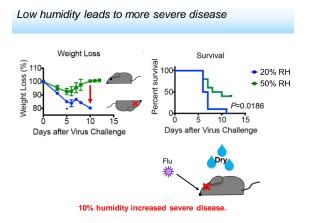
1. Physical barrier: Mucus production and ciliary

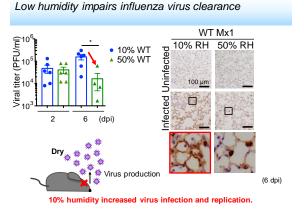

responses: Type I IFN and Interferon stimulated genes


Producing antibody and cytokine from T cells and

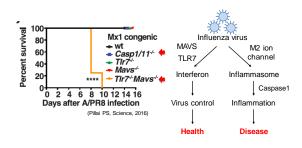



First line of defense against pathogen.

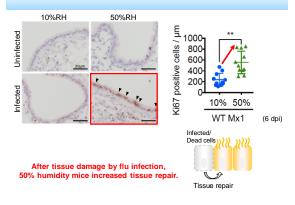


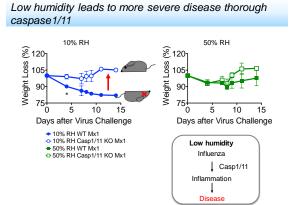


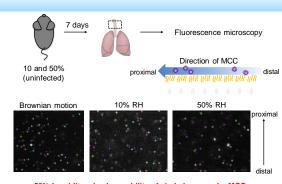
Environmental chamber model system: Humidity



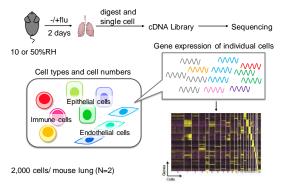
hvPR8 (IAV) influenza infection by intranasal or aerosol inoculation

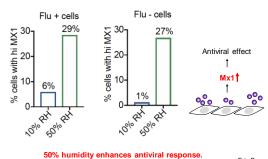



Antiviral resistance and disease tolerance in influenza



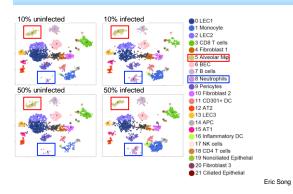
Does Caspase 1/11 signaling mediate increased disease severity at low humidity?




Low humidity decreases mucociliary clearance (MCC)

50% humidity mice have ability of viral clearance by MCC. Eric Song

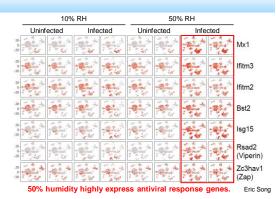
Single cell RNA-sequencing provides the expression of individual cells



IFN-induced Mx1 were suppressed in both infectedand uninfected cells

Eric Song

There are 22 distinct cells cell types in whole lung


Summary

- 1. Low humidity increased susceptibility to infection and more severe disease.
- 2. Low humidity decreased epithelial turnover after influenza infection.
- 3. Low humidity attenuated mucociliary clearance of influenza virus.
- 4. Low humidity suppressed antiviral response such as IFN-induced Mx1.

Increasing ambient humidity may be a viable strategy to reduce disease symptoms and to promote more rapid recovery in influenza-infected individuals.

Low humidity decreases ISGs expression

How to control humidity in our life

Wearing face mask

Control humidity by humidifier

Humidity control is necessary in hospital, school, office and airplane.

Bibliography

Kudo E, E Song, LJ Yockey, T Rakib, PW Wnag, RJ Homer and A Iwasaki Low ambient humidity impairs barrier function and innate resistance against influenza infection. *Proc Natl Acad Sci U S A*, 2019, 116 (22), 10905-10910

Questions?

Eriko Kudo

eriko.kudo@yale.edu