Errata to Fundamentals of Refrigeration Self-Directed Learning Course, SI, 2nd Edition (2016)

August 6, 2020

Shaded items have been added since the previously published errata sheet dated September 21, 2018.

Page #	Location	
9	18 lines from top	"The necessary low pressure is produced by the low pressure of the refrigerant maintained by the compressor" should read "The necessary low pressure is produced by the expansion device. "
48	8 lines from top	\dot{W}_{out} should read \dot{W}_{c}
49	7 lines from top	273 kW should be 2.73 kW
60	Caption of Figure 3-13	The temperature should be 35°C, not 35°F.
82	15 and 16 lines from top	$\dot{Q} = \frac{kA}{r}(T_1 - T_2) \tag{4-1}$

where \dot{Q} is the heat transfer rate (kW), k is the thermal conductivity (kJ/s·m·°C)... should read

$$Q = \frac{kA}{x}(T_1 - T_2)$$
 (4-2)

where Q is the heat transfer rate (W), k is the thermal conductivity (W/[m·K])...