SI Units and Air-Conditioning Formulas

length	=	metre (m)
mass	=	kilogram (kg)
time	=	second (s)
electric current	=	ampere (A)
thermodynamic temperature	=	K
temperature	=	Celcius (°C) = $(K - 273)$
amount of substance	=	mole (mol)
energy enthalpy, work	=	Joule (J)
heat	=	Watts (W) = J/s
power	=	Watts (W) = J/s
force	=	Newton (N) = kg \cdot m ²
pressure	=	Pascal (Pa) = N/m^2 (head 1 m = 9.81 kPa)

Prefixes:

 $\begin{array}{rcl} giga, G &=& 10^9 \\ mega, M &=& 10^6 \\ kilo, k &=& 10^3 \\ nano, n &=& 10^{-9} \\ micro, \mu &=& 10^{-6} \\ milli, m &=& 10^{-3} \end{array}$

density: water 1000 kg/m³; air 1.2 kg/m³ **specific heat:** water 4.2 kJ/(kg·K); air 1.0 kJ/(kg · K)

Sensible Heat: $SH = 1.2 \text{ Q}\Delta t$ Total Heat: $TH = 1.2 \text{ Q}\Delta h$ Latent Heat: $LH = 3.0 \text{ Q}\Delta w$

where heat is in W

 Δt = temperature difference, K or °C

Pump or Fan Power $P = Q \times h \times \rho/n$

where

P = kW

 $Q \hspace{0.1in} = \hspace{0.1in} L/s$

h = head, KPa (m/9.81)

 ρ = density, kg/m³

n = efficiency, 40% to 85%