
ANSI/ASHRAE Addendum 135 b-2000
Addendum to ANSI/ASHRAE Standard 135-1995

Addendum to
BACnet ® – A Data
Communication
Protocol for Building
Automation and
Control Networks
Approved by the ASHRAE Standards Committee February 5,
2000; by the ASHRAE Board of Directors February 10, 2000; and
by the American National Standards Institute April 25, 2000.

This standard is under continuous maintenance by a Standing
Standard Project Committee (SSPC) for which the Standards
Committee has established a documented program for regu-
lar publication of addenda or revisions, including procedures
for timely, documented, consensus action on requests for
change to any part of the standard. The change submittal form,
instructions, and deadlines are given at the back of this docu-
ment and may be obtained in electronic form from ASHRAE�s
Internet Home Page, http://www.ashrae.org, or in paper form
from the Manager of Standards. The latest edition of an ASHRAE
Standard and printed copies of a public review draft may be
purchased from ASHRAE Customer Service, 1791 Tullie Circle,
NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-
321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-
800-527-4723 (for orders in U.S. and Canada).

©Copyright 2000 American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

ASHRAE STANDING STANDARD PROJECT COMMITTEE 135
Cognizant TC: TC 1.4, Control Theory and Application

SPLS Liaison: James K. Vallort
∗ H. Michael Newman, Chair ∗ Carl Neilson
* Steven T. Bushby, Vice-Chair ∗ Cherisse M. Nicastro
∗ Ron E. Anderson ∗ Robert L. Old, Jr.
∗ Keith A. Corbett * David Robin
∗ Jeffrey Cosiol * Patrick Sheridan
∗ Harsha M. Dabholkar ∗ William O. Swan, III, Secretary
∗ David M. Fisher ∗Grant N. Wichenko
∗ Ira G. Goldschmidt Dana R. Epperson
∗ Anthony J. Icenhour Winston I. Hetherington
∗ Jerald P. Martocci Kevin G. Sweeney

∗Denotes members of voting status when this standard was approved for publication

ASHRAE STANDARDS COMMITTEE JANUARY 1999

Arthur E. McIvor, Chairman Nance C. Lovvorn
Martha J. Hewett, Vice-Chairman Amanda K. Meitz
Dean S. Borges Davor Novosel
Waller S. Clements Joseph A. Pietsch
Piotr A. Domanski James A. Ranfone
Richard A. Evans Terry E. Townsend
Mark C. Hegberg Ganesan Sundaresan
John F. Hogan James K. Vallort
David E. Knebel Thomas E. Watson
Frederick H. Kohloss Bruce A. Wilcox
William J. Landman J. Richard Wright
Neil P. Leslie Samuel D. Clemmings, Jr., BOD ExO
Rodney H. Lewis Raymond E. Patenaude, CO

Claire Ramspeck, Manager of Standards

SPECIAL NOTE
This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American
Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National
Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as “substantial agreement
reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not
necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their
resolution.” Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through
legislation.
 ASHRAE obtains consensus through participation of its national and international members, associated societies, and public
review.
 ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The
Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE
members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on
all Project Committees.
 The Manager of Standards of ASHRAE should be contacted for:

a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard,
d. permission to reprint portions of the Standard.

ASHRAE INDUSTRIAL ADVERTISING POLICY
ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for
rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this
equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and
Guidelines is determined by the need for them, and conformance to them is completely voluntary.
In referring to this Standard or Guideline and in marketing of equipment and in advertising, no claim shall be made, either stated
or implied, that the product has been approved by ASHRAE.

DISCLAIMER
ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available
information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance
of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or
that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

This informative foreword is not part of this standard.

Foreword

The purpose of this addendum is to add a number of independent substantive changes to
the BACnet standard. These modifications are the result of change proposals made
pursuant to the continuous maintenance procedures contained in the Manual for
Processing ASHRAE Standards and of deliberations within Standing Standard Project
Committee 135. The changes are summarized below.

135b-1. Inconsistencies are eliminated in the definitions of the Analog and Binary
Value object types, p. 1.

135b-2. Any device that receives and executes UnconfirmedEventNotification service
requests must support programmable process identifiers, p. 4.

135b-3. Modify each event-generating object type to contain the last timestamp for
each acknowledgeable transition, p. 5.

135b-4. Modify the Notification Class object by requiring that the ’Notification Class’
property be equivalent to the instance number of the Notification Class object,
p. 8.

135b-5. Modify the Event Notification services to make the ’To State’ parameter
mandatory for notifications of type ACK_NOTIFICATION, p. 9.

135b-6. A new BACnetDeviceObjectPropertyReference production is added and its use
in the Event Enrollment and Schedule object types is specified, p. 11.

135b-7. Add a Multi-state Value object type, p. 14.

135b-8. Add an Averaging object type, p. 21.

135b-9. Change all ’Process Identifier’ properties and parameters to Unsigned32, p. 27.

135b-10. Change the Multi-state Input object type to correct flaws related to fault
detection and reporting and achieve consistency with the new Multi-state
Value object type, p. 29.

135b-11. Add a Protocol_Revision property to the Device object type, p. 31.

135b-12. The File object type is changed to allow truncation and partial deletion
operations, p. 34.

135b-13. A new ReadRange service is added to permit reading a range of data items
from a property whose datatype is a list or array of lists, p. 36.

135b-14. A new UTCTimeSynchronization service is introduced and related changes are
made to properties in the Device object type, p. 43.

135b-15. Add a Trend Log object type, p. 46.

135b-16. The UnconfirmedCOVNotification service is extended to allow notifications
without prior subscription as a means of distributing globally important data to
a potentially large number of recipients, p. 57.

135b-17. Add eight new BACnet engineering units, p. 58.

In the following document, language to be added to existing clauses of ANSI/ASHRAE
135-1995 is indicated through the use of italics while deletions are indicated by
strikethrough. Where entirely new subclauses are proposed to be added, plain type is used
throughout. These instances are 135b-7, 135b-8, 135b-13 and 135b-15.

ANSI/ASHRAE Addendum 135b-2000 1

135b-1. Inconsistencies are eliminated in the definitions of the Analog and
Binary Value object types.

Analog and Binary Value objects may sometimes be used to represent "output values" in the sense that their use is
intended to act as a place that may be commanded with a value that is internally used as a commanded state. In these
instances it may be desirable for an AV or BV object to behave similarly to AO and BO objects in that the
Present_Value property is controlled by the prioritization mechanism. In these cases, the Priority_Array and
Relinquish_Default properties need to be present to implement the prioritization.

There are other instances when an AV or BV object may be used to represent a status or internally computed value,
and so the objects behave more like their AI and BI counterparts.

Due to the "dual" nature of potential AV and BV behavior, it is desirable to eliminate the requirement that the
Present_Value properties of these objects be writable, as was formerly the case with AV, and further to eliminate the
requirement that the objects be commandable.

To achieve these ends, the decision is to make Present_Value properties for both AV and BV objects be
conformance code R. At the implementor’s discretion, the Present_Value may be optionally writable. If writable, the
Present_Value property may or may not be in addition a commandable property. If commandable, then it must of
course also be writable and the optional properties Priority_Array and Relinquish_Default must also be present.

 [Change Table 12-3, p. 148]

Property Identifier Property Datatype Conformance Code
Present_Value REAL R4

Priority_Array BACnetPriorityArray O1

Relinquish_Default REAL O1

1 If Present_Value is commandable, then both of these properties shall be present.
4 If Present_Value is commandable, then it is required to also be writable. This property is required to be

writable when Out_Of_Service is TRUE.

[Change 12, p. 149ff]

12.3.4 Present_Value (Commandable)

This property, of type REAL, indicates the current value, in engineering units, of the analog value (see
12.3.10). The optional priority array must be present for the Present_Value to be commandable.
Present_Value shall be optionally commandable. If Present_Value is commandable for a given object
instance, then the Priority_Array and Relinquish_Default properties shall also be present for that instance.
The Present_Value property shall be writable when Out_Of_Service is TRUE (see 12.3.9).

12.3.9 Out_Of_Service

The Out-Of-Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the
Present_Value of the Analog Value object is prevented from being modified by software local to the
BACnet device in which the object resides. When Out_Of_Service is TRUE, the Present_Value property
may still be written to freely. If the Priority_Array and Relinquish_Default properties are present, then
writing to the Present_Value property shall be controlled by the BACnet command prioritization
mechanism. See Clause 19.

2 ANSI/ASHRAE Addendum 135b-2000

12.3.11 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See
Clause 19 for a description of the prioritization mechanism. If either the Priority_Array property or the
Relinquish_Default property are present, then both of them shall be present. If Present_Value is
commandable, then Priority_Array and Relinquish_Default shall both be present.

12.3.12 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority
values in the Priority_Array property have a NULL value. See Clause 19. If either the Relinquish_Default
property or the Priority_Array property are present, then both of them shall be present. If Present_Value is
commandable, then Priority_Array and Relinquish_Default shall both be present.

[Change footnotes to Table 12-8, p. 165]

Property Identifier Property Datatype Conformance Code
Present_Value BACnetBinaryPV R1

Priority_Array BACnetPriorityArray O5

Relinquish_Default REAL O5

1 If Present_Value is commandable, then it is required to also be writable. This property is required to be
writable when Out_Of_Service is TRUE.

5 If Present_Value is commandable, then both of these properties shall be present.

[Change 12.6, p. 165ff]

12.6.4 Present_Value (Commandable)

This property, of type BACnetBinaryPV, reflects the logical state of the Binary Value. The logical state
shall be either INACTIVE or ACTIVE. The optional priority array must be present for the Present_Value
to be commandable. Present_Value shall be optionally commandable. If Present_Value is commandable
for a given object instance, then the Priority_Array and Relinquish_Default properties shall also be present
for that instance. The Present_Value property shall be writable when Out_Of_Service is TRUE (see
12.6.9).

12.6.9 Out_Of_Service

The Out-Of-Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the
Present_Value of the Binary Value object is prevented from being modified by software local to the
BACnet device in which the object resides. When Out_Of_Service is TRUE, the Present_Value property
may still be written to freely. If the Priority_Array and Relinquish_Default properties are present, then
writing to the Present_Value property shall be controlled by the BACnet command prioritization
mechanism. See Clause 19.

12.6.19 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See
Clause 19 for a description of the prioritization mechanism. If either the Relinquish_Default property or the
Priority_Array property are present, then both of them shall be present. If Present_Value is commandable,
then Priority_Array and Relinquish_Default shall both be present and Present_Value shall be required to
be writable. If one of the optional properties Priority_Array or Relinquish_Default property is present, then
both of these properties shall be present and the Present_Value property is also required to be writable.

ANSI/ASHRAE Addendum 135b-2000 3

12.6.20 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority
values in the Priority_Array property have a NULL value. See Clause 19. If either the Relinquish_Default
property or the Priority_Array property are present, then both of them shall be present. If Present_Value is
commandable, then Priority_Array and Relinquish_Default shall both be present and Present_Value shall
be required to be writable. If one of the optional properties Priority_Array or Relinquish_Default property
is present, then both of these properties shall be present and the Present_Value property is also required to
be writable.

[Change Annex C, p. 412]

ANALOG-VALUE ::= SEQUENCE {
. . .

priority-array [87] BACnetPriorityArray OPTIONAL,
relinquish-default [104] REAL OPTIONAL,

. . .

4 ANSI/ASHRAE Addendum 135b-2000

135b-2. Any device that receives and executes UnconfirmedEventNotification
service requests must support programmable process identifiers.

The standard currently allows multicast and broadcast addresses as destinations for the
UnconfirmedEventNotification service. This may cause problems for devices that receive notifications they neither
want nor expect.

This addendum requires any device that will receive and execute UnconfirmedEventNotification service requests to
support programmable process identifiers. This will allow broadcast and multicast process identifiers to be assigned
on a per installation basis.

[Change 13.12, p. 248]

13.12 UnconfirmedEventNotification Service

The UnconfirmedEventNotification service is used by a notification-server to notify a remote device that an
event has occurred. Its purpose is to notify recipients that an event has occurred, but confirmation that the
notification was received is not required. Applications that require confirmation that the notification was
received by the remote device should use the ConfirmedEventNotification service. The fact that this is an
unconfirmed service does not mean it is inappropriate for notification of alarms. Events of type Alarm may
require a human acknowledgment that is conveyed using the AcknowledgeAlarm service. See 13.5. Thus,
using an unconfirmed service to announce the alarm has no effect on the ability to confirm that an operator
has been notified. Any device that executes this service shall support programmable process identifiers to
allow broadcast and multicast ’Process Identifier’ parameters to be assigned on a per installation basis.

ANSI/ASHRAE Addendum 135b-2000 5

135b-3. Modify each event-generating object type to contain the last
timestamp for each acknowledgeable transition.

A device is unable to acknowledge events/alarms that are generated when the device is offline or not connected to
the network. The problem is due to the AcknowledgeAlarm service requiring a timestamp for the transition that is to
be acknowledged and that timestamp only being available from the EventNotification service.

This proposal modifies each event-generating object to contain the last timestamp for each acknowledgeable
transition.

[The following changes to tables are to add the new timestamp property. There are multiple changes shown because
the footnote reference number is different in each.]

[Change Tables 12-1, p. 138 and 12-3, p. 148]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O3

[Change Tables 12-2, p. 143 and 12-17, p. 197]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O2

[Change Tables 12-4, p. 153 and 12-16, p. 190]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O5

[Change Table 12-6, p. 159]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O4

[Change Table 12-8, p. 165]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O6

[Change Table 12-12, p. 181]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp R

6 ANSI/ASHRAE Addendum 135b-2000

[Change Table 12-18, p. 201]

Property Identifier Property Datatype Conformance Code
… … …
Event_Time_Stamps BACnetARRAY [3] of BACnetTimeStamp O1

 [Add clauses to describe the Event_Time_Stamps in each event-generating object type (excluding the Event
Enrollment object type): 12.1.26, p. 142, 12.2.27, p. 147, 12.3.23, p. 152, 12.4.25, p. 158, 12.5.29, p. 164, 12.6.27, p.
169, 12.13.36, p. 196, 12.14.20, p. 200, 12.15.21, p. 204]

12.xx.yy Event_Time_Stamps

This optional property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps
of type Time or Date shall have ’FF’ in each octet and Sequence number time stamps shall have the value 0
if no event notification of that type has been generated since the object was created. This property is
required if intrinsic reporting is supported by this object.

[Add clause to describe the Event_Time_Stamps in the Event Enrollment object type, 12.10.17, p. 185]

12.10.17 Event_Time_Stamps

This property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last event
notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps of
type Time or Date shall have ’FF’ in each octet and Sequence number time stamps shall have the value 0 if
no event notification of that type has been generated since the object was created.

[In 21, add entry to BACnetPropertyIdentifier, p. 376]

event-state (36),
event-time-stamps (130),
event-type (37),

…
-- see event-time-stamps (130),
…

[In ANNEX C, change ANALOG-INPUT, p. 411, ANALOG-OUTPUT, p. 411, ANALOG-VALUE, p. 412,
BINARY-INPUT, p. 412, BINARY-OUTPUT, p. 413, BINARY-VALUE, p. 413, LOOP, p. 415, MULTI-STATE-
INPUT, p. 416, MULTI-STATE-OUTPUT, p. 417 by adding an optional event-time-stamps property]

…,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp OPTIONAL,
– accessed as a BACnetARRAY
}

[In ANNEX C, change EVENT-ENROLLMENT, p. 415, by adding a required event-time-stamps property]

…,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp,
– accessed as a BACnetARRAY
}

ANSI/ASHRAE Addendum 135b-2000 7

[Change D.1, p. 419, by adding these lines at the end of the example]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (23-MAR-95,19:01:34.0))

[Change D.4, p. 420, by adding these lines at the end of Example 1]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (21-MAR-95,01:02:03.0))

[Change D.4, p. 421, by adding these lines at the end of Example 2]

Property: Event_Time_Stamps = ((21-MAR-95,01:09:34.0),
 (23-MAR-95,19:01:34.0),
 (21-MAR-95,01:11:21.2))

[Change D.10, p. 426, by adding these lines at the end of Example 1]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (21-MAR-95,01:02:03.0))

[Change D.10, p. 427, by adding these lines at the end of Example 2]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (23-MAR-95,19:01:34.0))

[Change D.10, p. 427, by adding these lines at the end of Example 3]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (23-MAR-95,19:01:34.0))

[Change D.13, p. 429, by adding these lines at the end of the example]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (23-MAR-95,19:01:34.0))

[Change D.14, p. 430, by adding these lines at the end of Example 1]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (23-MAR-95,19:01:34.0))

[Change D.15, p. 431, by adding these lines at the end of Example 1]

Property: Event_Time_Stamps = ((23-MAR-95,18:50:21.2),
 (*-*-*,*:*:*.*),
 (21-MAR-95,01:02:03.0))

8 ANSI/ASHRAE Addendum 135b-2000

135b-4. Modify the Notification Class object by requiring that the
’Notification Class’ property be equivalent to the instance number of the
Notification Class object.

The Notification Class object referenced by an event-generating object cannot be easily or efficiently determined by
a device other than the device containing the event-generating object.

This proposal modifies the Notification Class object by requiring that the ’Notification Class’ property be equivalent
to the instance number of the Notification Class object. This will have the effect that the ’Notification_Class’
property of event-generating objects will now explicitly, instead of implicitly, reference a Notification Class object.

[Change 12.16.5]

12.16.5 Notification_Class

This property, of type Unsigned, shall indicate the numeric value of this notification class and shall be
equal to the instance number of the Notification Class object. Event-initiating objects shall use this number
to refer to this Notification Class object indirectly. Implementors may choose to make the
Notification_Class property’s value be equal to the instance number of the Notification Class object. This
decision is a local matter.

ANSI/ASHRAE Addendum 135b-2000 9

135b-5. Modify the Event Notification services to make the ’To State’
parameter mandatory for notifications of type ACK_NOTIFICATION.

The ConfirmedEventNotification and UnconfirmedEventNotification services do not presently include the ’To State’
parameter in notifications of type ACK_NOTIFICATION. Thus, a device receiving such a notification is unable to
ascertain which transition of a previously signaled event has been acknowledged.

The proposed solution is to make the ’To State’ parameter mandatory in all event notification messages, including
those of type ACK_NOTIFICATION.

[Change Table 13-7, p. 235. Make the ’To State’ parameter mandatory instead of conditional.]

Parameter Name Req Ind Rsp Cnf
 … … … … …
 To State CM C(=)M (=)
 … … … … …

[Change Table 13-12, p. 248. Make the 'To State' parameter mandatory instead of conditional.]

Parameter Name Req Ind Rsp Cnf
 … … … … …
 To State CM C(=)M (=)
 … … … … …

[Change 13.7.1.13, p. 237 and 13.12.1.13, p. 249. Only the first clause is shown below since they are identical.]

13.7.1.13 To State

This parameter, of type BACnetEventState, shall indicate the Event_State of the object after the occurrence
of the event that initiated this notification. This parameter shall only be present if the 'Notify Type'
parameter is EVENT or ALARM.

[Change 21, p. 353]

ConfirmedEventNotification-Request ::= SEQUENCE {
processIdentifier [0] Unsigned,
initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
eventObjectIdentifier [2] BACnetObjectIdentifier,
timeStamp [3] BACnetTimeStamp,
notificationClass [4] Unsigned,
priority [5] Unsigned8,
eventType [6] BACnetEventType,
messageText [7] CharacterString OPTIONAL,
notifyType [8] BACnetNotifyType,
ackRequired [9] BOOLEAN OPTIONAL,
fromState [10] BACnetEventState OPTIONAL,
toState [11] BACnetEventState OPTIONAL,
eventValues [12] BACnetNotificationParameters OPTIONAL

}

10 ANSI/ASHRAE Addendum 135b-2000

[Change 21, p. 359-360]

UnconfirmedEventNotification-Request ::= SEQUENCE {
processIdentifier [0] Unsigned,
initiatingDeviceIdentifier [1] BACnetObjectIdentifier,
eventObjectIdentifier [2] BACnetObjectIdentifier,
timeStamp [3] BACnetTimeStamp,
notificationClass [4] Unsigned,
priority [5] Unsigned8,
eventType [6] BACnetEventType,
messageText [7] CharacterString OPTIONAL,
notifyType [8] BACnetNotifyType,
ackRequired [9] BOOLEAN OPTIONAL,
fromState [10] BACnetEventState OPTIONAL,
toState [11] BACnetEventState OPTIONAL,
eventValues [12] BACnetNotificationParameters OPTIONAL

}

ANSI/ASHRAE Addendum 135b-2000 11

135b-6. A new BACnetDeviceObjectPropertyReference production is added
and its use in the Event Enrollment and Schedule object types is specified.

BACnet does not currently allow devices that perform scheduling or event functions to schedule objects or have
events that monitor objects outside of the device. This proposal resolves the problem by defining a datatype for
references to object properties in remote devices and by allowing the use of this production in the Event and
Schedule objects. This datatype is also used in proposal 135b-15, the Trend Log object.

[Change Table 12-12, p. 181]

Property Identifier Property Datatype Conformance Code
… … …
Object_Property_Reference BACnetDeviceObjectPropertyReference R
… … …

[Change 12.10.8, p. 184]

12.10.8 Object_Property_Reference

This property, of type BACnetDeviceObjectPropertyReference, designates the particular object and
property referenced by this Event Enrollment object. The algorithm specified by the Event_Type property
is applied to the referenced property in order to determine the Event_State of the event.

If this property is writable, it may be restricted to only support references to objects inside of the device
containing the Event Enrollment object. If the property is restricted to referencing objects within the
containing device, an attempt to write a reference to an object outside the containing device into this
property shall cause a Result(-) to be returned with an error class of PROPERTY and an error code of
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Event Enrollment object, the
method used for acquisition of the referenced property value for the purpose of monitoring is a local
matter. The only restriction on the method of data acquisition is that the monitoring device be capable of
using ReadProperty for this purpose so as to be interoperable with all BACnet devices.

[Change Table 12-22, p. 213]

Property Identifier Property Datatype Conformance Code
… … …
List_Of_Object_Property_Reference List of BACnetDeviceObjectPropertyReference R
… … …

[Change 12.18.9, p. 215]

12.18.9 List_Of_Object_Property_Reference

This property specifies the Device Identifiers, Object Identifiers and Property Identifiers of the properties to
be written with specific values at specific times on specific days.

If this property is writable, it may be restricted to only support references to objects inside of the device
containing the Schedule object. If the property is restricted to referencing objects within the containing
device, an attempt to write a reference to an object outside the containing device into this property shall
cause a Result(-) to be returned with an error class of PROPERTY and an error code of
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

12 ANSI/ASHRAE Addendum 135b-2000

If this property is set to reference an object outside the device containing the Schedule object, the method
used for writing to the referenced property value for the purpose of controlling the property is a local
matter. The only restriction on the method of writing to the referenced property is that the scheduling
device be capable of using WriteProperty for this purpose so as to be interoperable with all BACnet
devices.

[Add to 18.3, p. 314, by inserting in alphabetical order and renumbering other subclauses]

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED – An attempt has been made to write a value to a
property that would require the device to exhibit non-supported optional functionality.

[Add to 18.6, p. 315, by inserting in alphabetical order and renumbering other subclauses]

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED – The parameters of a service are such that the
device would be required to exhibit non-supported optional functionality.

[Add to 21, p. 363]

operational-problem (25),
optional-functionality-not-supported, (45)
password-failure (26),

[Change 21 comment to the Error production, p. 364]

-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23. The last enumeration used in this version is 45.

[Addition to 21, p. 366 (between the productions for BACnetDestination and BACnetDeviceStatus)]

BACnetDeviceObjectPropertyReference ::= SEQUENCE {
objectIdentifier [0] BACnetObjectIdentifier,
propertyIdentifier [1] BACnetPropertyIdentifier,
propertyArrayIndex [2] Unsigned OPTIONAL -- used only with array datatype

-- if omitted with an array then
-- the entire array is referenced

deviceIdentifier [3] BACnetObjectIdentifier OPTIONAL
}

[Change 21, p. 371 (in the production for BACnetEventParameter)]

...
command-failure [3] SEQUENCE {

time-delay [0] Unsigned,
feedback-property-reference [1] BACnetDeviceObjectPropertyReference

},

floating-limit [4] SEQUENCE {
time-delay [0] Unsigned,
setpoint-reference [1] BACnetDeviceObjectPropertyReference,
low-diff-limit [2] REAL,
high-diff-limit [3] REAL,
deadband [4] REAL

...

ANSI/ASHRAE Addendum 135b-2000 13

[Change Annex C, p. 415]

EVENT-ENROLLMENT ::= SEQUENCE {
...
object-property-reference [78] BACnetDeviceObjectPropertyReference,
...
}

[Change Annex C, p. 418]

SCHEDULE ::= SEQUENCE {
...
list-of-object-property-references [54] SEQUENCE OF BACnetDeviceObjectPropertyReference,
...

}

[Change Annex D.10, p. 426]

The following Analog Input object is assumed for the examples below. All objects are assumed to be
located in device 12.

[Change Annex D.10, p. 426]

Property: Event_Parameters = (30, 65.0, 85.0, 0.25)
Property: Object_Property_Reference = ((Device, Instance 12),(Analog Input, Instance 2), Present_Value)
Property: Event_State = HIGH_LIMIT

[Change Annex D.10, p. 427]

Property: Event_Parameters = (5, 0.25)
Property: Object_Property_Reference = ((Device, Instance 12),(Analog Input, Instance 2), Present_Value)
Property: Event_State = NORMAL

[Change Annex D.10, p. 427]

Property: Event_Parameters = (30, B’0111’,
 (B’0100’, B’0010’, B’0001’, B’0110’, B’0101’, B’0011’))

Property: Object_Property_Reference = ((Device, Instance 12),(Analog Input, Instance 2), Status_Flags)
Property: Event_State = NORMAL

[Change Annex D.18, p. 433]

The following is an example of a Schedule object that is used to control a classroom during the school year.
In this example, a different Schedule object is assumed to be defined for the remainder of the calendar year.
The reference property of this schedule is the Present_Value of a Binary Output object, in device 12, that
controls a rooftop unit providing conditioned air to room 208.

[Change Annex D.18, p. 433]

Property: Exception_Schedule = {((23-NOV-1995),(0:00,INACTIVE),10),
((HOLIDAYS,(0:00,INACTIVE),11),
((5-MAR-1996)-(7-MAR-1996),
((9:00,ACTIVE),(14:00,INACTIVE)),6)}

Property: List_Of_Object_Property_References = ((Device, Instance 12),(Binary Output, Instance 9),
Present_Value)

Property: Priority_For_Writing = 15

14 ANSI/ASHRAE Addendum 135b-2000

135b-7. Add a Multi-state Value object type.

The proposal has been made for the addition of a standardized Multi-state Value object type. The new object type
proposed here represents a synthesis of Multi-state Input and Multi-state Output object types that is optionally
commandable and optionally writable. In this regard, the Multi-state Value object type is akin to the Analog Value
and Binary Value object types which are syntheses of the Analog Input and Output and Binary Input and Output
object types respectively.

In the proposed clause below, the value of ’X’ in the clause numbering will be replaced at the time of publication
with a value placing it in the proper sequence in Clause 12, dependent on the potential addition of other object types.
This addendum, for example, proposes the addition of an Averaging object type (see 135b-8), the acceptance of
which would influence the numbering of the present clause.

12.X Multi-state Value Object Type

The Multi-state Value object type defines a standardized object whose properties represent the externally
visible characteristics of a multi-state value. A "multi-state value" is a control system parameter residing in
the memory of the BACnet Device. The actual functions associated with a specific state are a local matter
and not specified by the protocol. For example, a particular state may represent the active/inactive
condition of several physical inputs and outputs or perhaps the value of an analog input or output. The
Present_Value property is an unsigned integer number representing the state. The State_Text property
associates a description with each state.

The Multi-state Value object type and its properties are summarized in Table 12-X and described in detail
in this subclause.

NOTE: Do not confuse the Present_Value state with the Event_State property, which reflects the offnormal
state of the Multi-state Value.

Table 12-X. Properties of the Multi-state Value Object Type

Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value Unsigned R1

Description CharacterString O
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BACnetReliability O2

Out_Of_Service BOOLEAN R
Number_of_States Unsigned R
State_Text BACnetARRAY[N] of CharacterString O
Priority_Array BACnetPriority O3

Relinquish_Default Unsigned O3

Time_Delay Unsigned O4

Notification_Class Unsigned O4

Alarm_Values List of Unsigned O4

Fault_Values List of Unsigned O4

Event_Enable BACnetEventTransitionBits O4

Acked_Transitions BACnetEventTransitionBits O4

Notify_Type BACnetNotifyType O4

Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O4

ANSI/ASHRAE Addendum 135b-2000 15

1 If Present_Value is commandable, then it is required to also be writable. This property is required to be
writable when Out_Of_Service is TRUE.

2 This property shall be required if Fault_Values is present.
3 If Present_Value is commandable, then both of these properties shall be present.
4 These properties are required if the object supports intrinsic reporting

12.X.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall
be unique within the BACnet Device that maintains it.

12.X.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the
BACnet Device that maintains it. The minimum length of the string shall be one character. The set of
characters used in the Object_Name shall be restricted to printable characters.

12.X.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The
value of this property shall be MULTISTATE_VALUE.

12.X.4 Present_Value

This property, of type Unsigned, reflects the logical state of the multi-state value. The logical state of the
multi-state value shall be one of ’n’ states, where ’n’ is the number of states defined in the Number_of_States
property. How the Present_Value is used is a local matter. The Present_Value property shall always have a
value greater than zero. Present_Value shall be optionally commandable. If Present_Value is commandable
for a given object instance, then the Priority_Array and Relinquish_Default properties shall also be present
for that instance. The Present_Value property shall be writable when Out_Of_Service is TRUE (see
12.X.9).

12.X.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.X.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health"
of the multi-state value. Three of the flags are associated with the values of other properties of this object.
A more detailed status could be determined by reading the properties that are linked to these flags. The
relationship between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event_State property (12.X.7) has a value of NORMAL, otherwise
logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property (12.X.8) is present and does not have a value of
NO_FAULT_DETECTED, otherwise logical FALSE (0).

16 ANSI/ASHRAE Addendum 135b-2000

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the BACnet
Device. In this context "overridden" is taken to mean that the Present_Value property is not
changeable through BACnet services.

OUT_OF_SERVICE Logical TRUE (1) if the Out_of_Service property (12.X.9) has a value of TRUE, otherwise
logical FALSE (0).

12.X.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if
this object has an active event state associated with it. If the object supports intrinsic reporting, then the
Event_State property shall indicate the event state of the object. If the object does not support intrinsic
reporting then:

(a) if the Reliability property is not present, then the value of Event_State shall be NORMAL, or
(b) if the Reliability property is present and Reliability is NO_FAULT_DETECTED then Event_State
shall be NORMAL, or
(c) if the Reliability property is present and Reliability is not NO_FAULT_DETECTED then
Event_State shall be FAULT.

12.X.8 Reliability

The reliability property, of type BACnetReliability, provides an indication of whether the Present_Value is
"reliable" as far as the BACnet Device or operator can determine and, if not, why. The Reliability property
is required to be present if the Fault_Values property is present. The Reliability property for this object type
may have any of the following values:

{NO_FAULT_DETECTED, MULTI_STATE_FAULT, UNRELIABLE_OTHER}.

12.X.8.1 Conditions for Generating a TO-FAULT Event

A TO-FAULT event is generated under these conditions:

(a) the Reliability property becomes not equal to NO_FAULT_DETECTED, and
(b) the TO-FAULT flag must be enabled in the Event_Enable property.

12.X.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the
Present_Value property of the Multi-state Value object is prevented from being modified by software local
to the BACnet device in which the object resides. When Out_Of_Service is TRUE the Present_Value
property may still be written to freely. In addition, the Reliability property and the corresponding state of
the FAULT flag of the Status_Flags property shall be decoupled when Out_Of_Service is TRUE. While the
Out_Of_Service property is TRUE, the Present_Value and Reliability properties may be changed to any
value as a means of simulating specific fixed conditions or for testing purposes. Other functions that
depend on the state of the Present_Value or Reliability properties shall respond to changes made to these
properties while Out_Of_Service is TRUE. If the Priority_Array and Relinquish_Default properties are
present, then writing to the Present_Value property shall be controlled by the BACnet command
prioritization mechanism. See Clause 19.

12.X.10 Number_of_States

This property, of type Unsigned, defines the number of states the Present_Value may have. The
Number_Of_States property shall always have a value greater than zero.

ANSI/ASHRAE Addendum 135b-2000 17

12.X.11 State_Text

This property is a BACnetARRAY of character strings representing descriptions of all possible states of the
Present_Value. The number of descriptions matches the number of states defined in the Number_of_States
property. The Present_Value, interpreted as an integer, serves as an index into the array.

12.X.12 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See
Clause 19 for a description of the prioritization mechanism. If either the Priority_Array property or the
Relinquish_Default property are present, then both of them shall be present. If Present_Value is
commandable, then Priority_Array and Relinquish_Default shall both be present.

12.X.13 Relinquish_Default

This property is the default value to be used for the Present_Value property when all command priority
values in the Priority_Array property have a NULL value. See Clause 19. If either the Relinquish_Default
property or the Priority_Array property are present, then both of them shall be present. If Present_Value is
commandable, then Priority_Array and Relinquish_Default shall both be present.

12.X.14 Time_Delay

This property, of type Unsigned, shall specify the minimum period of time in seconds that the
Present_Value must remain:

(a) equal to any one of the values in the Alarm_Values property before a TO-OFFNORMAL event is
generated, or
(b) not equal to any of the values in the Alarm_Values property before a TO-NORMAL event is
generated.

This property is required if intrinsic reporting is supported by this object.

12.X.15 Notification_Class

This property, of type Unsigned, shall specify the notification class to be used when handling and
generating event notifications for this object. The Notification_Class property implicitly refers to a
Notification Class object that has a Notification_Class property with the same value. This property is
required if intrinsic reporting is supported by this object.

12.X.16 Alarm_Values

This property, of type List of Unsigned, shall specify any states the Present_Value must equal before a TO-
OFFNORMAL event is generated. This property is required if intrinsic reporting is supported by this
object.

12.X.16.1 Conditions for Generating a TO-OFFNORMAL Event

A TO-OFFNORMAL event is generated under these conditions:

(a) the Present_Value must equal at least one of the values in the Alarm_Values list, and
(b) the Present_Value must remain equal to the same value for a minimum period of time, specified
by the Time_Delay property, and
(c) the TO-OFFNORMAL flag must be enabled in the Event_Enable property.

18 ANSI/ASHRAE Addendum 135b-2000

12.X.16.2 Conditions for Generating a TO-NORMAL Event

Once equal, the Present_Value must become not equal to any of the states in this property and not equal to
any of the states in the Fault_Values property before a TO-NORMAL event is generated under these
conditions:

(a) the Present_Value must remain not equal to any of the states in the Alarm_Values property for a
minimum period of time, specified by the Time_Delay property, and
(b) the Present_Value must remain not equal to any of the states in the Fault_Values property, and
(c) the TO-NORMAL flag must be enabled in the Event_Enable property.

12.X.17 Fault_Values

This property, of type List of Unsigned, shall specify any states the Present_Value must equal before a TO-
FAULT event is generated. If Present_Value becomes equal to any of the states in the Fault_Values list,
and no physical fault has been detected for any inputs or outputs that the Present_Value represents, then the
Reliability property shall have the value MULTI_STATE_FAULT. The Fault_Values property is required
if intrinsic reporting is supported by this object.

12.X.18 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and
disable reporting of TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. This property is required
if intrinsic reporting is supported by this object.

12.X.19 Acked_Transitions

This property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
receipt of acknowledgements for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. These flags
shall be cleared upon the occurrence of the corresponding event and set under any of these conditions:

(a) upon receipt of the corresponding acknowledgement;
(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable property
(meaning event notifications will not be generated for this condition and thus no acknowledgement is
expected);
(c) upon the occurrence of the event if the corresponding flag is set in the Event_Enable property and
the corresponding flag in the Ack_Required property of the Notification Class object implicitly
referenced by the Notification_Class property of this object is not set (meaning no acknowledgement is
expected).

This property is required if intrinsic reporting is supported by this object.

12.X.20 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object
should be Events or Alarms. This property is required if intrinsic reporting is supported by this object.

12.X.21 Event_Time_Stamps

This optional property, of type BACnetARRAY [3] of BACnetTimeStamp, shall convey the times of the
last event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time
stamps of type Time or Date shall have ’FF’ in each octet and Sequence number time stamps shall have the
value 0 if no event notification of that type has been generated since the object was created. This property
is required if intrinsic reporting is supported by this object.

ANSI/ASHRAE Addendum 135b-2000 19

[Change Table 13-1, p. 218]

Add Multi-state Value to object types Binary Input, Binary Output, Binary Value, Multi-state Input, Multi-
state Output.

[Change 13.2, p. 219, final paragraph]

In the case of Multi-state Inputs and Multi-state Values, the Alarm_Values property…

[Change Table 13-2, p. 220 and Table 13-3, p. 221]

Add Multi-state Value to object types Binary Input, Binary Value, Multi-state Input.

[Change the following productions in 21]

BACnetReliability ::= ENUMERATED {
. . .

multi-state-fault (9),

BACnetObjectType ::= ENUMERATED {
. . .

multi-state-value (19),

BACnetObjectTypesSupported ::= BIT STRING {
. . .

multi-state-value (19),

[Change Annex A, p.408]

Annex A, Standard Object Types Supported:

Multi-state Value� � � _____ _____

[Add the following to Annex C, p.417]

MULTI-STATE-VALUE ::= SEQUENCE {
object-identifier [75] BACnetObjectIdentifier,
object-name [77] CharacterString,
object-type [79] BACnetObjectType,
present-value [85] Unsigned,

-- maximum value is restricted by the number-of-states
description [28] CharacterString OPTIONAL,
status-flags [111] BACnetStatusFlags,
event-state [36] BACnetEventState,
reliability [103] BACnetReliability OPTIONAL,
out-of-service [81] BOOLEAN,
number-of-states [74] Unsigned,
state-text [110] SEQUENCE OF CharacterString OPTIONAL,

-- accessed as a BACnetARRAY
priority-array [87] BACnetPriorityArray OPTIONAL,
relinquish-default [104] Unsigned OPTIONAL,
time-delay [113] Unsigned OPTIONAL,
notification-class [17] Unsigned OPTIONAL,
alarm-values [7] SEQUENCE OF Unsigned OPTIONAL,
fault-values [39] SEQUENCE OF Unsigned OPTIONAL,

20 ANSI/ASHRAE Addendum 135b-2000

event-enable [35] BACnetEventTransitionBits OPTIONAL,
acked-transitions [0] BACnetEventTransitionBits OPTIONAL,
notify-type [72] BACnetNotifyType OPTIONAL,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp OPTIONAL

--accessed as a BACnetARRAY
}

 [Add the following to Annex D, p.431, after the current D.15 and before the current D.16]

D.X Example of a Multi-state Value Object

Example 1 - Unit Ventilator Operating Mode.
In this example the Present_Value is being used to indicate the operating mode for a Unit Ventilator. The
actual logic used to determine and establish the present value is a local matter.

Property: Object_Identifier = (Multi-state Value, Instance 1)
Property: Object_Name = "UV39"
Property: Object_Type = MULTISTATE_VALUE
Property: Present_Value = 2
Property: Description = "UnitVent Room 39"
Property: Status_Flags = {FALSE,FALSE,FALSE,FALSE}
Property: Event_State = NORMAL
Property: Reliability = NO_FAULT_DETECTED
Property: Out_of_Service = FALSE
Property: Number_of_States = 4
Property: State_Text = ("Unoccupied","Warmup","Occupied","Setback")

ANSI/ASHRAE Addendum 135b-2000 21

135b-8. Add an Averaging object type.

The proposed new object type provides a network-visible way to monitor the average, minimum, and maximum
values attained by a sampled property of a specified object. The property may be of datatype BOOLEAN,
INTEGER, Unsigned, Enumerated or REAL.

In the proposed clause below, the value of ’X’ in the clause numbering will be replaced at the time of publication
with a value placing it in the proper sequence in Clause 12, dependent on the potential addition of other object types.

12.X Averaging Object Type

The Averaging object type defines a standardized object whose properties represent the externally visible
characteristics of a value that is sampled periodically over a specified time interval. The Averaging object
records the minimum, maximum and average value over the interval, and makes these values visible as
properties of the Averaging object. The sampled value may be the value of any BOOLEAN, INTEGER,
Unsigned, Enumerated or REAL property value of any object within the BACnet Device in which the
object resides. Optionally, the object property to be sampled may exist in a different BACnet Device. The
Averaging object shall use a "sliding window" technique that maintains a buffer of N samples distributed
over the specified interval. Every (time interval/N) seconds a new sample is recorded displacing the oldest
sample from the buffer. At this time, the minimum, maximum and average are recalculated. The buffer
shall maintain an indication for each sample that permits the average calculation and minimum/maximum
algorithm to determine the number of valid samples in the buffer.

The Averaging object type and its properties are summarized in Table 12-X and described in detail in this
subclause.

Table 12-X. Properties of the Averaging Object Type

Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Minimum_Value REAL R
Minimum_Value_Timestamp BACnetDateTime O
Average_Value REAL R
Variance_Value REAL O
Maximum_Value REAL R
Maximum_Value_Timestamp BACnetDateTime O
Description CharacterString O
Attempted_Samples Unsigned W1

Valid_Samples Unsigned R
Object_Property_Reference BACnetDeviceObjectPropertyReference R1

Window_Interval Unsigned W1

Window_Samples Unsigned W1

1 If any of these properties are written to using BACnet services, then all of the buffer samples shall
become invalid, ’Attempted_Samples’ shall become zero, ’Valid_Samples’ shall become zero,
’Minimum_Value’ shall become INF, ’Average_Value’ shall become NaN and ’Maximum_Value’
shall become -INF.

22 ANSI/ASHRAE Addendum 135b-2000

12.X.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall
be unique within the BACnet Device that maintains it.

12.X.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the
BACnet Device that maintains it. The minimum length of the string shall be one character. The set of
characters used in the Object_Name shall be restricted to printable characters.

12.X.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The
value of this property shall be AVERAGING.

12.X.4 Minimum_Value

This property, of type REAL, shall reflect the lowest value contained within the buffer window for the most
recent ’Window_Samples’ samples, or the actual number of samples (’Valid_Samples’) if less than
’Window_Samples’ samples have been taken. After a device restart, or after ’Attempted_Samples’,
’Object_Property_Reference’, ’Window_Samples’ or ’Window_Interval’ are written to using BACnet
services, until a sample is taken, ’Minimum_Value’ shall have the value INF.

12.X.5 Minimum_Value_Timestamp

This optional property, of type BACnetDateTime, indicates the date and time at which the value stored in
Minimum_Value was sampled.

12.X.6 Average_Value

This property, of type REAL, shall reflect the average value contained within the buffer window for the
most recent ’Window_Samples’ samples, or the actual number of samples (’Valid_Samples’) if less than
’Window_Samples’ samples have been taken. The average shall be calculated by taking the arithmetic sum
of all non-missed buffer samples and dividing by the number of non-missed buffer samples. After a device
restart, or after ’Attempted_Samples’, ’Object_Property_Reference’, ’Window_Samples’ or
’Window_Interval’ are written to using BACnet services, until a sample is taken, ’Average_Value’ shall
have the value NaN.

12.X.7 Variance_Value

This optional property, of type REAL, shall reflect the variance value contained within the buffer window
for the most recent ’Window_Samples’ samples, or the actual number of samples (’Valid_Samples’) if less
than ’Window_Samples’ samples have been taken. After a device restart, or after ’Attempted_Samples’,
’Object_Property_Reference’, ’Window_Samples’ or ’Window_Interval’ are written to using BACnet
services, until a sample is taken, ’Variance_Value’ shall have the value NaN.

12.X.8 Maximum_Value

This property, of type REAL, shall reflect the highest value contained within the buffer window for the
most recent ’Window_Samples’ samples, or the actual number of samples (’Valid_Samples’) if less than
’Window_Samples’ samples have been taken. After a device restart, or after ’Attempted_Samples’,
’Object_Property_Reference’, ’Window_Samples’ or ’Window_Interval’ are written to using BACnet
services, until a sample is taken, ’Maximum_Value’ shall have the value -INF.

ANSI/ASHRAE Addendum 135b-2000 23

12.X.9 Maximum_Value_Timestamp

This optional property, of type BACnetDateTime, indicates the date and time at which the value stored in
Maximum_Value was sampled.

12.X.10 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.X.11 Attempted_Samples

This property, of type Unsigned, indicates the number of samples that have been attempted to be collected
for the current window. The only acceptable value that may be written to this property shall be zero. If
’Attempted_Samples’ is less than ’Window_Samples’ then a period of time less than ’Window_Interval’ has
elapsed since a device restart, or ’Attempted_Samples’, ’Object_Property_Reference’, ’Window_Samples’ or
’Window_Interval’ have been written to using BACnet services. The number of missed samples in the
current window can be calculated by subtracting ’Valid_Samples’ from ’Attempted_Samples.’ After a device
restart, or after ’Attempted_Samples’, ’Object_Property_Reference’, ’Window_Samples’ or
’Window_Interval’ are written to using BACnet services, until a sample is taken, ’Attempted_Samples’ shall
have the value zero.

12.X.12 Valid_Samples

This read-only property, of type Unsigned, indicates the number of samples that have been successfully
collected for the current window. This value can be used to determine whether any of the samples in the
current ’Window_Interval’ are missing. The number of missed samples in the current window can be
calculated by subtracting ’Valid_Samples’ from ’Attempted_Samples.’ A result greater than zero indicates
the number of samples that encountered an error when the sample was being recorded. After a device
restart, or after ’Attempted_Samples’, ’Object_Property_Reference’, ’Window_Samples’ or
’Window_Interval’ are written to using BACnet services until a sample is taken, ’Valid_Samples’ shall have
the value zero.

12.X.13 Object_Property_Reference

This property, of type BACnetDeviceObjectPropertyReference, shall identify the object and property
whose value is to be sampled during the ’Window_Interval’. The object referenced may be located within
the device containing the Averaging object, or optionally the Averaging object may support the referencing
of object properties in other devices. External references may be restricted to a particular set of BACnet
devices. The referenced object property must have any of the numeric datatypes BOOLEAN, INTEGER,
Unsigned, Enumerated or REAL. All sampled data shall be converted to REAL for calculation purposes.
BOOLEAN FALSE shall be considered to be zero and TRUE shall be considered to be one. Enumerated
datatypes shall be treated as Unsigned values. If an implementation supports writing to
’Object_Property_Reference’, then If ’Object_Property_Reference’ is written to using BACnet services, then
all of the buffer samples shall become invalid, ’Attempted_Samples’ shall become zero, ’Valid_Samples’
shall become zero,, ’Minimum_Value’ shall become INF, ’Average_Value’ shall become NaN and
’Maximum_Value’ shall become -INF.

12.X.14 Window_Interval

This property, of type Unsigned, shall indicate the period of time in seconds over which the minimum,
maximum and average values are calculated. The minimum acceptable value for ’Window_Interval’ shall be
a local matter. Every ’Window_Interval’ divided by ’Window_Samples’ seconds a new sample shall be
taken by reading the value of the property referenced by the ’Object_Property_Reference’. Whether the
sample represents an instantaneous "snapshot" or a continuously calculated sample shall be a local matter.
If ’Window_Interval’ is written to using BACnet services, then all of the buffer samples shall become

24 ANSI/ASHRAE Addendum 135b-2000

invalid, ’Attempted_Samples’ shall become zero, ’Valid_Samples’ shall become zero, ’Minimum_Value’
shall become INF, ’Average_Value’ shall become NaN and ’Maximum_Value’ shall become -INF.

12.X.15 Window_Samples

This property, of type Unsigned, shall indicate the number of samples to be taken during the period of time
specified by the ’Window_Interval’ property. ’Window_Samples’ must be greater than zero and all
implementations shall support at least 15 samples. Every ’Window_Interval’ divided by ’Window_Samples’
seconds a new sample shall be taken by reading the value of the property referenced by the
’Object_Property_Reference’. Whether the sample represents an instantaneous "snapshot" or a continuously
calculated sample shall be a local matter. If ’Window_Interval’ is written to using BACnet services, then all
of the buffer samples shall become invalid, ’Attempted_Samples’ shall become zero, ’Valid_Samples’ shall
become zero, ’Minimum_Value’ shall become INF, ’Average_Value’ shall become NaN and
’Maximum_Value’ shall become -INF.

[Changes to ASN.1 productions in 21]

BACnetObjectType ::= ENUMERATED {
. . .

averaging (18),

BACnetObjectTypesSupported ::= BIT STRING {
. . .

averaging (18),

BACnetPropertyIdentifier ::= ENUMERATED {
. . .

archive (13),
attempted-samples (124),
average-value (125),
bias (14),

. . .
maximum-output (61),
maximum-value (135),
maximum-value-timestamp (149),
max-apdu-length-accepted (62),

. . .
minimum-output (68),
minimum-value (136),
minimum-value-timestamp (150),
min-pres-value (69),

. . .
utc-offset (119),
valid-samples (146),
variance-value (151),
vendor-identifier (120),

. . .
weekly-schedule (123),
window-interval (147),
window-samples (148),
-- see attempted-samples (124),
-- see average-value (125),
-- see maximum-value (135),
-- see minimum-value (136),
-- see valid-samples (146),
-- see window-interval (147),

ANSI/ASHRAE Addendum 135b-2000 25

-- see window-samples (148),
-- see maximum-value-timestamp (149),
-- see minimum-value-timestamp (150),
-- see variance-value (151),

-- The highest enumeration used in this version is 123 151.

 [Add to Annex A, Standard Object Types Supported]

Averaging � � � _____ _____

[Add to Annex C]

AVERAGING ::= SEQUENCE {
object-identifier [75] BACnetObjectIdentifier,
object-name [77] CharacterString,
object-type [79] BACnetObjectType,
minimum-value [136] REAL,
minimum-value-timestamp [150] BACnetDateTime OPTIONAL,
average-value [125] REAL,
variance-value [151] REAL OPTIONAL,
maximum-value [135] REAL,
maximum-value-timestamp [149] BACnetDateTime OPTIONAL,
description [28] CharacterString OPTIONAL,
attempted-samples [124] Unsigned,
valid-samples [146] Unsigned,
object-property-reference [78] BACnetDeviceObjectPropertyReference,
window-interval [147] Unsigned,
window-samples [148] Unsigned
}

 [Add to Annex D]

D.X Example of an Averaging Object

The following is an example of an Averaging object that is used for determining average and maximum
electrical demand. The object property it refers to is a standard analog input measuring KW. In the current
period, one sample was missed.

Property: Object_Identifier = (Averaging, Instance 1)
Property: Object_Name = "FLR 12 DEMAND"
Property: Object_Type = AVERAGING
Property: Minimum_Value = 2.4
Property: Minimum_Value_Timestamp = (16-DEC-1999,13:15:07.32)
Property: Average_Value = 12.7
Property: Maximum_Value = 18.8
Property: Maximum_Value_Timestamp = (16-DEC-1999,13:06:12.19)
Property: Description = "Floor 12 Electrical Demand"
Property: Attempted_Samples = 15
Property: Valid_Samples = 14
Property: Object_Property_Reference = (Analog Input, Instance 12)
Property: Window_Interval = 900
Property: Window_Samples = 15

26 ANSI/ASHRAE Addendum 135b-2000

[Add to 3.3, pp. 5, 6]

3.3 Abbreviations and Acronyms Used in this Standard
. . .
INF "Infinity", a unique binary pattern representing positive infinity (see ANSI/IEEE 754-1985)
-INF "Negative infinity", a unique binary pattern representing negative infinity (see ANSI/IEEE 754-1985)
. . .
NaN "Not a Number", a unique binary pattern representing an invalid number (see ANSI/IEEE 754-1985)

ANSI/ASHRAE Addendum 135b-2000 27

135b-9. Change all ’Process Identifier’ properties and parameters to
Unsigned32.

There are various places within BACnet that "process identifiers" are used, notably in the COV services, event
notification services and EventEnrollment object. In every case these are currently defined as "Unsigned" meaning
that (theoretically) they are unbounded in possible size. As a practical matter, it would be a beneficial to
implementors if the size of these identifiers were bounded. The current proposal is to change all instances of these
identifiers to Unsigned32.

[Change Table 12-2, p. 181]

Table 12-12. Properties of the Event Enrollment Object Type
Property Identifier Property Datatype Conformance Code

Process_Identifier Unsigned Unsigned32 O2

[Change 12.10.14, p. 185]

12.10.14 Process_Identifier

This property, of type Unsigned Unsigned32, shall …

[Change 13.5.1.2, p. 231]

13.5.1.2 Acknowledging Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

[Change 13.6.1.2, p. 233]

13.6.1.2 Subscriber Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

[Change 13.7.1.2, p. 235]

13.7.1.2 Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

[Change 13.10.12, p. 243]

13.10.1.2 Subscriber Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

[Change 13.11.1.2, p. 246]

13.11.1.2 Subscriber Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

28 ANSI/ASHRAE Addendum 135b-2000

[Change 13.12.1.2, p. 248]

13.12.1.2 Process Identifier

This parameter, of type Unsigned Unsigned32, shall …

[Change 21, p. 352]

AcknowledgeAlarm-Request ::= SEQUENCE {
acknowledgingProcessIdentifier [0] Unsigned Unsigned32,

ConfirmedCOVNotification-Request ::= SEQUENCE {
subscriberProcessIdentifier [0] Unsigned Unsigned32,

[Change 21, p. 353]

ConfirmedEventNotification-Request ::= SEQUENCE {
processIdentifier [0] Unsigned Unsigned32,

[Change 21, p. 354]

SubscribeCOV-Request ::= SEQUENCE {
subscriberProcessIdentifier [0] Unsigned Unsigned32,

[Change 21, p. 359]

UnconfirmedCOVNotification-Request ::= SEQUENCE {
subscriberProcessIdentifier [0] Unsigned Unsigned32,

UnconfirmedEventNotification-Request ::= SEQUENCE {
processIdentifier [0] Unsigned Unsigned32,

[Change 21, p. 366]

BACnetDestination ::= SEQUENCE {
…
processIdentifier Unsigned Unsigned32,
…

[Change 21, p. 379]

BACnetRecipientProcess ::= SEQUENCE {
…
processIdentifier [1] Unsigned Unsigned32,

ANSI/ASHRAE Addendum 135b-2000 29

135b-10. Change the Multi-state Input object type to correct flaws related to
fault detection and reporting and achieve consistency with the new Multi-state
Value object type.

The recent discussions surrounding the Multi-state Value object have exposed some issues related to "fault"
detection and reporting. The resolution of those issues involves making some changes to the Multi-state Input object
to correct the same flaws and provide consistency. The consensus was also to change the handling of faults so that
no time delay is expected or applied using the network-visible Time_Delay property. The affected clauses are shown
below.

Table 12-17. Properties of the Multi-state Input Object Type

Property Identifier Property Datatype Conformance Code
…
Reliability BACnetReliability OO2

…
Time_Delay Unsigned O2O3

Notification_Class Unsigned O2O3

Alarm_Values List of Unsigned O2O3

Fault_Values List of Unsigned O2O3

Event_Enable BACnetEventTransitionBits O2O3

Acked_Transitions BACnetEventTransitionBits O2O3

Notify_Type BACnetNotifyType O2O3

Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O2O3

2 This property shall be required if Fault_Values is present.
23 These properties are required if the object supports intrinsic reporting

12.14.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if
this object has an active event state associated with it. If the object supports intrinsic reporting, then the
Event_State property shall indicate the event state of the object. If the object does not support intrinsic
reporting then the value of this property shall be NORMAL.:

(a) if the Reliability property is not present, then the value of Event_State shall be NORMAL, or
(b) if the Reliability property is present and Reliability is NO_FAULT_DETECTED then Event_State
shall be NORMAL, or
(c) If the Reliability property is present and Reliability is not NO_FAULT_DETECTED then
Event_State shall be FAULT.

12.14.9 Reliability

The reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or
the operation of the physical inputs in question are "reliable" as far as the BACnet Device or operator can
determine and, if not, why. The Reliability property is required to be present if the Fault_Values property
is present. The Reliability property for this object type may have any of the following values:

{NO_FAULT_DETECTED, NO_SENSOR, OVER_RANGE, UNDER_RANGE,OPEN_LOOP,
SHORTED_LOOP, MULTI_STATE_FAULT, UNRELIABLE_OTHER}.

30 ANSI/ASHRAE Addendum 135b-2000

12.14.9.1 Conditions for Generating a TO-FAULT Event

A TO-FAULT event is generated under these conditions:

(a) the Reliability property becomes not equal to NO_FAULT_DETECTED, and
(b) the TO-FAULT flag must be enabled in the Event_Enable property.

12.14.15.2 Conditions for Generating a TO-NORMAL Event

Once equal, the Present_Value must become not equal to any of the states in this property and not equal to
any of the states in the Fault_Values property before a TO-NORMAL event is generated under these
conditions:

(a) the Present_Value must remain not equal to any of the values in the Alarm_Values list for a
minimum period of time, specified in the Time_Delay property, and
(b) the Present_Value must remain not equal to any of the states in the Fault_Values property, and
(b) (c) the TO-NORMAL flag must be enabled in the Event_Enable property.

12.14.16 Fault_Values

This property, of type List of Unsigned, shall specify any states the Present_Value must equal before a TO-
FAULT event is generated. If Present_Value becomes equal to any of the states in the Fault_Values list,
and no physical fault has been detected for any inputs that the Present_Value represents, then the
Reliability property shall have the value MULTI_STATE_FAULT. The Fault_Values This property is
required if intrinsic reporting is supported by this object.

12.14.16.1 Conditions for Generating a TO-FAULT Event

A TO-FAULT event is generated under these conditions:
(a) the Present_Value property must equal at least one of the values in the Fault_Values list, and
(b) the Present_Value must remain equal to the same value for a minimum period of time, specified in
the Time_Delay property, and
(c) the TO-FAULT flag must be enabled in the Event_Enable property.

12.14.16.2 Conditions for Generating a TO_NORMAL Event

Once equal, the Present_Value must become not equal to any of the states in this property before a TO-
NORMAL event is generated under these conditions:

(a) the Present_Value property must remain not equal to any of the values in the Fault_Values list for
a minimum period of time, specified in the Time_Delay property, and
(b) the TO-NORMAL flag must be enabled in the Event_Enable property.

[Add following to 12, p. 137, ahead of UNRELIABLE_OTHER]

MULTI_STATE_FAULT The Present_Value of the Multi-state object is equal to one of the states in the
Fault_Values property and no other fault has been detected.
ASN.1 changes

[Add following enumeration to 21, p. 379]

BACnetReliability ::= ENUMERATED {
. . .

multi-state-fault (9),

ANSI/ASHRAE Addendum 135b-2000 31

135b-11. Add a Protocol_Revision property to the Device object type.

As the BACnet standard evolves, it will be desirable to know what version of the standard a device was
manufactured to meet. This should be a network visible identifier so that other devices may make runtime decisions
based on this information.

To accomplish this, it is proposed to add a new mandatory property to the Device object type that will contain a
numeric revision number. This number will act as a minor revision number to the BACnet standard. The value shall
start with 0 and be ever-increasing. This value shall be determined by SSPC 135, and shall generally be incremented
when substantive changes are made to the BACnet standard that affect device communication or behavior. This
revision number shall revert to 0 whenever the Protocol_Version property is incremented.

A new Annex K shall record a history of changes made to this revision number along with the corresponding
changes made to the standard.

The absence of this mandatory property in a device indicates that the device is, by definition, revision 0 of version 1.
For this reason, the first value for the Protocol_Revision property shall be 1.

[Addition to Table 12-11, p. 176]

Property Identifier Property Datatype Conformance Code
… … …
Protocol_Version Unsigned R
Protocol_Revision Unsigned R
Protocol_Conformance_Class Unsigned(1..6) R
… … …

 [Change 12.9.12, p. 178]

12.9.12 Protocol_Version

This property, of type Unsigned, represents the version of the BACnet protocol supported by this BACnet
Device. Every major revision of BACnet shall increase this version number by one. The initial release of
BACnet shall be version 1

[Add a new 12.9.33]

12.9.33 Protocol_Revision

This property, of type Unsigned, shall indicate the minor revision level of the BACnet standard. This value
shall start at 1 and be incremented for any substantive change(s) to the BACnet standard that affect device
communication or behavior. This value shall revert to zero upon each change to the Protocol_Version
property. Changes to the values for Protocol_Version and Protocol_Revision are recorded in Annex K.

This property is required for all devices implementing BACnet Protocol_Version 1, Protocol_Revision 1
and above. Absence of this property shall indicate a device implemented to Protocol_Version 1,
Protocol_Revision 0.

[Change 21, pp. 375 and 376]

BACnetPropertyIdentifier ::= SEQUENCE {
. . .
protocol-object-types-supported (96),
protocol-revision (139),
protocol-services-supported (97),

32 ANSI/ASHRAE Addendum 135b-2000

. . .
weekly-schedule (123),
-- see protocol-revision (139),

}

 [Add to Annex C DEVICE definition, p. 414]

DEVICE ::= SEQUENCE {
. . .
protocol-revision [139] Unsigned
. . .

}

 [Add to Annex D.9, Examples of a Device Object, pp. 424 and 425]

Example 1: A "sophisticated" BACnet device.
. . .
Property: Protocol_Version = 1
Property: Protocol_Revision = 1
Property: Protocol_Conformance_Class 6
. . .
Example 2: A "simple" BACnet device.
. . .
Property: Protocol_Version = 1
Property: Protocol_Revision = 1
Property: Protocol_Conformance_Class 6
. . .

[Add new Annex K]

Annex K - History of Revisions (Informative)

Protocol Date Approved
Version Revision Summary of Changes to the Standard

1 NA ANSI/ASHRAE 135-1995
1 NA Addendum a to ANSI/ASHRAE 135-1995

1. Add Annex J - BACnet/IP and supporting definitions
1 1 Addendum b to ANSI/ASHRAE 135-1995

1. Inconsistencies are eliminated in the definitions of the Analog and
Binary Value object types

2. Any device that receives and executes UnconfirmedEventNotification
service requests must support programmable process identifiers

3. Modify each event-generating object type to contain the last timestamp
for each acknowledgeable transition

4. Modify the Notification Class object by requiring that the ’Notification
Class’ property be equivalent to the instance number of the Notification
Class object

5. Modify the Event Notification services to make the ’To State’ parameter
mandatory for notifications of type ACK_NOTIFICATION

6. A new BACnetDeviceObjectPropertyReference production is added and
its use in the Event Enrollment and Schedule object types is specified

ANSI/ASHRAE Addendum 135b-2000 33

7. Add a Multi-state Value object type

8. Add an Averaging object type

9. Change all ’Process Identifier’ properties and parameters to
Unsigned32

10. Change the Multi-state Input object type to correct flaws related to fault
detection and reporting and achieve consistency with the proposed
Multi-state Value object type

11. Add a Protocol_Revision property to the Device object type

12. The File object type is changed to allow truncation and partial deletion
operations

13. A new ReadRange service is added to permit reading a range of data
items from a property whose datatype is a list or array of lists

14. A new UTCTimeSynchronization service is introduced and related
changes are made to properties in the Device object type

15. Add a Trend Log object type

16. The UnconfirmedCOVNotification service is extended to allow
notifications without prior subscription as a means of distributing
globally important data to a potentially large number of recipients

17. Add eight new BACnet engineering units.

NA = Not Applicable because the Protocol_Revision property was first defined in Addendum 135 b

34 ANSI/ASHRAE Addendum 135b-2000

135b-12. The File object type is changed to allow truncation and partial
deletion operations.

BACnet does not currently provide a way to truncate or delete a file except by deleting the entire file object. If an
attempt is made to write from the beginning of the file or from an intermediate point, the standard does not currently
specify what is to happen if the length of the new file data is less than the length of the old file data.

The proposed solution requires the File_Size property to be writable for STREAM_ACCESS files if the file size can
be changed by writing to the file. Deleting a file will now be accomplished by writing 0 to File_Size. Truncating a
file at octet X will be accomplished by writing X to File_Size.

A new property called Record_Count is added to the File object. This property is required to be writable for
RECORD_ACCESS files if the number of records can be changed by writing to the file. It functions in a manner
analogous to the File_Size property. Deleting a file is accomplished by writing 0 to Record_Count. Truncating a file
at record X is accomplished by writing X to Record_Count.

Note that if the AtomicWriteFile service is used to begin writing at position X the file size does not change unless
the new file data extends past the old end of the file. Thus in order to guarantee that the file ends with the new data it
is necessary to first truncate the file at a position p such that X ≤ p ≤ X+n, where n is the number of octets or records
to be written, before initiating the AtomicWriteFile service request.

This proposal also deletes the RECORD_AND_STREAM_ACCESS file type. This file type does not appear to be
useful and it is difficult to define the behavior of such a file type when actions are taken to change its size.

[Change Table 12-14, p. 186]

Property Identifier Property Datatype Conformance Code
File_Size Unsigned R1

...
Record_Count Unsigned O2

1If the file size can be changed by writing to the file, and File_Access_Method is STREAM_ACCESS, then
this property shall be writable.

2 This property shall be present only if File_Access_Method is RECORD_ACCESS. If the number of
records can be changed by writing to the file, then this property shall be writable.

[Change 12.11, p. 186]

12.11.6 File_Size

This property, of type Unsigned, indicates the size of the file data in octets. If the size of the file can be
changed by writing to the file, and File_Access_Method is STREAM_ACCESS, then this property shall be
writable.

Writing to the File_Size property with a value less than the current size of the file shall truncate the file at
the specified position. Writing a File_Size of 0 shall delete all of the file data but not the File object itself.
Writing to the File_Size property with a value greater than the current size of the file shall expand the size
of the file but the value of the new octets of the file shall be a local matter.

Devices may restrict the allowed values for writes to the File_Size. Specifically, devices may allow
deletion of the file contents by writing a value of zero, but not necessarily allow arbitrary truncation or
expansion.

ANSI/ASHRAE Addendum 135b-2000 35

12.11.10 File_Access_Method

This property, of type BACnetFileAccessMethod, indicates the type of file access supported for this object.
The possible values for File_Access_Method are

{RECORD_ACCESS, STREAM_ACCESS, RECORD_AND_STREAM_ACCESS}.

12.11.11 Record_Count

This property, of type Unsigned, indicates the size of the file data in records. The Record_Count property
shall be present only if File_Access_Type is RECORD_ACCESS. If the number of records can be changed
by writing to the file, then this property shall be writable.

Writing to the Record_Count property with a value less than the current size of the file shall truncate the
file at the specified position. Writing a Record_Count of 0 shall delete all of the file data but not the File
object itself. Writing to the Record_Count property with a value greater than the current size of the file
shall expand the size of the file but the value of the new octets of the file shall be a local matter.

Devices may restrict the allowed values for writes to the File_Size. Specifically, devices may allow deletion
of the file contents by writing a value of zero, but not necessarily allow arbitrary truncation or expansion.

[Change 21. p. 372]

BACnetFileAccessMethod ::= ENUMERATED {
record-access (0),
stream-access (1),

 record-and-stream-access (2)}

[Change 21, p. 375-376]

BACnetPropertyIdentifier ::= ENUMERATED {
...
recipient-list (102),
record-count (141),
reliability (103),
...
weekly-schedule (123)

-- see record-count (141),
...
}

[Change Annex C, p.415]

File ::= SEQUENCE{
...
record-count [141] Unsigned OPTIONAL
}

[Change Annex D, p. 427]

D.11 Example of a File Object

A File Object holding trend information:

Property: File_Size= 750
Property: Record_Count = 150

36 ANSI/ASHRAE Addendum 135b-2000

135b-13. A new ReadRange service is added to permit reading a range of data
items from a property whose datatype is a list or array of lists.

This proposed service permits reading a specific range of data items from properties that are either lists or arrays of
lists. In particular, the ReadRange service will facilitate the reading of records from the Trend Log object type
proposed in 135b-15. The "range" of readings can be specified either by position within the list of by the use of time
references.

[Existing clauses 15.8 through 15.9 shall be renumbered to 15.9 through 15.10. Existing Tables 15-13 through 15-15
shall be renumbered to 15-15 through 15-17.]

15.8 ReadRange Service

The ReadRange service is used by a client BACnet-user to read a specific range of data items representing
a subset of data available within a specified object property. The service may be used with any list or array
of lists property.

15.8.1 Structure

The structure of the ReadRange primitive is shown in Table 15-13. The terminology and symbology used
in this table are explained in 5.6.

Table 15-13. Structure of ReadRange Service Primitives

Parameter Name Req Ind Rsp Cnf
Argument M M(=)
 Object Identifier M M(=)
 Property Identifier M M(=)
 Property Array Index C C(=)
 Range U U(=)

Result(+) S S(=)
 Object Identifier M M(=)
 Property Identifier M M(=)
 Property Array Index C C(=)
 Result Flags M M(=)
 Item Count M M(=)
 Item Data M M(=)

Result(-) S S(=)
 Error Type M M(=)

15.8.1.1 Argument

This parameter shall convey the parameters for the ReadRange confirmed service request.

15.8.1.1.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, specifies the object and property is to be read.

15.8.1.1.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, specifies the property to be read by this service.
Because this service is intended to read a single property of a single object, the value of this parameter shall
not be one of the special property identifiers ALL, REQUIRED, or OPTIONAL.

ANSI/ASHRAE Addendum 135b-2000 37

15.8.1.1.3 Property Array Index

If the property identified above is of datatype array of lists, this optional parameter of type Unsigned shall
indicate the array index of the element of the property referenced by this service. If the property identified
above is not of datatype array of lists, this parameter shall be omitted. The index value shall not be zero.

15.8.1.1.4 Range

This optional parameter shall convey criteria for the consecutive range items within the referenced property
that are to be returned, as described in 15.8.2. The ’Range’ parameter is shown in Table 15-14. The
terminology and symbology used in this table are explained in 5.6.

Table 15-14. Structure of the ’Range’ Parameter

Parameter Name Req Ind Datatype
 By Position S S(=)
 Reference Index M M(=) Unsigned
 Count M M(=) INTEGER
 By Time S S(=)
 Reference Time M M(=) BACnetDateTime
 Count M M(=) INTEGER
 Time Range S S(=)
 Beginning Time M M(=) BACnetDateTime
 Ending Time M M(=) BACnetDateTime

15.8.1.1.4.1 By Position

The ’By Position’ parameter shall indicate that the particular items to be read are referenced by an index.

15.8.1.1.4.1.1 Reference Index

The ’Reference Index’ parameter specifies the index of the first (if ’Count’ is positive) or last (if ’Count’ is
negative) item to be read.

15.8.1.1.4.1.2 Count

The absolute value of the ’Count’ parameter specifies the number of records to be read. If ’Count’ is
positive, the record specified by ’Reference Index’ shall be the first and oldest record read and returned; if
’Count’ is negative the record specified by ’Reference Index’ shall be the last and newest record. ’Count’
may not be zero.

15.8.1.1.4.2 By Time

The ’By Time’ parameter shall indicate that the particular items to be read are referenced by timestamp.

15.8.1.1.4.2.1 Reference Time

The first (if ’Count’ is positive) or last (if ’Count’ is negative) item to be read shall be the first item with a
timestamp newer than the time specified by the ’Reference Time’ parameter.

15.8.1.1.4.2.2 Count

The absolute value of the ’Count’ parameter specifies the number of records to be read. If ’Count’ is
positive, the record specified by ’Reference Time’ shall be the first and oldest record read and returned; if

38 ANSI/ASHRAE Addendum 135b-2000

’Count’ is negative the record specified by ’Reference Index’ shall be the last and newest record. ’Count’ may
not be zero.

15.8.1.1.4.3 Time Range

The ’Time Range’ parameter shall indicate that the particular items to be read have timestamps within a
specified range.

15.8.1.1.4.3.1 Beginning Time

The first item to be read shall be the first item with a timestamp newer than the time specified by the
’Beginning Time’ parameter.

15.8.1.1.4.4.2 Ending Time

The last item to be read shall be the last item with a timestamp older than or equal to the time specified by
the ’Ending Time’ parameter.

15.8.1.2 Result(+)

The ’Result(+)’ parameter shall indicate that the service request succeeded. A successful result includes the
following parameters.

15.8.1.2.1 Object Identifier

This parameter, of type BACnetObjectIdentifier, specifies the object that was read.

15.8.1.2.2 Property Identifier

This parameter, of type BACnetPropertyIdentifier, shall identify that property that was read.

15.8.1.2.3 Property Array Index

If the property identified above is of datatype array of lists, this parameter of type Unsigned shall indicate
the array index of the element of the property referenced by this service. If the property identified above is
not of datatype array of lists, this parameter shall be omitted.

15.8.1.2.4 Result Flags

This parameter, of type BACnetRangeFlags, shall convey several flags that describe characteristics of the
response data:

{FIRSTITEM, LASTITEM, MOREITEMS}

The FIRSTITEM flag indicates whether this response includes the first list or array element (in the case of
positional indexing), or the oldest timestamped item (in the case of time indexing).

The LASTITEM flag indicates whether this response includes the last list or array element (in the case of
positional indexing), or the newest timestamped item (in the case of time indexing)

The MOREITEMS flag indicates whether more items matched the request but were not transmittable
within the PDU.

15.8.1.2.5 Item Count

This parameter, of type Unsigned, represents the number of items that were returned.

ANSI/ASHRAE Addendum 135b-2000 39

15.8.1.2.6 Item Data

This parameter consists of a list of the requested data.

15.8.1.3 Result(-)

The ’Result(-)’ parameter shall indicate that the service request has failed. The reason for the failure shall
be specified by the ’Error Type’ parameter.

15.8.1.3.1 Error Type

This parameter consists of two component parameters: (1) the ’Error Class’ and (2) the ’Error Code’. See
Clause 18.

15.8.2 Service Procedure

The responding BACnet-user shall first verify the validity of the ’Object Identifier’, ’Property Identifier’ and
"Property Array Index’ parameters and return a ’Result(-)’ response with the appropriate error class and
code if the object or property is unknown, if the referenced data is not a list or array, or if it is currently
inaccessible for another reason.

If the ’Range’ parameter is not present, then the responding BACnet-user shall read and attempt to return all
of the available items in the list or array.

If the ’Range’ parameter is present and specifies the ’By Position’ parameters, then the responding BACnet-
user shall read and attempt to return all of the items specified. The items specified include the item at the
index specified by ’Reference Index’ plus up to ’Count’-1 items following if ’Count’ is positive, or up to
-1-’Count’ items preceding if ’Count’ is negative. Array index 0 shall not be returned by this service; lists
shall begin with index 1.

If the ’Range’ parameter is present and specifies the ’By Time’ parameters, then the responding BACnet-
user shall read and attempt to return all of the items specified. If ’By Time’ parameters are specified and the
property values are not timestamped an error shall be returned. The items specified include the first item
with a timestamp newer than ’Reference Time’ plus up to ’Count’-1 items following if ’Count’ is positive, or
up to -1-’Count’ items preceding if ’Count’ is negative. Array index 0 shall not be returned by this service;
lists shall begin with index 1.

If the ’Range’ parameter is present and specifies the ’Time Range’ parameters, then the responding BACnet-
user shall read and attempt to return all of the items specified. If ’Time Range’ parameters are specified and
the property values are not timestamped an error shall be returned. The items specified include all items
with a timestamp newer than ’Beginning Time’ and less than or equal to ’Ending Time’. If any field of the
’Beginning Time’ parameter contains a wildcard value, then all times shall be considered newer than
’Beginning Time’. If any fields of the ’Ending Time’ parameter contains a wildcard value then all times
shall be considered older than ’Ending Time’.

To avoid missing items when using chained time-based reads, items with a timestamp equal to the current
time of the device shall not be included in the response. Items with the same timestamp shall be returned
atomically . If items are read that match the request parameters but cannot be returned in the response, the
’Result Flags’ parameter shall contain the MOREITEMS flag set to TRUE; otherwise it shall be FALSE.
Remaining items may be obtained with subsequent requests specifying appropriately chosen parameters.

The returned response shall convey the number of items read and returned using the ’Item Count’
parameter. The actual items shall be returned in the ’Item Data’ parameter. If the returned response includes
the first positional index and a ’By Position’ request had been made, or the oldest timestamped item and a

40 ANSI/ASHRAE Addendum 135b-2000

’By Time’ or ’Time Range’ request had been made, then the ’Result Flags’ parameter shall contain the
FIRSTITEM flag set to TRUE; otherwise it shall be FALSE.

If the returned response includes the last positional index and a ’By Position’ request had been made, or the
newest timestamped item and a ’By Time’ or ’Time Range’ request had been made, then the ’Result Flags’
shall contain the LASTITEM flag set to TRUE; otherwise it shall be FALSE.

[Add new definition in 3, p. 5, and renumber 3.2.55 and 3.2.56 to 3.2.56 and 3.2.57]

3.2.55 timestamp: The date and time recorded for and accompanying the record of an event or
operation.

[Add to 21, p. 350, BACnetConfirmedServiceChoice (under Object Access Services)]

readRange (26),

[Add to 21, p. 351, BACnet-Confirmed-Service-Request (under Object Access Services)]

ReadRange [26] ReadRange-Request,

[Add to 21, p. 352, BACnet-Confirmed-Service-ACK (under Object Access Services)]

ReadRange [26] ReadRange-ACK,

[Add to 21, pp. 355-357 under Confirmed Object Access Services]

ReadRange-Request ::= SEQUENCE {
objectIdentifier [0] BACnetObjectIdentifier,
propertyIdentifier [1] BACnetPropertyIdentifier,
propertyArrayIndex [2] Unsigned OPTIONAL -- used only with array datatype
range CHOICE {

byPosition [3] SEQUENCE {
referenceIndex Unsigned,
count INTEGER
},

byTime [4] SEQUENCE {
referenceTime BACnetDateTime,
count INTEGER
},

timeRange [5] SEQUENCE {
beginningTime BACnetDateTime,
endingTime BACnetDateTime
}

} OPTIONAL
}

ReadRange-ACK ::= SEQUENCE {
objectIdentifier [0] BACnetObjectIdentifier,
propertyIdentifier [1] BACnetPropertyIdentifier,
propertyArrayIndex [2] Unsigned OPTIONAL, -- used only with array datatype
resultFlags [3] BACnetResultFlags,
itemCount [4] Unsigned,
itemData [5] SEQUENCE OF ABSTRACT-SYNTAX.&TYPE
}

ANSI/ASHRAE Addendum 135b-2000 41

[Add to 21, p. 361, BACnet-Error (under Object Access Services)]

ReadRange [26] Error,

[Add to 21, p. 379, in BACnet Base Types]

BACnetResultFlags ::= BIT STRING {
firstitem (0),
lastitem (1),
moreitems (2)

}

[Add to Annex E, p. 447, and renumber E.3.8 and E.3.9 to E.3.9 and E.3.10, respectively]

E.3.8 Example of the ReadRange Service

Assumed objects: Object_Identifier Object_Name Object_Type
(Trend Log, Instance 1) ROOM3TEMP TREND_LOG

We wish to look at all the records for the last five minutes within a Trend Log’s Log Buffer.

Service = ReadRange
 ’ObjectIdentifier’ = (Trend Log, Instance 1)
 ’PropertyIdentifier’ = Log_Buffer
 ’Range’

’Time Range’
’Beginning Time’ = (23-MAR-1998, 19:52:34.0)
’Ending Time’ = (23-MAR-1998, 19:57:34.0)

A typical result might be:

’Result Flags’ = (TRUE, TRUE, FALSE)
’Item Count’ = 2
’Item Data’ = (((23-MAR-1998, 19:54:27.0), 18.0, (FALSE,FALSE,FALSE,FALSE)),

((23-MAR-1998, 19:56:27.0), 18.1, (FALSE,FALSE,FALSE,FALSE)))

[Add to Annex F, p. 475, and renumber F.3.8 and F.3.9 to F.3.9 and F.3.10, respectively]

F.3.8 Encoding for Example E.3.8 - ReadRange Service

Example 1: Reading records from a Trend Log object.

X’02’ PDU Type = 0 (BACnet-Confirmed-Request-PDU, SEG=0, MOR=0, SA=1)
X’02’ Maximum APDU Size Accepted = 206 octets
X’01’ Invoke ID = 1
X’1A’ Service Choice = (n), (ReadRange-Request)

X’0C’ SD Context Tag 0 (Object Identifier, L=4)
X’04800001’ Trend Log, Instance Number = 1
X’19’ SD Context Tag 1 (Property Identifier, L=1)
X’83’ 131 (LOG_BUFFER)
X’5E’ PD Opening Tag 5 (Time Range)

X’A4’ Application Tag 10 (Date, L=4)
X’620317FF’ March 23, 1998 (Day Of Week Unspecified)
X’B4’ Application Tag 11, (Time, L=4)

42 ANSI/ASHRAE Addendum 135b-2000

X’13342200’ 19:52:34.0
X’A4’ Application Tag 10 (Date, L=4)
X’620317FF’ March 23, 1998 (Day Of Week Unspecified)
X’B4’ Application Tag 11, (Time, L=4)
X’13392200’ 19:57:34.0

X’5F’ PD Closing Tag 5 (Time Range)

Assuming the service procedure executes correctly, a complex acknowledgement is returned containing the
requested data:

X’30’ PDU Type = 3 (BACnet-ComplexACK-PDU, SEG=0, MOR=0)
X’01’ Invoke ID=01
X’1A’ Service ACK Choice = (n), (ReadRange-ACK)

X’0C’ SD Context Tag 0 (Object Identifier, L=4)
X’04800001’ Trend Log, Instance Number = 1
X’19’ SD Context Tag 1 (Property Identifier, L=1)
X’83’ 131 (LOG_BUFFER)
X’3A’ SD Context Tag 3 (Result Flags, L=2)
X’05C0’ 1,1,0 (TRUE, TRUE, FALSE)
X’49’ SD Context Tag 4 (Item Count, L=1)
X’02’ 2
X’5E’ PD Opening Tag 5 (Item Data)

X’0E’ PD Opening Tag 0 (Timestamp)
X’A4’ Application Tag 10 (Date, L=4)
X’62031701’ Monday, March 23, 1998
X’B4’ Application Tag 11, (Time, L=4)
X’13362B00’ 19:54:27.0

X’0F’ PD Closing Tag 0 (Timestamp)
X’1E’ PD Opening Tag 1 (Log Datum)

X’2C’ SD Context Tag 2 (REAL, L=4)
X’41900000’ 18.0

X’1F’ PD Closing Tag 1 (Log Datum)
X’2A’ SD Context Tag 2 (Status Flags, L=2)
X’0400’ 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)
X’0E’ PD Opening Tag 0 (Timestamp)

X’A4’ Application Tag 10 (Date, L=4)
X’62031701’ Monday, March 23, 1998
X’B4’ Application Tag 11, (Time, L=4)
X’13382B00’ 19:56:27.0

X’0F’ PD Closing Tag 0 (Timestamp)
X’1E’ PD Opening Tag 1 (Log Datum)

X’2C’ SD Context Tag 2 (REAL, L=4)
X’4190CCCD’ 18.1

X’1F’ PD Closing Tag 1 (Log Datum)
X’2A’ SD Context Tag 2 (Status Flags, L=2)
X’0400’ 0,0,0,0 (FALSE, FALSE, FALSE, FALSE)

X’5F’ PD Closing Tag 4 (Item Data)

ANSI/ASHRAE Addendum 135b-2000 43

135b-14. A new UTCTimeSynchronization service is introduced and related
changes are made to properties in the Device object type.

These changes mandate the use of Universal Time Coordinated (UTC) in a new UTCTimeSynchronization service
and related properties of the Device object type. This is accomplished by having the UTCTimeSynchronization
service to refer to UTC rather than "current time" and having the service procedure indicate the manner in which the
’Time’ parameter is used to calculate the correct local time. Also, the Device object properties ’Local_Time’ and
’Local_Date’, shall become required if a device supports the execution of the TimeSynchronization or
UTCTimeSynchronization services, and in addition the Device object properties ’UTC_Offset’ and
’Daylight_Savings_Status’ shall become required if a device supports execution of the UTCTimeSynchronization
service. The following clauses represent those changes:

16.X UTCTimeSynchronization Service

The UTCTimeSynchronization service is used by a requesting BACnet-user to notify one or more remote devices of
the correct Universal Time Coordinated (UTC). This service may be broadcast, multicast, or addressed to a single
recipient. Its purpose is to notify recipients of the correct UTC so that devices may synchronize their internal clocks
with one another.

16.X.1 Structure

The structure of the UTCTimeSynchronization service primitive is shown in Table 16-X. The terminology and
symbology used in this table are explained in 5.6.

Table 16-X. Structure of UTCTimeSynchronization Service Primitive

Parameter Name Req Ind
Argument M M(=)

Time M M(=)

16.X.1.1 Argument

The ’Argument’ parameter shall convey the parameters for the UTCTimeSynchronization service request.

16.X.1.1.1 Time

This parameter, of type BACnetDateTime, shall convey the UTC date and time.

16.X.2 Service Procedure

Since this is an unconfirmed service, no response primitives are expected. A device receiving a
UTCTimeSynchronization service indication shall update its local representation of time and date by subtracting the
value of the ’UTC_Offset’ property of the Device object from the ’Time’ parameter and taking the
’Daylight_Savings_Status’ property of the Device object into account as appropriate to the locality. This change shall
be reflected in the Local_Time and Local_Date properties of the Device object.

No restrictions on the use of this service exist when it is invoked at the request of an operator. Otherwise, the initiation
of this service by a device is controlled by the value of the Time_Synchronization_Recipient property in the Device

44 ANSI/ASHRAE Addendum 135b-2000

object. When the Time_Synchronization_Recipient list is of length zero, a device may not automatically send a
TimeSynchronization request. When Time_Synchronization_Recipient list is of length one or more, a device may
automatically send a TimeSynchronization request but only to the devices or addresses contained in the
Time_Synchronization_Recipient list.

[Change Table 12-11, p. 176]

Property Identifier Property Datatype Conformance Code
Local_Time Time O2,3

Local_Date Date O2,3

UTC_Offset INTEGER O3

Daylight_Savings_Status BOOLEAN O3

2 If the device supports the execution of the TimeSynchronization service, then these properties shall be
present.

3 If the device supports the execution of the UTCTimeSynchronization service, then these properties shall
be present.

[Change the superscript notes for Table 12-11. They shall be renumbered such that the previous superscripts 2..4
become 4..6 so that the newly added superscripts 2 and 3 remain vertically ordinal.]

[Change 12.9.23, p. 179]

12.9.23 UTC_Offset

The UTC_Offset property, of type INTEGER, shall indicate the number of minutes (-780 to +780) offset
between local standard time and Universal Time Coordinated (UTC). The time zones to the west of the
zero degree meridian shall be positive values, and those to the east shall be negative values. The value of
the UTC_Offset property is subtracted from the UTC received in UTCTimeSynchronization service
requests to calculate the correct local standard time.

[Change 21, pp. 359-360]

BACnetUnconfirmedServiceChoice ::= ENUMERATED {
i-Am (0),
i-Have (1),
unconfirmedCOVNotification (2),
unconfirmedEventNotification (3),
unconfirmedPrivateTransfer (4),
unconfirmedTextMessage (5),
timeSynchronization (6),
who-Has (7),
who-Is (8),
utcTimeSynchronization (9)
}

BACnet-Unconfirmed-Service-Request ::= CHOICE {
i-Am [0] I-Am-Request,
i-Have [1] I-Have-Request,
unconfirmedCOVNotification [2] UnconfirmedCOVNotification-Request,
unconfirmedEventNotification [3] UnconfirmedEventNotification-Request,
unconfirmedPrivateTransfer [4] UnconfirmedPrivateTransfer-Request,
unconfirmedTextMessage [5] UnconfirmedTextMessage-Request,
timeSynchronization [6] TimeSynchronization-Request,
who-Has [7] Who-Has-Request,

ANSI/ASHRAE Addendum 135b-2000 45

who-Is [8] Who-Is-Request,
utcTimeSynchronization [9] UTCTimeSynchronization-Request
}

UTCTimeSynchronization-Request ::= SEQUENCE {
time BACnetDateTime
}

[Change 21, pp. 379-380]

BACnetServicesSupported ::= BIT STRING {
…
timeSynchronization (32),
who-Has (33),
who-Is (34),
readRange (35),
utcTimeSynchronization (36)
}

46 ANSI/ASHRAE Addendum 135b-2000

135b-15. Add a Trend Log object type.

One of the tasks deferred by SPC 135P was to define the format of trend logs. The solution proposed here is to
define a new object type, the Trend Log, that represents the network-visible attributes of such a log.

In the proposed clause below, the value of ’X’ in the clause numbering will be replaced at the time of publication
with a value placing it in the proper sequence in Clause 12, dependent on the potential addition of other object types.

12.X Trend Log Object Type

A Trend Log object monitors a property of a referenced object and, when predefined conditions are met,
saves ("logs") the value of the property and a timestamp in an internal buffer for subsequent retrieval. The
data may be logged periodically or upon a change of value. Errors that prevent the acquisition of the data,
as well as changes in the status or operation of the logging process itself, are also recorded. Each
timestamped buffer entry is called a trend log "record."

The referenced object may reside in the same device as the Trend Log object or in an external device. The
referenced property’s value may be recorded upon COV subscription or periodic poll. Where status flags
are available (such as when the COVNotification or ReadPropertyMultiple services are used), they are also
acquired and saved with the data.

Each Trend Log object maintains an internal, optionally fixed-size, buffer. This buffer fills or grows as log
records are added. If the buffer becomes full, the least recent record is overwritten when a new record is
added, or collection may be set to stop. Trend Log records are transferred as BACnetLogRecords using the
ReadRange service. The buffer may be cleared by writing a zero to the Record_Count property.

Several datatypes are defined for storage in the log records. The ability to store ANY datatypes is optional.
Data stored in the log buffer may be optionally restricted in size to 32 bits, as in the case of bit strings, to
facilitate implementation in devices with strict storage requirements.

Logging may be enabled and disabled through the Log_Enable property and at dates and times specified by
the Start_Time and Stop_Time properties. Trend Log enabling and disabling is recorded in the log buffer.

Event reporting (notification) may be provided to facilitate automatic fetching of log records by processes
on other devices such as fileservers. Support is provided for algorithmic reporting; optionally, intrinsic
reporting may be provided.

In intrinsic reporting, when the number of records specified by the Notification_Threshold property have
been collected since the previous notification (or startup), a new notification is sent to all subscribed
devices. BUFFER_READY algorithmic reporting is described in Clause 13.3.7.

In response to a notification, subscribers fetch the new records with a ReadRange service request using the
Current_Notify_Time of the preceding notification as the ’Beginning Date’ parameter and the
Current_Notify_Time of the current notification as the ’Ending Date’ parameter.

A missed notification may be detected by a subscriber if the Current_Notify_Time it received in its
previous notification is older than the Previous_Notify_Time parameter of the current notification. If the
ReadRange-ACK response to the ReadRange request issued under these conditions has its ’firstitem’ flag
set to TRUE, Trend Log records have probably been missed by this subscriber.

The acquisition of log records by remote devices has no effect upon the state of the Trend Log object itself.
This allows completely independent, but properly sequential, access to its log records by all remote
devices. Any remote device can independently update its records at any time.

ANSI/ASHRAE Addendum 135b-2000 47

Table 12-23. Properties of the Trend Log Object Type

Property Identifier Property Datatype Conformance
Code

Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString O
Log_Enable BOOLEAN W
Start_Time BACnetDateTime O1,2

Stop_Time BACnetDateTime O1,2

Log_DeviceObjectProperty BACnetDeviceObjectPropertyReference O1

Log_Interval Unsigned O1,2

COV_Resubscription_Interval Unsigned O
Client_COV_Increment BACnetClientCOV O
Stop_When_Full BOOLEAN R
Buffer_Size Unsigned32 R
Log_Buffer List of BACnetLogRecord R
Record_Count Unsigned32 W
Total_Record_Count Unsigned32 R
Notification_Threshold Unsigned32 O3

Records_Since_Notification Unsigned32 O3

Previous_Notify_Time BACnetDateTime O3

Current_Notify_Time BACnetDateTime O3

Event_State BACnetEventState R
Notification_Class Unsigned O3

Event_Enable BACnetEventTransitionBits O3

Acked_Transitions BACnetEventTransitionBits O3

Notify_Type BACnetNotifyType O3

Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp O3

1 These properties are required to be present if the monitored property is a BACnet property.
2 If present, these properties are required to be writable.
3 These properties are required to be present if the object supports intrinsic reporting.

12.X.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall
be unique within the BACnet Device that maintains it.

12.19.2 Object_Name

This property, of type CharacterString, shall represent a name for the Object that is unique within the
BACnet Device that maintains it. The minimum length of the string shall be one character. The set of
characters used in the Object_Name shall be restricted to printable characters.

12.X.3. Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The
value of this property shall be TREND_LOG.

48 ANSI/ASHRAE Addendum 135b-2000

12.X.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.X.5 Log_Enable

This property, of type BOOLEAN, indicates and controls whether (TRUE) or not (FALSE) logging is
enabled. A value of FALSE overrides the time interval defined by Start_Time and Stop_Time. If logging is
otherwise enabled by the Start_Time and Stop_Time properties, changes to the value of the Log_Enable
property shall be recorded in the log. When the device begins operation the value TRUE shall be recorded
in the log.

12.X.6 Start_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be
enabled by this property. If any of the fields of the BACnetDateTime contain "wildcard" values, then the
conditions for logging to be enabled by Start_Time shall be ignored. If Start_Time specifies a date and time
after Stop_Time then logging shall be disabled. This property must be writable if present.

12.X.7 Stop_Time

This property, of type BACnetDateTime, specifies the date and time at or after which logging shall be
disabled by this property. If any of the fields of the BACnetDateTime contain "wildcard" values, then the
conditions for logging to be enabled by Stop_Time shall be ignored. If Stop_Time specifies a date and time
earlier than Start_Time then logging shall be disabled. This property must be writable if present.

12.X.8 Log_DeviceObjectProperty

This property, of type BACnetDeviceObjectPropertyReference, specifies the Device Identifier, Object
Identifier and Property Identifier of the property to be trend logged.

If this property is writable, it may be restricted to reference only objects inside the device containing the
Trend Log object. If the property is restricted to referencing objects within the containing device, an
attempt to write a reference to an object outside the containing device into this property shall cause a
Result(-) to be returned.

12.X.9 Log_Interval

This property, of type Unsigned, specifies the periodic interval in hundredths of seconds for which the
referenced property is to be logged. If this property has the value zero then the Trend Log shall issue COV
subscriptions for the referenced property. The value of this property must be non-zero if
COV_Resubscription_Interval is not present. This property must be writable if present.

12.X.10 COV_Resubscription_Interval

If the Trend Log is acquiring data from a remote device by COV subscription this property, of type
Unsigned, specifies the number of seconds between COV resubscriptions, if COV subscription is in effect.
SubscribeCOV requests shall specify twice this lifetime for the subscription and shall specify the issuance
of confirmed notifications. If COV subscriptions are in effect, the first COV subscription is issued when
the Trend Log object begins operation or when Log_Enable becomes TRUE. If present, the value of this
property must be non-zero. If this property is not present then COV subscription shall not be attempted.

12.9.11 Client_COV_Increment

If the Trend Log is acquiring COV data this property, of type BACnetClientCOV, specifies the increment
to be used in determining that a change of value has occurred. If the referenced object and property

ANSI/ASHRAE Addendum 135b-2000 49

supports COV reporting per 13.1, this property may have the value NULL; in this case change of value is
determined by the criteria of 13.1.

12.X.12 Stop_When_Full

This property, of type BOOLEAN, specifies whether (TRUE) or not (FALSE) logging should cease when
the buffer is full. When logging ceases, Log_Enable shall be set FALSE.

12.X.13 Buffer_Size

This property, of type Unsigned32, shall specify the maximum number of records the buffer may hold. If
writable, it may not be written when Log_Enable is TRUE. The disposition of existing records when
Buffer_Size is written is a local matter.

12.X.14 Log Buffer

This property is a list of up to Buffer_Size timestamped records of datatype BACnetLogRecord, each of
which conveys a recorded data value, an error related to data-collection, or status changes in the Trend Log
object. Each record has data fields as follows:

Timestamp The date and time, in UTC, when the record was collected.

LogDatum The data value read from the monitored object and property, an error encountered in an
attempt to read a value, or a change in status or operation of the Trend Log object itself.

StatusFlags The StatusFlags property of the monitored object, if present and available atomically
associated with the LogDatum data value. If the StatusFlags property is not present or not
available atomically associated with the data value, this item shall not be included in the log
record.

The choices available for the LogDatum are listed below:

log-status This choice represents a change in the status or operation of the Trend Log object.
Whenever one of the events represented by the flags listed below occurs, except as
noted, a record shall be appended to the buffer.

log-disabled This flag is set whenever the Trend Log object is disabled, such as
when Log_Enable is set to FALSE. Whenever the Trend Log object
begins operation, this flag shall be presumed to have changed from
TRUE to FALSE and a log entry shall be made.

buffer-purged This flag shall be set to TRUE whenever the buffer is deleted by a write
of the value zero to the Record_Count property. After this value is
recorded in the buffer, the subsequent immediate change to FALSE
shall not be recorded.

boolean-value
real-value
enum-value
unsigned-value
signed-value
bitstring-value
null-value

These choices represent data values read from the monitored object and property.

50 ANSI/ASHRAE Addendum 135b-2000

failure This choice represents an error encountered in an attempt to read a data value from the
monitored object. If the error is conveyed by an error response from a remote device
the Error Class and Error Code in the response shall be recorded.

time-change This choice represents a change in the clock setting in the device, it records the number
of seconds by which the clock changed. If the number is not known, such as when the
clock is initialized for the first time, the value recorded shall be zero.

any-value This choice represents data values read from the monitored object and property.

The buffer is not network accessible except through the use of the ReadRange service with implicit
reference to the Trend Log.

12.X.15 Record_Count

This property, of type Unsigned32, shall represent the number of records currently resident in the log
buffer. A write of the value zero to this property shall cause all records in the log buffer to be deleted and
Records_Since_Notification to be reset to zero. Upon completion, this event shall be reported in the log as
the initial entry.

12.X.16 Total_Record_Count

This property, of type Unsigned32, shall represent the total number of records collected by the Trend Log
object since creation. When the value of Total_Record_Count reaches its maximum possible value of 232 –
1, the next value it takes shall be zero. Once this value has wrapped to zero, its semantic value (the total
number of records collected) has been lost but its use in generating notifications remains.

12.X.17 Notification_Threshold

This property, of type Unsigned32, shall specify the value of Records_Since_Notification at which
notification occurs. This property is required if intrinsic reporting is supported by this object.

12.X.18 Records_Since_Notification

This property, of type Unsigned32, represents the number of records collected since the previous
notification, or beginning of logging if no previous notification has occurred. This property is required if
intrinsic reporting is supported by this object.

12.X.19 Previous_Notify_Time

This property, of type BACnetDateTime, represents the value that the property Current_Notify_Time had
at the time of the previous notification. At the beginning of a notification operation this property is set to
the value of Current_Notify_Time, then the property Current_Notify_Time is updated. If no previous
notification has occurred this property shall contain all wildcard values. This property is required if
intrinsic reporting is supported by this object.

12.X.20 Current_Notify_Time

This property, of type BACnetDateTime, represents the timestamp associated with the most recently
collected record whose collection triggered a notification. If no notification has occurred since logging
began this property shall contain all wildcard values. This property is required if intrinsic reporting is
supported by this object.

ANSI/ASHRAE Addendum 135b-2000 51

12.X.21 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if
this object has an active event state associated with it. If the object supports intrinsic reporting, then the
Event_State property shall indicate the event state of the object. If the object does not support intrinsic
reporting, then the value of this property shall be NORMAL. The allowed states are NORMAL, and
FAULT.

12.X.22 Notification_Class

This property, of type Unsigned, shall specify the notification class to be used when handling and
generating event notifications for this object. The Notification_Class property implicitly refers to a
Notification Class object that has a Notification_Class property with the same value. This property is
required if intrinsic reporting is supported by this object.

12.X.23 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and
disable reporting of TO_FAULT and TO_NORMAL events. In the context of Trend Log objects, the value
of the Records_Since_Notification property becoming equal to or greater than the value of the
Notification_Threshold property shall cause a NORMAL-NORMAL transition. The failure of an attempted
COV subscription shall cause a TO_FAULT state transition. The TO_NORMAL transition must be
enabled when intrinsic reporting is to be used; this shall be set by default. This property is required if
intrinsic reporting is supported by this object.

12.X.24 Acked_Transitions

This property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the
receipt of acknowledgements for TO-OFFNORMAL, TO-FAULT and TO-NORMAL events. These flags
shall be cleared upon the occurrence of the corresponding event and set under any of these conditions:

(a) upon receipt of the corresponding acknowledgement;
(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable

property (meaning event notifications will not be generated for this condition and thus no
acknowledgement is expected);

(c) upon the occurrence of the event if the corresponding flag is set in the Event_Enable
property and the corresponding flag in the Ack_Required property of the Notification
Class object implicitly referenced by the Notification_Class property of this object is not
set (meaning no acknowledgement is expected).

12.X.25 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object
should be Events or Alarms. This property is required if intrinsic reporting is supported by this object.

12.X.26 Event_Time_Stamps

This optional property, of type BACnetARRAY [3] of BACnetTimeStamp, shall convey the times of the
last event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time
stamps of type Time or Date shall have ’FF’ in each octet and Sequence number time stamps shall have the
value 0 if no event notification of that type has been generated since the object was created. This property
is required if intrinsic reporting is supported by this object.

52 ANSI/ASHRAE Addendum 135b-2000

[Change 12.10.5, EventType, p. 182]

"… This parameter is an enumerated type that may have any of the following values:

{CHANGE_OF_BITSTRING, CHANGE_OF_STATE, CHANGE_OF_VALUE,
COMMAND_FAILURE, FLOATING_LIMIT, OUT_OF_RANGE, BUFFER_READY}

"

[Add new Event_Type to Table 12-13, p. 182]

Event_Type Event_State Event_Parameters
...
BUFFER_READY NORMAL Notification_Threshold
... ... …

[Add entry in 12.10.7, Event_Parameters, p. 183]

Notification_Threshold This parameter, of type Unsigned, applies to the BUFFER_READY
algorithm. It specifies the value of Records_Since_Notification at which
notification occurs.

 [Add entry to Table 13.2, p. 220]

Object Type Criteria Event Type
...
Trend Log If Event_State is NORMAL state and

Records_Since_Notification is equal to
Notification_Threshold

BUFFER_READY

... ... …

[Add entry to Table 13.3, p. 221]

Object Event Type Notification Parameters Referenced Object's Properties
...
Trend Log BUFFER_READY Buffer_Device

Buffer_Object
Previous_Notification
Current_Notification

Object_Identifier
Object_Identifier
Previous_Notify_Time
Current_Notify_Time

...

[Add entry to Table 13.4, p. 221]

Event Type Notification Parameters Description
...
BUFFER_READY Buffer_Device

Buffer_Object
Previous_Notification
Current_Notification

Object_Identifier of the device containing the buffer.
Object_Identifier of the object containing the buffer.
Current_Notify_Time of the previous notification sent.
Current_Notify_Time of the current notification sent.

...

ANSI/ASHRAE Addendum 135b-2000 53

[Change 13.3, p. 222]

Six Seven event algorithms are specified in this standard because of their widespread occurrence in
building automation and control systems. They are:
…
(g) BUFFER_READY

[Add new 13.3.7]

13.3.7 BUFFER_READY Algorithm

A BUFFER_READY occurs when the number of records specified by Notification_Threshold have
been entered into the log since the start of operation or the previous notification, whichever is most
recent. The number of records collected is determined by the formula Total_Record_Count –
Previous_Notification_Count, if Total_Record_Count is greater than or equal to
Previous_Notification_Count, otherwise it is determined by the formula Total_Record_Count –
Previous_Notification_Count + 232. Upon completion of the notification, Previous_Record_Count is set
to the value of Total_Record_Count that caused the notifications to occur.

Previous_Notification_Count is an internal variable, of type Unsigned32, which maintains the value of
Total_Record_Count at which the most recent notification took place. Upon initialization it shall be set
to the value of the Total_Record_Count property in the object referenced by
Object_Property_Reference.

For the purposes of event notification, the BUFFER_READY event generates TO-NORMAL
transitions.

 [Add to 21, the additional BACnet Base Types]

BACnetClientCOV ::= CHOICE {
real-increment REAL,
default-increment NULL
}

BACnetLogRecord ::= SEQUENCE {
timestamp [0] BACnetDateTime,
logDatum [1] CHOICE {

log-status [0] BACnetLogStatus,
boolean-value [1] BOOLEAN,
real-value [2] REAL,
enum-value [3] ENUMERATED, -- Optionally limited to 32 bits
unsigned-value [4] Unsigned, -- Optionally limited to 32 bits
signed-value [5] INTEGER, -- Optionally limited to 32 bits
bitstring-value [6] BIT STRING, -- Optionally limited to 32 bits
null-value [7] NULL,
failure [8] Error,
time-change [9] REAL,
any-value [10] ABSTRACT-SYNTAX.&Type -- Optional
}

statusFlags [2] BACnetStatusFlags OPTIONAL
}

54 ANSI/ASHRAE Addendum 135b-2000

BACnetLogStatus ::= BIT STRING {
log-disabled (0),
buffer-purged (1)
}

[Add to 21, BACnetEventParameter, p. 371]

buffer-ready [7] SEQUENCE {
notification-threshold [0] Unsigned,
previous-notification-count [1] Unsigned32
},

[Add to 21, BACnetNotificationParameters, p. 373]

buffer-ready [7] SEQUENCE {
buffer-device [0] BACnetObjectIdentifier,
buffer-object [1] BACnetObjectIdentifier,
previous-notification [2] BACnetDateTime,
current-notification [3] BACnetDateTime
},

[Add to 21, BACnetEventType, p. 372]

buffer-ready (7),

[Add to 21, BACnetObjectType, p. 374]

trend-log (20),

[Add to 21, BACnetObjectTypesSupported p. 374]

trend-log (20),

[Add to 21, BACnetPropertyIdentifier (distributed alphabetically), p. 378]

buffer-size (126),
client-cov-increment (127),
cov-resubscription-interval (128),
current-notify-time (129),
log-buffer (131),
log-device-object-property (132),
log-enable (133),
log-interval (134),
notification-threshold (137),
previous-notify-time (138),
records-since-notification (140),
record-count (141),
start-time (142),
stop-time (143),
stop-when-full (144),
total-record-count (145),

ANSI/ASHRAE Addendum 135b-2000 55

[Add comments to same production]

-- see buffer-size (126),
-- see client-cov-increment (127),
-- see cov-resubscription-interval (128),
-- see current-notify-time (129),
-- see log-buffer (131),
-- see log-device-object-property (132),
-- see log-enable (133),
-- see log-interval (134),
-- see notification-threshold (137),
-- see previous-notify-time (138),
-- see records-since-notification (140),
-- see record-count (141),
-- see start-time (142),
-- see stop-time (143),
-- see stop-when-full (144),
-- see total-record-count (145),
…

[Add new Error Code to 18.3, p. 314, by inserting in alphabetical order and renumbering other subclauses]

NOT_COV_PROPERTY – The property is not conveyed by COV notification.

[Add new Error Code to 18.6, p. 315, by inserting in alphabetical order and renumbering other subclauses]

COV_SUBSCRIPTION_FAILED – COV Subscription failed for some reason.

[In 21, p. 364, add new error-codes]

cov-subscription-failed (43),
not-cov-property (44),

[Add to Annex C]

TREND-LOG :: = SEQUENCE {
object-identifier [75] BACnetObjectIdentifier,
object-name [77] CharacterString,
object-type [79] BACnetObjectType,
description [28] CharacterString OPTIONAL,
log-enable [133] BOOLEAN,
start-time [142] BACnetDateTime OPTIONAL,
stop-time [143] BACnetDateTime OPTIONAL,
log-device-object-property [132] BACnetDeviceObjectPropertyReference OPTIONAL,
log-interval [134] Unsigned OPTIONAL,
cov-resubscription-interval [128] Unsigned OPTIONAL,
client-cov-increment [127] BACnetClientCOV OPTIONAL,
stop-when-full [144] BOOLEAN,
buffer-size [126] Unsigned,
log-buffer [131] SEQUENCE OF BACnetLogRecord,
record-count [141] Unsigned,
total-record-count [145] Unsigned32,
notification-threshold [137] Unsigned OPTIONAL,
records-since-notification [140] Unsigned OPTIONAL,
previous-notify-time [138] BACnetDateTime OPTIONAL,
current-notify-time [129] BACnetDateTime OPTIONAL,

56 ANSI/ASHRAE Addendum 135b-2000

event-state [36] BACnetEventState,
notification-class [17] Unsigned OPTIONAL,
event-enable [35] BACnetEventTransitionBits OPTIONAL,
acked-transitions [0] BACnetEventTransitionBits OPTIONAL,
notify-type [72] BACnetNotifyType OPTIONAL,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp OPTIONAL

--accessed as a BACnetARRAY
}

[Add to Annex D, ’X’ to be determined]

D.X Example of a Trend Log Object

The following is an example of a Trend Log object that periodically logs data from an object in a remote
device and which performs buffer-ready notification via intrinsic reporting.

Property: Object_Identifier = (Trend Log, Instance 1)
Property: Object_Name = "Room 3Log"
Property: Object_Type = TREND_LOG
Property: Description = "Room 3 Temperature"
Property: Log_Enable = TRUE
Property: Log_DeviceObjectProperty = ((Device, Instance 100), Analog Input, Instance 3,

Present_Value)
Property: Log_Interval = 6,000
Property: Stop_When_Full = FALSE
Property: Buffer_Size = 250
Property: Log_Buffer = (((23-MAR-1998,12:32:33.0), 72.0,(FALSE,FALSE,FALSE,FALSE)),

(23-MAR-1998,12:34:32.0),72.1, (FALSE,FALSE,FALSE,FALSE)),…)
Property: Record_Count = 250
Property: Total_Record_Count = 131040
Property: Notification_Threshold = 83
Property: Records_Since_Notification = 30
Property: Previous_Notify_Time = (23-MAR-1998, 17:06:32.0)
Property: Current_Notify_Time = (23-MAR-1998, 19:52:34.0)
Property: Event_State = NORMAL
Property: Notification_Class = 1
Property: Event_Enable = {FALSE, TRUE, TRUE}
Property: Acked_Transitions = {TRUE, TRUE, TRUE}
Property: Notify_Type = EVENT
Property: Event_Time_Stamps= ((23-MAR-95, 18:50:21.2),

(*-*-*,*:*:*.*),
(23-MAR-95, 19:01:34.0))

ANSI/ASHRAE Addendum 135b-2000 57

135b-16. The UnconfirmedCOVNotification service is extended to allow
notifications without prior subscription as a means of distributing globally
important data to a potentially large number of recipients.

[Change 13.10, p. 243]

13.10.1.2 Subscriber Process Identifier

This parameter, of type Unsigned, shall convey a numeric "handle" meaningful to the subscriber. This
handle shall be used to match future re-subscriptions and cancellations from the subscriber with the COV
context that exists within the COV-server device and with Confirmed or UnconfirmedCOVNotifications to
identify the process within the COV-client that should receive them. The value zero is reserved for
unsubscribed COV notifications as described in 13.11.

[Change 13.11, p. 246]

13.11 UnconfirmedCOVNotification Service

The UnconfirmedCOVNotification Service is used by a COV-server to issue notifications of changes that
may have occurred to the properties of a particular object to COV-clients who have used the
SubscribeCOV service to request such notification. is used to notify subscribers about changes that may
have occurred to the properties of a particular object, or to distribute object properties of wide interest
(such as outside air conditions) to many devices simultaneously without a subscription. Subscriptions for
COV notifications are made using the SubscribeCOV service (see 13.10). For unsubscribed notifications,
the algorithm for determining when to issue this service is a local matter and may be based on a change of
value, periodic updating, or some other criteria.

13.11.1.2 Subscriber Process Identifier

This parameter, of type Unsigned, shall convey a numeric "handle" meaningful to the subscriber. This
handle shall be used to identify the process within the COVclient that should receive the notification. The
value of zero is reserved for unsubscribed COV.

13.11.1.5 Time Remaining

This parameter, of type Unsigned, shall convey the remaining lifetime of the subscription in seconds. A
value of zero shall indicate an indefinite lifetime, without automatic cancellation, or an unsubscribed
notification.

58 ANSI/ASHRAE Addendum 135b-2000

135b-17. Add eight new BACnet engineering units.

 [Add to 21, BACnetEngineeringUnits production, p. 367 - 370]]

BACnetEngineeringUnits ::= ENUMERATED {
--Area

square-inches (115),
square-centimeters (116),

--Enthalpy
btus-per-pound (117),

--Length
centimeters (118),

--Mass Flow
pounds-mass-per-second (119),

--Temperature
delta-degrees-Fahrenheit (120),
delta-degrees-Kelvin (121),

--Volumetric Flow
cubic-feet-per-second (142),
...

}
-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23. The last enumeration used in this version is 141142. Enumerations 115-121
-- have been removed.

NOTICE

INSTRUCTIONS FOR SUBMITTING A PROPOSED CHANGE TO
THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This standard is maintained under continuous maintenance procedures by a Standing Standard Project Committee
(SSPC) for which the Standards Committee has established a documented program for regular publication of
addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any
part of the standard. SSPC consideration will be given to proposed changes according to the following schedule:

Deadline for receipt of proposed changes SSPC will consider proposed changes at next

February 20 ASHRAE Annual Meeting (normally June)

Proposed changes must be submitted to the Manager of Standards (MOS) in the latest published format available
from the MOS. However, the MOS may accept proposed changes in an earlier published format, if the MOS
concludes that the differences are immaterial to the proposed changes. If the MOS concludes that the current form
must be utilized, the proposer may be given up to 20 additional days to resubmit the proposed changes in the current
format.

Specific changes in text or values are required and must be substantiated. The Manager of Standards will return to
the submitter any change proposals that do not meet these requirements. Supplemental background documents to
support changes submitted may be included.

FORM FOR SUBMITTAL OF PROPOSED CHANGE TO ASHRAE STANDARD
UNDER CONTINUOUS MAINTENANCE

(Please type)

1. Submitter: __
(name—type)

 Affiliation: ___

 Address: _________________________________ City: __________________ State: ______ Zip: ________

 Telephone: _______________________ Fax: ____________________ E-Mail: ________________________

I hereby grant the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) the non-
exclusive royalty rights, including non-exclusive royalty rights in copyright, in my proposals and I understand that I
acquire no rights in publication of this standard in which my proposal in this or other similar analogous form is used.
I hereby attest that I have the authority and am empowered to grant this copyright release.

Author’s Signature: ___ Date: _______________

NOTE: Use a separate form for each comment, completing each section (including Sections 1 and 2) to facilitate processing.

2. Number and Year of Standard:

3. Clause (i.e., Section), Subclause or Paragraph Number, and Page Number:

4. I Propose To: [] Change to read as shown [] Delete and substitute as shown
 (check one) [] Add new text as shown [] Delete without substitution

(Indicate the proposed change by showing a strikeout line through material to be deleted and underlining material to be added.
After showing the text to be changed, insert a horizontal line and state the purpose, reason, and substantiation for the proposed
change. Use additional pages if necessary.)

5. Proposed Change:

6. Purpose, Reason, and Substantiation Statements:
 (Be brief; provide abstracts of lengthy substantiation; full text should be enclosed for reference on request by project committee members.)

[] Check if additional pages are attached. Number of additional pages: ______

NOTE: Use separate form for each comment. Submittals (MS Word 7 preferred) may be attached to e-mail (preferable),
submitted on diskettes, uploaded to ASHRAE’s ftp site, or submitted in paper form by mail or fax to ASHRAE, Manager of
Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305.
E-mail: change.proposal@ashrae.org. Ftp server address: ftp.ashrae.org, directory: change.proposal. Fax: 404-321-5478

ELECTRONIC PREPARATION/SUBMISSION OF FORM FOR
PROPOSING CHANGES

An electronic version of each change, which must comply with the instructions in the Notice and the Form, is
the preferred form of submittal to ASHRAE Headquarters at the address shown below. The electronic format
facilitates both paper-based and computer-based processing. Submittal in paper form is acceptable. The
following instructions apply to change proposals submitted in electronic form.

Use the appropriate file format for your word processor and save the file in either Microsoft Word 7
(preferred) or higher or WordPerfect 5.1 for DOS format. Please save each change proposal file with a
different name (example, prop001.doc, prop002.doc, etc., for Word files—prop001.wpm, prop002.wpm, etc.,
for WordPerfect files). If supplemental background documents to support changes submitted are included, it
is preferred that they also be in electronic form as wordprocessed or scanned documents.

Electronic change proposals may be submitted either as files (MS Word 6 preferred) attached to an e-mail
(uuencode preferred), files uploaded to an ftp site, or on 3.5” floppy disk. ASHRAE will accept the following
as equivalent to the signature required on the change submittal form to convey non-exclusive copyright:

Files attached to e-mail: Electronic signature on change submittal form (as a
picture; *.tif, or *.wpg), or e-mail address.

Files on disk or uploaded to ftp site: Electronic signature on change submittal form (as a
picture; *.tif, or *.wpg), listing of the submitter’s e-mail
address on the change submittal form, or a letter with
submitter’s signature accompanying the disk or sent by
facsimile (single letter may cover all of proponent’s
proposed changes).

Submit e-mail, ftp file, or disks containing change proposal files to:
Manager of Standards

ASHRAE
1791 Tullie Circle, NE

Atlanta, GA 30329-2305
E-mail: change.proposal@ashrae.org

Ftp server address: ftp.ashrae.org, logon to anonymous ftp in directory: change.proposal.
(Alternatively, mail paper versions to ASHRAE address or Fax: 404-321-5478.)

The form and instructions for electronic submittal to ASHRAE’s ftp site or as attachments to e-mail may be
obtained from the Standards section of ASHRAE’s Home Page, http://www.ashrae.org, or by contacting a
Standards Secretary, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. Phone: 404-636-8400. Fax: 404-321-
5478. Email: standards.section@ashrae.org.

POLICY STATEMENT DEFINING ASHRAE’S CONCERN FOR THE
ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor
environment. ASHRAE’s members will strive to minimize any possible deleterious effects on the indoor and
outdoor environment of the systems and components in their responsibility while maximizing the beneficial
effects these systems provide, consistent with accepted standards and the practical state of the art.
ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the
indoor and outdoor environment to a greater extent than specified by the standards and guidelines as
established by itself and other responsible bodies.
As an ongoing goal, ASHRAE will, though its Standard Committee and extensive technical committee
structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend,
and promote those new and revised standards developed by other responsible organizations.
Through its Handbook, appropriate chapters will contain up-to-date standards and design considerations as
the material is systematically revised.
ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest
and will seek out and disseminate information from other responsible organizations that is pertinent, as guides
to updating standards and guidelines.
The effects of the design and selection of equipment and systems will be considered within the scope of the
system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be
considered.
ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s
scope operates. However, energy source selection and the possible environmental impact due to the energy
source and energy transportation will be considered where possible. Recommendations concerning energy
selection should be made by its members.

