
ANSI/ASHRAE Addendum s to
ANSI/ASHRAE Standard 135.1-2019

Method of Test for
Conformance to

BACnet®

Approved by ASHRAE and the American National Standards Institute on March 31, 2023.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has
established a documented program for regular publication of addenda or revisions, including procedures for timely, docu-
mented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can
be found on the ASHRAE® website (www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from
ASHRAE Customer Service, 180 Technology Parkway, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax:
678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For
reprint permission, go to www.ashrae.org/permissions.

© 2023 ASHRAE ISSN 1041-2336

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ASHRAE is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
ANSI is a registered trademark of the American National Standards Institute.

SPECIAL NOTE
This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined
by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as
“substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority,
but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.”
Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.
ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project

Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all
must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for
a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER
ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted
industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems
tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines
will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS
ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by
suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information
that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance
to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied,
that the product has been approved by ASHRAE.

ASHRAE Standing Standard Project Committee 135
Cognizant TC: 1.4, Control Theory and Application

SPLS Liaison: William Bahnfleth

Coleman L. Brumley, Jr.*, Chair David Fisher Scott Reed
Scott Ziegenfus, Vice-Chair Alexander Gurciullo* David Robin*
Nate Benes* Bernhard Isler Frank Schubert
Steven T. Bushby* Thomas Kurowski* Marcelo R. da Silva
Salvatore Cataldi* Shahid Naeem Ted Sunderland
James F. Butler Frank Victor Neher* Lori Tribble
Tyler Cove Carl Neilson* Grant N. Wichenko*
Brandon M. DuPrey* Michael Osborne Christoph Zeller

* Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2022–2023

Susanna S. Hanson, Chair Gerald J. Kettler Gwelen Paliaga
Jonathan Humble, Vice-Chair Jay A. Kohler Karl L. Peterman
William P. Bahnfleth Cesar L. Lim Justin M. Prosser
Thomas E. Cappellin Paul A. Lindahl, Jr. David Robin
Douglas D. Fick James D. Lutz Christopher J. Seeton
Patricia Graef Julie Majurin Christian R. Taber
Jaap Hogeling Lawrence C. Markel Paolo M. Tronville
Jennifer A. Isenbeck Patrick C. Marks William F. Walter
Phillip A. Johnson Margaret M. Mathison Steven C. Sill, BOD ExO
Srinivas Katipamula Kathleen Owen Sarah E. Maston, CO

Connor Barbaree, Senior Manager of Standards

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 1

[This foreword and the “rationales” on the following pages are not part of this standard. They are merely informative
and do not contain requirements necessary for conformance to the standard.]

FOREWORD

The purpose of this addendum is to present a proposed change for public review. These modifications are the result of change
proposals made pursuant to the ASHRAE continuous maintenance procedures and of deliberations within Standing Standard
Project Committee 135. The proposed changes are summarized below.

135.1-2019s-1 Add new and correct existing tests for the Network Layer, p. 3
135.1-2019s-2 Add new and correct existing tests for the MS/TP Data Link Layer, p. 15
135.1-2019s-3 Add tests for the BACnet Secure Connect Data Link Layer, p. 17
135.1-2019s-4 Add tests for IPv6, p. 68
135.1-2019s-5 Add new and correct existing BACnet/IP Functionality Tests, p. 84
135.1-2019s-6 Renumber Clause 15, p. 107
135.1-2019s-7 Add new and correct existing Object Support Tests, p. 108
135.1-2019s-8 Add new and correct existing Application Service Initiation Tests, p. 335
135.1-2019s-9 Add new and correct existing Application Service Execution Tests, p. 419
135.1-2019s-10 Improve existing DEFINITIONS, p. 562
135.1-2019s-11 Improve the EPICS FILE FORMAT and the EPICS CONSISTENCY TESTS, p. 563
135.1-2019s-12 Add new and improve existing CONVENTIONS FOR SPECIFYING BACnet
 CONFORMANCE TESTS, p. 565
135.1-2019s-13 Add new and improve existing SPECIAL FUNCTIONALITY TESTS, p. 568
135.1-2019s-14 Apply miscellaneous editorial changes, p. 587

In the following document, language to be added to existing clauses of ANSI/ASHRAE 135.1-2019 and Addenda is indicated
through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be
added, plain type is used throughout. Only this new and deleted text is open to comment as this time. All other material in this
document is provided for context only and is not open for public review comment except as it relates to the proposed changes.

The use of placeholders like X, Y, Z, X1, X2, N, NN, x, n, ?, etc., should not be interpreted as literal values of the final published
version. These placeholders will be assigned actual numbers/letters only after final publication approval of the addendum.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

2 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-1 Add new and correct existing tests for the Network Layer

Rationale

Errors have been identified in a number of router and non-router functionality tests in ANSI/ASHRAE Standard
135.1-2019. In addition, the test coverage shall be increased by new tests.

[Change Clause 10.1.1, p. 457]

[Reviewer Note: The test assumes that the IUT and the TD are located on the same network. For the IUT, the TD appears to
be the appropriate router to the network specified in step 1.]

10.1.1 Processing Application Layer Messages Originating from Remote Networks
Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 6.5.4.

Purpose: To verify that the IUT can respond to requests that originate from a remote network.

Test Concept: The TD transmits a ReadProperty-Request message that contains network layer information indicating that it
originated from a remote network. The response from the IUT shall include correct DNET and DADR information so that the
message can reach the original requester. The MAC layer destination address in the response can be either a local broadcast,
indicating that the IUT does not know the address of the router, or the MAC address of the appropriate routerTD.

Test Steps:

1. TRANSMIT
 DESTINATION = IUT,
 SOURCE = TD,
 SNET = (any network number that is not the local network),
 SADR = (any valid MAC address consistent with the source network),
 ReadProperty-Request,
 'Object Identifier' = (any supported object),
 'Property Identifier' = (any required property of the specified object)
2. RECEIVE
 DESTINATION = LOCAL BROADCAST | (an appropriate router address)TD,
 SOURCE = IUT,
 DNET = (the SNET specified in step 1),
 DADR = (the SADR specified in step 1),
 Hop Count = 255,
 ReadProperty-ACK,
 'Object Identifier' = (the object specified in step 1),
 'Property Identifier' = (the property specified in step 1),
 'Property Value' = (any valid value for this property)

[Change Clause 10.2.2.7.2, p. 472]

[Reviewer Note: Corrected the name of the reject reason parameter in the Reject-Message-To-Network specification. The
correct name is 'Rejection Reason', not 'Reject Reason'.]

10.2.2.7.2 Unknown Network Layer Message Type
Purpose: To verify that the IUT will reject a network layer message with an unknown message type in the range of message
types reserved for use by ASHRAE.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 3

1. TRANSMIT PORT A,
 DESTINATION = IUT,
 SOURCE = D1A,
 Message Type = (any value in the range reserved for use by ASHRAE that is undefined in the protocol revision
 claimed by the device)
2. RECEIVE PORT A,
 DESTINATION = TDD1A,
 SOURCE = IUT,
 Reject-Message-To-Network,
 Rejection Reason = 3 (unknown network layer message type),
 DNET = (any value)

10.2.3 Routing of Unicast APDUs

[Change Clause 10.2.3.2, p. 474]

[Reviewer Note: Modified test to support new Extended MSTP Frame testing.]

10.2.3.2 Route Message from a Local Device to a Local Device

Purpose: To verify that the IUT can route a maximum sized NPDU unicast message from a local device on Network 1 to a
device on Network 2.

Test Concept: A message is sent from Network 1 destined for Network 2 via the IUT, and router functionality is verified by
observing the message on Network 2. The sequence is repeated in the opposite direction to verify the IUT can also route
messages from Network 2 to Network 1. The messages may have an NPDU length, L, such that L equals the Maximum NPDU
length as defined in Table 6-1 for the smaller data link.

Test Steps:

1. TRANSMIT PORT A,
 DA = IUT,
 SA = D1A,
 DNET = 2,
 DADR = D2C,
 Hop Count = 255,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request WriteProperty-Request,
 'Object Identifier' = (O1 = any object identifier),
 'Property Identifier' = (P1 = any property of the specified object with a CharacterString datatype),
 'Property Value' = (V = CharacterString with a length such that the NPDU length = L)
2. RECEIVE PORT B,
 DA = D2C,
 SA = IUT,
 SNET = 1,
 SADR = D1A,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request WriteProperty-Request,
 'Object Identifier' = O1(any object identifier),
 'Property Identifier' = P1 (any property of the specified object),
 'Property Value' = V
3. TRANSMIT PORT B,
 DA = IUT,
 SA = D2C,
 DNET = 1,
 DADR = D1A,
 Hop Count = 255,
 BACnet-Confirmed-Request-PDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

4 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Service Choice' = ReadProperty-Request WriteProperty-Request,
 'Object Identifier' = (O1 = any object identifier),
 'Property Identifier' = (P1 = any property of the specified object with a CharacterString datatype),
 'Property Value' = (V = CharacterString with a length such that the NPDU length = L)
4. RECEIVE PORT A,
 DA = D1A,
 SA = IUT,
 SNET = 2,
 SADR = D2C,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-RequestWriteProperty-Request,
 'Object Identifier' = O1(any object identifier),
 'Property Identifier' = P1 (any property of the specified object),
 'Property Value' = V

10.2.3.6 Attempt to Locate Downstream Routers

[Change Clause 10.2.3.6.1, p. 476]

10.2.3.6.1 Failed Attempt to Locate Router
Purpose: To verify that the IUT will attempt to locate a router to an unknown network. Upon failing to locate such a router the
IUT will transmit a Reject-Message-To-Network to the source device.

Configuration Requirements: The IUT shall be configured to know only about its directly connected networks.

TOmax: vendor defined time the router waits before sending a Reject-Message-to-Network request.

TOmin: vendor defined minimum time the router waits for a response to the Who-Is-Router-To-Network request.

Notes to Tester: The standard does not provide any guidance on how long a router should wait before declaring that the attempt
to locate the next router failed. While there is no explicit minimum time, it is expected that routers wait long enough that the
attempt would succeed if the next hop router responded immediately.

Test Steps:

1. TRANSMIT PORT A, DA = IUT,
 SA = R1-5, DNET = 3,
 DADR = D3D,
 SNET = 5,
 SADR = D5F,
 Hop Count = 254,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request,
 'Object Identifier' = (any object identifier),
 'Property Identifier' = (any property of the specified object)
2. RECEIVE PORT B,
 DESTINATION = LOCAL BROADCAST, SOURCE = IUT, Who-Is-Router-To-Network,
 Network Number = 3
3. WAIT TOmin
4. BEFORE TOmax
 RECEIVE PORT A, DA = R1-5,
 SOURCE = IUT,
 DNET = 5,
 DADR = D5F,
 Hop Count = 255,
 Reject-Message-To-Network,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 5

 Rejection Reason = 1 (unknown destination network), DNET = 3

[Change Clause 10.2.3.6.2, p. 477]

10.2.3.6.2 Successful Attempt to Locate Router
Purpose: To verify that the IUT will attempt to locate a router to an unknown network. When successful it forwards the message
to the next router on the path.

Configuration Requirements: The IUT shall be configured to know only about the directly-connected networks.

TOmin: vendor defined minimum time the router waits for a response to the Who-Is-Router-To-Network request.

Notes to Tester: The standard does not provide any guidance on how long a router should wait before declaring that the attempt
to locate the next router failed. While there is no explicit minimum time, it is expected that routers wait long enough that the
attempt would succeed if the next hop router responded immediately.

Test Steps:

1. TRANSMIT PORT A, DA = IUT,
 SA = R1-5,
 DNET = 3,
 DADR = D3D,
 SNET = 5,
 SADR = D5F,
 Hop Count = 254,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request,
 'Object Identifier' = (any object identifier),
 'Property Identifier' = (any property of the specified object)
2. RECEIVE PORT B,
 DESTINATION = LOCAL BROADCAST, SOURCE = IUT, Who-Is-Router-To-Network,
 Network Number = 3
3. WAIT any time less than TOmin
4. TRANSMIT PORT B,
 DESTINATION = LOCAL BROADCAST, SOURCE = R2-3, I-Am-Router-To-Network,
 Network Numbers = 3
5. RECEIVE PORT B, SA = R2-3,
 SA = IUT, DNET = 3, DADR = D3D,
 SNET = 5,
 SADR = D5F,
 Hop Count = (any integer x: 0 < x < 254), BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request,
 'Object Identifier' = (the object identifier used in step 1), 'Property Identifier' = (the property identifier used in step 1)

[Add new Clause 10.2.X1, p. 483]

[Reviewer Note: Added missing test as per 135-2008g (protocol revision 11).]

10.2.X1 Initiates Network-Number-Is on Startup
Purpose: To verify that a router initiates Network-Number-Is on startup for each port with a known network number.

Test Concept: The IUT is reset and the tester verifies that the IUT broadcasts a Network-Number-Is message out each port.
The vendor can specify a time, or physically observable event after reset, which marks the time at which IUT has completed
its startup sequence, including the sending of the Network-Number-Is messages.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

6 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The IUT is configured with a network number for each of its enabled ports. If the IUT claims a
protocol revision of less than 11, this test shall be skipped.

Test Steps:

1. MAKE (the IUT reset)
2. BEFORE the IUT has completed its startup sequence
 REPEAT X = (for each enabled port) DO {
 RECEIVE PORT X,
 DESTINATION = LOCAL BROADCAST,
 Network-Number-Is,
 Network Number = (the configured Network Number for port X)
 }

[Add new Clause 10.2.X2, p. 483]

[Reviewer Note: Added missing test as per 135-2008g (protocol revision 11)]

10.2.X2 Routers Execute What-Is-Network-Number
Purpose: To verify that a router responds to a What-Is-Network-Number request within 10 seconds.

Test Concept: A What-Is-Network-Number is broadcast on the local network and the tester verifies that the IUT responds with
a Network-Number-Is message within 10 seconds.

Configuration Requirements: The IUT knows its network number, N1. If the IUT claims a protocol revision of less than 11,
this test shall be skipped.

Test Steps:
1. TRANSMIT What-Is-Network-Number,
 DESTINATION = LOCAL_BROADCAST
2. BEFORE 10s + Internal Processing Fail Time
 RECEIVE Network-Number-Is,
 Network Number = (the configured value),
 Configured = (any valid value)

10.5 Initiating Network Layer Messages

10.5.2 Managing Router Tables

[Add new Clause 10.5.2.X1, p. 493]

10.5.2.X1 Query A Router’s Known Routes
Purpose: To verify that the IUT can query a router to determine which routes are accessible through it.

Test Concept: Make the IUT query the router, to determine their routes and verify that the IUT conveys the information to the
user.

Configuration: The TD is configured as a router which does not support Network Port objects (Protocol_Revision < 17).

Test Steps:

1. MAKE (the IUT initiate an Who-Is-Router-To-Network message)
2. RECEIVE Who-Is-Router-To-Network
 DESTINATION = TD | LOCAL_BROADCAST

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 7

3. TRANSMIT I-Am-Router-To-Network,
 Network Numbers = (L: a valid list of networks)
4. CHECK (the IUT presents the router’s known routes)

10.6 Non-Router Functionality Tests

[Change Clause 10.6.3, p. 495]

[Reviewer Note: Changed test to support a Reject or a discard.]

10.6.3 Ignore Router Commands
BACnet Reference Clause: 6.6, 6.6.3.8, 6.6.3.10, 6.6.3.11

Purpose: This test case verifies that the non-router IUT will either quietly accept and discard network layer
router services or respond with a Reject-Message-To-Network.

Test Concept: The TD transmits the Initialize-Routing-Table, Establish-Connection-To-Network, and Disconnect-Connection-
To-Network services. The IUT is required to silently drop the requests because it is not a router.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Initialize-Routing-Table
 Number of Ports = 0
2. WAIT Internal Processing Fail Time
3. (CHECK (that the IUT did not send any packets in response to the Initialize-Routing-Table)) |
 (RECEIVE
 DESTINATION = TD,
 SOURCE = IUT,
 Reject-Message-To-Network
 DNET = (any valid value)
 Rejection Reason = 0 (other) | 3 (unknown))
4. TRANSMIT
 DA = IUT,
 SA = TD,
 Establish-Connection-To-Network
 DNET = DNET3
 Termination Time Value = 0
5. WAIT Internal Processing Fail Time
6. (CHECK(that the IUT did not send any packets in response to the Establish-Connection-To-Network)) |
 (RECEIVE
 DESTINATION = TD,
 SOURCE = IUT,
 Reject-Message-To-Network
 DNET = (any valid value)
 Rejection Reason = 0 (other) | 3 (unknown))
7. TRANSMIT
 DA = IUT,
 SA = TD,
 Disconnect-Connection-To-Network
 DNET = NET3
8. WAIT Internal Processing Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

8 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9. (CHECK(that the IUT did not send any packets in response to the Disconnect-Connection-To-Network)) |
 (RECEIVE
 DESTINATION = TD,
 SOURCE = IUT,
 Reject-Message-To-Network
 DNET = (any valid value)
 Rejection Reason = 0 (other) | 3 (unknown))

10.7 Router Functionality

[Change Clause 10.7.2, p. 497]

[Reviewer Note: Test modified to allow for directed unicast who-is requests.]

10.7.2 Router Binding via Application Layer Services
Dependencies: ReadProperty Service Initiation Tests, 8.18, ReadProperty Service Execution Tests, 9.18, Who-Is Service
Initiation Tests, 8.34

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network after
the IUT uses the Who-Is and I-Am Application Layer services to discover the MAC address of the router to that remote network.

Test Concept: The IUT broadcasts a Who-Is request to discover device D2A and notes the MAC address of the intervening
router in the corresponding I-Am reply. The TD transmits a request to a device on the remote network and responds to a request
from the remote network without performing any further form of dynamic router binding. If the IUT does not support
application layer router binding, then this test shall be omitted. If the IUT cannot initiate a ReadProperty request, then another
confirmed service can be substituted. The IUT may use the deviceInstanceRange form of Who-Is.

Clause 6.5.3 specifically mentions router binding via Who-Is and does not mention router binding by initiating other application
layer services (such as Who-Has) or by lurking and noting the router MAC addresses for incoming application layer requests.
For this reason the test only allows for router binding via Who-Is.

Test Steps:

1. MAKE (IUT transmit Who-Is to discover the device on the remote network)
2. RECEIVE
 DA = BROADCAST,
 SA = IUT,
 DNET = GLOBAL BROADCAST,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = who-IsWho-Is
 | (DA = BROADCAST,
 SA = IUT,
 DNET = DNET2,
 DADR= BROADCAST, or D2A
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = who-IsWho-Is)
3. TRANSMIT
 DA = BROADCAST,
 SA = TD,
 SNET = DNET2,
 SADR = D2A,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = I-Am,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 9

 'I Am Device Identifier' = (device object, instance number of D2A),
 'Max APDU Length Accepted ' = (any valid value),
 'Segmentation Supported' = (any valid value),
 'Vendor ID ' = (any valid value)
4. MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)
5. RECEIVE
 DA = TD,
 SA = IUT,
 DNET = DNET2,
 DADR= D2A,
 Hop Count = 255,
 BACnet-Confirmed-Request-PDU,
 'Service Choice' = ReadProperty-Request,
 'Object Identifier' = (O1, any BACnet standard object in D2A),
 'Property Identifier' = (P1, any required property of the specified object)
6. TRANSMIT
 DA = IUT,
 SA = TD,
 SNET = DNET2,
 SADR = D2A,
 BACnet-ComplexACK-PDU,
 'Service ACK Choice' = ReadProperty-ACK,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value)

10.8 Virtual Routing Functionality Tests

10.8.3 Routing of Unicast APDUs

[Change Clause 10.8.3.1, p. 505]

10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response Message from the
Virtual Device to the Local Device
Purpose: To verify that the IUT can route a unicast request message from a local device to a virtual device and route the
response from the virtual device to the local device.

Notes to Tester: The destination device (VD1A) can be any virtual device in the IUT.

Test Steps:

1. TRANSMIT,
 DA = LOCAL BROADCAST,
 SA = TD,
 DNET = 1,
 DADR = VD1A,
 Hop Count = 255,
 ReadProperty-Request,
 'Object Identifier' = (the object identifier of any object in the target device),
 'Property Identifier' = (any property of the specified object containing a value small enough so that the
 response will not need to be segmented)
2. RECEIVE,
 DA = TD,
 SA = IUT,
 SNET = 1,
 SADR = VD1A,
 ReadProperty-ACK,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

10 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = (the object identifier used in step 1),
 'Property Identifier' = (the property identifier used in step 1),
 'Property Value' = (the contents of the specified property)
3. TRANSMIT,
 DA = IUT,
 SA = TD,
 DNET = 1,
 DADR = VD1A,
 Hop Count = 255,
 ReadProperty-Request,
 'Object Identifier' = (the object identifier of any object in the target device),
 'Property Identifier' = (any property of the specified object containing a value small enough so that the
 response will not need to be segmented, but not the same property as in step 1)
4. RECEIVE,
 DA = TD,
 SA = IUT,
 SNET = 1,
 SADR = VD1A,
 ReadProperty-ACK,
 'Object Identifier' = (the object identifier used in step 3),
 'Property Identifier' = (the property identifier used in step 3),
 'Property Value' = (the contents of the specified property)

[Change Clause 10.8.3.2, p. 506]

10.8.3.2 Route Request Message from a Virtual Device to a Local Device
Purpose: To verify that the IUT can route a unicast request message from a virtual device to a local device.

Test Concept: Make one of the virtual devices generate a unicast request, and verify that the NPCI is correctly formed. This
test shall be skipped if none of the IUT’s virtual devices can issue a confirmed or unconfirmed request in a unicast message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send a
unicast message to a particular target device on Network 2.

Notes to Tester: During the test, the TD shall answer any requests that the IUT generates while attempting to locate the route
to the target device.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated
to send a unicast message to a device on a local network. Depending on the capabilities of the IUT, this may involve sending
a message from the target device to the IUT (unicast or broadcast), writing the network address of the target device to an
object property in the IUT, writing the Device ID of the target device to an object property in the IUT, writing the Device Name
of the target device to an object property in the IUT, or configuring the IUT using a proprietary method. The IUT may need
to broadcast a Who-Is or Who-Has request in order to discover the network address of the target device if the network address
is unknown.

Test Steps:

1. MAKE (the virtual device generate a unicast APDU to a device on the IUT's local network)2. RECEIVE,
 DA = TD
 SA = IUT
 SNET = 1,
 SADR = (MAC address of any virtual device on Network 1),
 BACnet-Confirmed-Request-PDU or BACnet-Unconfirmed-Request-PDU

10.8.3.5 Unicast Messages That Should Not Be Routed

[Change Clause 10.8.3.5.1, p. 507]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 11

10.8.3.5.1 Unknown Network
Purpose: To verify that the IUT will not attempt to route a message directed to a device on an unknown network if the message
was transmitted using a local broadcast MAC address.

Test Concept: Direct at one of the virtual devices a ReadProperty request that is correct in all aspects, except for the network
number. Ensure that the virtual device does not reply. The request is sent as a local broadcast so that the IUT will receive it and
not attempt to re-route it via another router to the unknown network.

Notes to Tester: Choose a virtual device on Network 1 for this test.

Test Steps:

1. TRANSMIT,
 DA = LOCAL BROADCAST,
 SA = TD,
 DNET = 59001,
 DADR = (the MAC address of the selected virtual device),
 Hop Count = 255,
 ReadProperty-Request,
 'Object Identifier' = (any object identifier of an object in the virtual device),
 'Property Identifier' = (any property of the specified object)
2. WAIT Internal Processing Fail Time
3. CHECK (verify that the IUT did not transmit I-Am-Router-To-Network (Network Numbers = 59001…)
 or Reject-Message-To-Network (Network Number = 59001)
 or any message in response to the Read Property request on Network 2)

[Add new Clause 10.8.3.X1, p. 508]

10.8.3.X1 Silently Drop Messages to a Virtual Device that is Offline

Purpose: To verify that the IUT does not return any message in response to an NPDU with a destination that is offline.

Test Concept: The non-BACnet device is verified to be online and recognized by the IUT. It is then made to go offline, and the
IUT is made to recognize that the device is offline. A property, P1, from Object1 which is derived from the data in a virtual
device is read from the IUT. Verify that when a virtual device is off-line, that the IUT sends no response to messages that are
directed to that off-line device.

Configuration Requirements: The IUT acting as a virtual router shall be configured so that a virtual device VD1A, which can
sometimes be online, is initially online for this test. If no virtual device can become off-line, then this test shall be skipped.

Test Steps:

1. CHECK (any vendor-specified indication, that the virtual device is online)
2. MAKE (the virtual device containing Object1 go offline)
3. MAKE (the IUT notice that the virtual device is offline)
4. TRANSMIT ReadProperty-Request,
 DESTINATION = V1DA
 'Object Identifier' = Object1,
 'Property Identifier' = P1
5. CHECK (that no responsive message is returned from IUT)
6. TRANSMIT
 DESTINATION = VD1A,
 Message Type = (any valid value)
7. CHECK (that no responsive message is returned from IUT)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

12 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

10.8.4 Routing of Broadcast APDUs to Virtual Devices

[Change Clause 10.8.4.7, p. 516]

10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network
Purpose: To verify that the IUT can route a remote broadcast message from a virtual device to a local physical network.

Test Concept: Make one of the virtual devices generate a remote broadcast directed to the non-virtual network that the IUT is
connected to, and verify that it is correctly formulated. This test shall be skipped if none of the IUT’s virtual devices can issue
a remote broadcast message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send
a remote broadcast message to Network 2.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated
to send a broadcast message to a local (physical) network. Depending on the capabilities of the IUT, this may involve sending
a message from a device on the target network to the IUT (unicast or broadcast), writing a broadcast address to an object
property in the IUT, or configuring the IUT using a proprietary method.

Test Steps:

1. MAKE (the virtual device generate a remote broadcast message to the local network of the IUT)
2. RECEIVE,
 DA = LOCAL BROADCAST,
 SA = IUT,
 SNET = 1,
 SADR = (MAC address of a virtual device on Network 1),
 BACnet-Unconfirmed-Request-PDU

10.8.7 Multiple Devices on a Single Virtual Network

[Add new Clause 10.8.7.4, p. 519]

10.8.7.4 Who-Is Specifying Unknown Device Ids
Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

Test Steps:

1. TRANSMIT,
 DA = IUT,
 SA = TD,
 DNET = 1,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 Who-Is-Request,
 'Device Instance Range Low Limit' = (Low Limit of instance range excluding all virtual devices)
 'Device Instance Range High Limit' = (High Limit of instance range excluding all virtual devices)
2. CHECK (verify that the IUT does not transmit an I-Am-Request-PDU)

[Add new Clause 10.8.7.5, p. 519]

10.8.7.5Who-Has Specifying Unknown Device Ids
Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 13

Test Steps:

1. TRANSMIT,
 DA = IUT,
 SA = TD,
 DNET = 1,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 Who-Has-Request,
 'Device Instance Range Low Limit' = (Low Limit of instance range excluding all virtual devices)
 'Device Instance Range High Limit' = (High Limit of instance range excluding all virtual devices)
 'Object Identifier' = (Device object identifier of VD1B)
2. CHECK (verify that the IUT does not transmit an I-Have-Request-PDU)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

14 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-2 Add new and correct existing tests for the MS/TP Data Link Layer

Rationale

Configuration requirements are missing for an existent test. In addition, the test coverage shall be increased by
new tests.

12.1 MS/TP State Machine Tests

12.1.3 MS/TP Data Link Layer Tests (Alternate)

[Change Clause 12.1.3.3, p. 581]

12.1.3.3 Verify Tframe_gap
Purpose: Verify that the maximum idle time between data octets when transmitting a frame is 20 bit times or less.

Configuration Requirements: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Test Steps:

1. Elicit the transmission of any frame from the IUT.
2. Measure the longest EIA-485 idle time that appears between octets within the data frame transmitted by the IUT. If there

is no idle time between octets, pass the IUT.
3. Fail the IUT if the time measured in step 2 is greater than the time intervals shown below for each baud rate.
 9600 baud: fail if interval is greater than 2,083 microseconds
 19200 baud: fail if interval is greater than 1,042 microseconds
 38400 baud: fail if interval is greater than 521 microseconds
 76800 baud: fail if interval is greater than 261 microseconds
 115200 baud: fail if interval is greater than 173 microseconds
 x baud: fail if interval is greater than (20/x) seconds

[Add new Clause 12.1.3.X1, p. 587]

12.1.3.X1 Frame Type Based on Transmitted NPDU size
Purpose: To verify that the IUT selects the correct frame type based on the transmitted NPDU size.

Test Concept: The IUT is made to send a frame such that the NPDU size is less than or equal to 501 octets (a non-COBS
encoded frame) and the frame type is checked. The IUT is then made to send a frame such that the NPDU size is greater than
501 octets (a COBS encoded frame) and the frame type is checked.

It is expected that this test can be executed using ReadPropertyMultiple service requests to generate responses from the IUT of
different sizes. If the IUT does not support execution of ReadPropertyMultiple service requests and the IUT cannot be made
to send a frame larger than 501 octets by any other means, this test shall be skipped.

Test Steps:

1. MAKE (the IUT generate a frame with an NPDU less than 501 octets)
2. CHECK (Frame type = BACnet Data Expecting Reply(5) or BACnet Data Not Expecting Reply(6))
3. MAKE (the IUT generate a frame with an NPDU greater than 501 octets)
4. CHECK (Frame type = BACnet Extended Data Expecting Reply(32) or BACnet Extended Data Not Expecting Reply(33))

[Add new Clause 12.1.3.X2, p. 587]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 15

12.1.3.X2 Executing COBS Encoded Frames
Purpose: To verify that the IUT can properly execute COBS encoded frames

Test Concept: A COBS encoded service request is sent to the IUT and proper execution of the request is verified.

It is expected that this test can be executed for server devices using a large ReadPropertyMultiple service request that the server
can execute. If the IUT does not support execution of ReadPropertyMultiple service requests, the vendor must provide
instructions and means for verifying correct execution of a request.

Test Steps:

1. IF (the IUT supports execution of ReadPropertyMultiple service requests) THEN
 READ V = (Object1), P1

TRANSMIT (a ReadPropertyMultiple request with an NPDU larger than 501 octets including (Object1), P1)
 VERIFY (Object1),P1 = V
2. ELSE
 (Use vendor supplied instructions to verify execution of a service request)

[Add new Clause 12.1.3.X3, p. 587]

12.1.3.X3 Data Not For Us Test
Purpose: Verify that the IUT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an
address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the
IUT will correctly receive and process the ReadProperty request.

Test Steps:

1. TRANSMIT
 Frame Type = BACnet Data Not Expecting Reply
 Destination Address = (any Unicast address other than IUT),
 Length = 7,
 Data = (55 FF 05 FF 00 01 F5)
2. TRANSMIT ReadProperty-Request
 'Object Identifier' = (device, 4194303),
 'Property Identifier' = Object_Name
3. RECEIVE ReadProperty-Response
 'Object Identifier' = (device, IUT),
 'Property Identifier' = Object_Name,
 'Value' = (any valid value)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

16 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-3 Add tests for the BACnet Secure Connect Data Link Layer

Rationale

Addendum 135-2016bj introduced the new BACnet Secure Connect Data Link Layer option. Addendum 135.1-
2019s adds new tests to meet the requirements of addendum bj.

[Add new Clause 12.YY, p. 625]

12.YY Secure Connect Functionality Tests

This clause defines the tests necessary to demonstrate Secure Connect functionality, as defined in Annex YY of the BACnet
standard.

In the diagrams that follow, the following legend applies. Nodes and hub functions are shown within the BACnet device in
which they reside by having the circle or rounded square located inside a BACnet device rectangle.

BACnet
device

node

hub
func.

Legend

Secure Connect differs from other datalinks in that a single network consists of numerous logical connections instead of a
shared bus. While the messages do usually exist on a shared ethernet segment, they are described as if each WebSocket is a
separate link.

Where it is not clear which WebSocket the messages are expected on, the PORT keyword is used to identify the WebSocket.
This construct is mostly used when the IUT has multiple connections such as when it is a hub or participating in direct
connections.

12.YY.1 Basic Node Tests

This group of tests verifies secure connect devices operating in a non-hub mode. The logical configuration of the network used
for these tests is shown in Figure X1. The test descriptions in this clause assume that the TD plays the role of all of the other
devices in the network configuration. For the tests in this section, unless specified through a PORT parameter, messages
specified by the test are on the IUT to TD hub WebSocket connection (primary or failover).

D3 D2F

D1PIUT

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 17

Figure X1: Network setup for basic node tests showing
connections when the primary hub is active.

D3 D2F

D1PIUT

Figure X2: Network setup for basic node tests showing
connections when the primary hub is inactive.

12.YY.1.1 Basic Node Positive Tests

12.YY.1.1.1 Connect and Maintain Hub Connection Test

Purpose: To verify that the IUT connects to the configured primary hub and maintains the connection over time.

Test Concept: With the IUT configured to connect to the TD as the primary hub, allow the IUT to connect. Wait an arbitrary
amount of time and have the hub silently close the WebSocket. Verify that the IUT detects the closure and attempts to reconnect
to the hub. Allow the hub to accept the new connection. Wait an arbitrary amount of time and have the hub request a disconnect.
Verify that the IUT acknowledges the disconnect. Verify that the IUT attempts to reconnect to the hub. Allow the hub to accept
the new connection.

Configuration Requirements: The TD is configured as the primary hub, and the IUT's primary hub URI is configured to
reference it.

Test Steps:

1. MAKE(the IUT connect to the primary hub)
2. WAIT a tester selected amount of time
3. MAKE(the hub close the WebSocket)
4. CHECK(that the IUT opens a new WebSocket with the primary hub)
5. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
7. WAIT a tester selected amount of time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

18 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8. TRANSMIT Disconnect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
9. RECEIVE Disconnect-ACK,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
10. MAKE(the TD close the WebSocket)
11. CHECK(that the IUT opens a new WebSocket with the TD)
12. RECEIVE Connect-Request,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
13. TRANSMIT Connect-Accept,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.1.2 Connect to Failover Hub Test

Purpose: To verify that the IUT connects to the configured failover hub and maintains the connection when the connection to
the primary is lost.

Test Concept: With the IUT configured with a primary and a failover hub, allow the IUT to connect to the primary. Wait an
arbitrary amount of time and have the hub silently close the WebSocket and stop responding on that port. Verify that the IUT
detects the closure and attempts to reconnect to the primary hub. Verify that after the reconnect attempt fails, the IUT attempts
to connect to the failover hub. Allow the connection to succeed.

Configuration Requirements: The IUT configured to connect to the TD as the primary hub, and as the failover hub.

Test Steps:

1. MAKE(the IUT connect to the primary hub)
2. WAIT a tester selected amount of time
3. MAKE(the hub close the WebSocket)
4. CHECK(that the IUT opens a new WebSocket with the primary hub)
5. RECEIVE PORT (IUT-TD primary hub WebSocket)
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 19

 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT PORT (IUT-TD primary hub WebSocket)
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
7. WAIT a tester selected amount of time
8. MAKE(the TD, as primary hub, close the WebSocket connection to the IUT and refuse future connections)
9. CHECK(that the IUT attempts to open a new WebSocket with the the primary hub)
10. CHECK(that the IUT opens a WebSocket with the failover hub)
11. RECEIVE PORT (IUT-TD failover hub WebSocket)
 Connect-Request,
 'DA' = D2,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
12. TRANSMIT PORT (IUT-TD failover hub WebSocket)
 Connect-Accept,
 'SA' = D2,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (D2 VMAC),
 'Device UUID' = (D2's UUID),
 'Maximum BVLC Length' = (the D2's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D2's maximum NPDU accepted length)

12.YY.1.1.3 Connect to Failover Hub on Startup Test

Purpose: To verify that the IUT connects to the configured failover hub when it powers on and the primary is offline.

Test Concept: With the IUT configured with a primary and a failover hub, the primary hub offline, and the IUT powered off,
power on the IUT. Verify that the IUT attempts to connect to the primary. Verify that the IUT attempts to connect to the failover
hub when the attempt to the primary fails.

Configuration Requirements: The IUT configured to connect to the TD as the primary hub, and as the failover hub. The primary
hub is offline. The IUT starts the test powered off.

Test Steps:

1. MAKE(power on the IUT)
2. CHECK(that the IUT attempts open a WebSocket to the primary hub)
3. CHECK(that the IUT opens a new WebSocket with the failover hub)
4. RECEIVE PORT (IUT-TD failover hub WebSocket)
 Connect-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

20 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
5. TRANSMIT PORT (IUT-TD failover hub WebSocket)
 Connect-Accept,
 SA = D2,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (D2's VMAC),
 'Device UUID' = (D2's UUID),
 'Maximum BVLC Length' = (the D2's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D2's maximum NPDU accepted length)

12.YY.1.1.4 Reconnect to Primary Hub Test

Purpose: To verify that the IUT reconnects to the configured primary hub within 600 seconds of when it comes back online.

Test Concept: The test starts with the IUT connected to the failover hub and the primary hub offline. Wait an arbitrary amount
of time and have the primary hub come back online. Verify that the IUT attempts to reconnect to the primary within 600 seconds
of it coming back online.

Configuration Requirements: The IUT configured to connect to the TD as the primary hub, and as the failover hub. The test
starts with the primary hub offline and the IUT connected to the failover hub.

Test Steps:

1. WAIT a tester selected amount of time
2. MAKE(bring the primary hub online)
4. CHECK(that the IUT opens a new WebSocket with the primary hub within 600 seconds)
5. RECEIVE PORT (IUT-TD primary hub WebSocket)
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT PORT (IUT-TD primary hub WebSocket)
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 21

12.YY.1.1.5 Unicast Through Hub Test

Purpose: Verify that the IUT correctly composes unicasts aimed at a device through the hub.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty from OD to the IUT. Verify that the
IUT accepts the request and responds with a ReadProperty-ACK to OD, the ack properly composed and sent to the hub.

Configuration Requirements: The TD is configured as the primary hub and the IUT is connected to it. OD is any device
connected to the BACnet/SC network through the primary hub (but not the hub's node).

Test Steps:

1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OD's VMAC),
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = ({X'41'}), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = Object_Name
2. RECEIVE Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OD's VMAC),
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = ({X'41' or a list of data options including Secure Path}),
 'BACnet NPDU' =
 ReadProperty-ACK
 'Object Identifier' = (O),
 'Property Identifier' = Object_Name,
 'Property Value' = (the value from the EPICS)

12.YY.1.1.6 Unicast to Hub Test

Purpose: Verify that the IUT correctly composes unicasts aimed at the hub.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty from the node on the same device as
the primary hub to the IUT. Verify that the IUT accepts the request and responds with a ReadProperty-ACK, the ack properly
composed and sent to the hub.

Configuration Requirements: The TD is configured as the primary hub.

Test Steps:

1. TRANSMIT PORT (IUT-TD primary hub WebSocket)
 Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = TD's VMAC,
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or any valid value),
 'Data Options' = ({ X'41'}), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name
2. RECEIVE PORT (IUT-TD primary hub WebSocket)
 Encapsulated-NPDU,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = TD's VMAC,
 'Destination Options' (absent or any valid value),
 'Data Options' = ({ X'41' or a list of valid header options including Secure Path}),
 'BACnet NPDU' =

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

22 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name,
 'Property Value' = (the IUT's device object name)

12.YY.1.1.7 Local Broadcast Initiation Test

Purpose: To verify that broadcasts are sent to the hub and are sent with the Local broadcast VMAC address

Test Concept: Make the IUT generate a broadcast. Verify that the broadcast is correctly formed and forwarded to the primary
hub.

Configuration Requirements: The TD is configured as the primary hub and the IUT is connected to it.

Test Steps:

1. MAKE(the IUT generate a broadcast)
2. RECEIVE Encapsulated-NPDU,
 'Message ID' = (M1: any valid value)
 'Originating Virtual Address' absent
 'Destination Virtual Address' = (Local Broadcast VMAC, X'FFFFFFFFFFFF')
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = ({X'41' or a list of data options including Secure Path}),
 'BACnet NPDU' = (any valid broadcastable NPDU)

12.YY.1.1.8 Local Broadcast Execution Test

Purpose: To verify that IUT correctly accepts and processes broadcast messages.

Test Concept: Send a broadcast Who-Is with no device range. Verify that the IUT sends an I-Am in response through the
primary hub.

Configuration Requirements: The TD is configured as the primary and the IUT is connected to it.

Test Steps:

1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OD's VMAC),
 'Destination Virtual Address' = (Local Broadcast VMAC, X'FFFFFFFFFFFF')
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = ({X'41'}), -- Secure Path
 'BACnet NPDU' =
 Who-Is-Request,
 'Device Instance Range Low Limit' = (IUT's device instance),
 'Device Instance Range High Limit' = (IUT's device instance)
2. RECEIVE Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 'Originating Virtual Address' absent
 'Destination Virtual Address' = (Local Broadcast VMAC, X'FFFFFFFFFFFF'),
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = ({X'41' or a list of data options including Secure Path}),
 'BACnet NPDU' =
 I-Am-Request,
 'I Am Device Identifier' = (the IUT's Device object),
 'Max APDU Length Accepted' = (the value specified in the EPICS),
 'Segmentation Supported' = (the value specified in the EPICS),
 'Vendor Identifier' = (the identifier registered for this vendor)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 23

12.YY.1.1.9 VMAC Uniqueness Test

Purpose: To verify that the IUT will attempt to resolve its own VMAC and will generate a new Random-48 VMAC if a conflict
is detected.

Test Concept: Have the IUT connect to the primary hub. During the connect sequence, the hub returns an NAK with an error
code of NODE_DUPLICATE_VMAC. Verify that the IUT retries the connection with a Random-48 VMAC which differs
from the initial connect attempt. Verify that the selected VMAC is valid. Again, the hub NAKs the connection request with an
error code of NODE_DUPLICATE_VMAC. Verify that the IUT retries again with a valid Random-48 VMAC not equal to
either of the previous VMACs.

Test Steps:

1. MAKE(the IUT initiate a hub connection TD)
2. CHECK(that the IUT attempts to open a new WebSocket with the TD)
3. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (VMAC1: IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. TRANSMIT BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC
5. RECEIVE Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (VMAC2: IUT's new VMAC, different than VMAC1),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT BVLC-Result,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC
7. RECEIVE Connect-Request,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

24 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Data Options' absent
 'VMAC Address' = (VMAC3: IUT's new VMAC, different than VMAC1 & VMAC2),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
8. TRANSMIT Connect-Accept,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.1.10 UUID Persistence Test

Purpose: To verify that the IUT contains a UUID and that it persists across resets

Test Concept: Configure the IUT and have it connect to the primary hub. Power off the IUT, wait 1 minute, and power on the
IUT allowing it to connect again to the hub. Verify that the UUID in both connect messages is the same.

Test Steps:

1. MAKE(IUT connect to the primary hub)
2. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (U: any valid UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
3. TRANSMIT Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
4. MAKE(power off the IUT)
5. WAIT 1 minute
6. MAKE(power on the IUT)
7. BEFORE the maximum time it takes for the IUT to reboot and re-establish a connection to the network
 RECEIVE Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = U,
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
8. TRANSMIT Connect-Accept,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 25

 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.1.11 UUID Persistence When VMAC Changes Test

Purpose: To verify that the IUT's UUID is unrelated to its VMAC.

Test Concept: Configure the IUT and connect it to the network. Let it verify its VMAC successfully. Reset the IUT and when
it connects to the network, indicate a VMAC conflict. After the IUT allocates a new VMAC, and send a new advertisement,
verify that the UUID has not changed.

Test Steps:

-- allow the IUT to connect and use its chosen VMAC
1. MAKE(the IUT connect to the primary hub)
2. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (V1: any valid value),
 'Device UUID' = U,
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
3. TRANSMIT Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

-- TD pretending a new device has joined using VMAC V1 with UUID U2
-- the TD will now reject the IUT's VMAC as if another device has connected with the IUT's VMAC
4. MAKE(the IUT reset)
5. BEFORE the maximum time it takes for the IUT to reboot and re-establish a connection to the netwrok
 RECEIVE Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = V1,
 'Device UUID' = U,
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT BVLC-Result,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

26 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not related to a header option
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC

-- verify that the IUT retries with a new VMAC and the same UUID
7. RECEIVE Connect-Request,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (V2: any valid value different than V1),
 'Device UUID' = U,
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
8. TRANSMIT Connect-Accept,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.1.12 Unknown 'Must Understand' is True Message Test

Purpose: To verify that a unicast message is not ignored if the 'Must Understand' flag is set and the option is unknown or not
supported.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty request with a set of header options
with one that the IUT does not know marked as 'Must Understand'. Verify that the IUT responds with a NAK and Error Class
of COMMUNICATION and an error code of HEADER_NOT_UNDERSTOOD correctly identifying the option marked as
'Must Understand'. Verify that the IUT does not send a ReadProperty-ACK. Repeat with a globally broadcast Who-Is request.

Test Steps:

1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 -- 'Destination Virtual Address' absent
 'Destination Options' = ({X'BF0003000012', --proprietary,more,not M.U.,len=3,ven=0, opt=x12
 X'FF0003000000', --proprietary, more,M.U.,len=3,ven=0, opt=x00
 X'3F0003000034'}), --proprietary,not more,not M.U.,len=3,ven=0,opt=x34
 'Data Options' = ({ X'41' }), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name
2. RECEIVE BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OVA),
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'01', -- Encapsulated-NPDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 27

 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'FF', -- second header option
 'Error Class' = COMMUNICATION,
 'Error Code' = HEADER_NOT_UNDERSTOOD
3. CHECK(that the IUT does not send a ReadProperty-ACK)
4. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 'Destination Virtual Address' = (X'FFFFFFFF', the local broadcast VMAC),
 'Destination Options' = ({X'BF0003000012',--proprietary,more,not M.U.,len=3,ven=0, opt=x12
 X'FF0003000000', --proprietary, more,M.U.,len=3,ven=0, opt=x00
 X'3F0003000034'}),--proprietary,not more,not M.U.,len=3,ven=0,opt=x34
 'Data Options' = ({ X'41'}), -- Secure Path
 'BACnet NPDU' =
 Who-Is-Request
5. CHECK(that the IUT does not route the message, send a BVLC-Result, nor send an IAm-Request)

12.YY.1.1.13 Unknown 'Must Understand' is False Message Test

Purpose: To verify that a message is correctly processed when an unknown destination option is present whose 'Must
Understand' flag is cleared.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty request with a header option that the
IUT does not know which is not marked as 'Must Understand'. Verify that the IUT accepts the request and responds with a
ReadProperty-ACK.

Test Steps:

-- Unicast test
1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 'Destination Options' = ({X'3F0030000034'}), --proprietary,not more,not M.U.,len=0,ven=0,opt=x34
 'Data Options' = ({ X'41'}) -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name
2. RECEIVE Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = OVA,
 'Destination Options' = (absent or a valid list of header options),
 'Data Options' = ({ X'41' or a list of valid header options including Secure Path}),
 'BACnet NPDU' =
 ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name,
 'Property Value' = (the IUT's device object name)

-- Broadcast test
3. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M3: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 'Destination Virtual Address' = (X'FFFFFFFF' the local broadcast VMAC),
 'Destination Options' = ({X'3F0030000034'}),--proprietary,not more,not M.U., len=0, ven=0,
 -- opt=x34
 'Data Options' = ({ X'41'}), -- Secure Path
 'BACnet NPDU' =
 Who-Is-Request
4. RECEIVE Encapsulated-NPDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

28 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message ID' = (M4: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OVA, or the local broadcast VMAC),
 'Destination Options' = (absent or a valid list of header options),
 'Data Options' = ({ X'41' or a list of valid header options including Secure Path}),
 'BACnet NPDU' =
 I-Am-Request,
 'I Am Device Identifier' = (the IUT's Device object),
 'Max APDU Length Accepted' = (the value specified in the EPICS),
 'Segmentation Supported' = (the value specified in the EPICS),
 'Vendor Identifier' = (the identifier registered for this vendor)

12.YY.1.1.14 Multiple Header Options Test

Purpose: To verify that the IUT accepts and processes messages with varying numbers of header options.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty request with more than 1 header
option, with none marked as 'Must Understand'. Verify that the IUT responds with a ReadProperty-ACK.

Test Steps:

1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 'Data Options' = ({ X'C1', -- Secure Path, more options
 X'BF0003000012', --proprietary,more,not M.U.,len=3,ven=0, opt=12
 X'3F0003000034'}), --proprietary,not more,not M.U.,len=3,ven=0, opt=x34
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name
2. RECEIVE Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OVA: any valid value, including absent),
 'Destination Options' (absent or any valid value),
 'Data Options' = ({ X'41' or a list of valid header options including Secure Path}),
 'BACnet NPDU' =
 ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name,
 'Property Value' = (the IUT's device object name)

12.YY.1.1.15 Advertisement-Solicitation Execution Test

Purpose: To verify that when executing an Advertisement-Solicitation, the IUT correctly initiates Advertisement messages.

Test Concept: With the IUT connected to the primary hub, send an Advertisement-Solicitation to the IUT and verify it responds
with a correct Advertisement. Disconnect the primary hub from the network and wait for the IUT to connect to the failover
hub. Send an Advertisement-Solicitation to the IUT and verify it responds with a correct Advertisement.

Test Steps:

1. TRANSMIT Advertisement-Solicitation,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (OVA: absent, or any node on the network),
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 29

 -- 'Data Options' absent
2. RECEIVE Advertisement,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OVA),
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'04', -- Advertisement
 'Hub Connection Status' = X'01', -- connected to primary
 'Accept Direct Connections' = (as per the IUT's configuration),
 'Maximum BVLC Length' = (as per the IUT's configuration),
 'Maximum NPDU Length' = (as per the IUT's configuration)
3. MAKE(the primary hub go offline)
4. WAIT until the IUT connects to the failover hub
5. TRANSMIT Advertisement-Solicitation,
 'Message ID' = (M3: any valid value),
 'Originating Virtual Address' = (OVA: absent, or any node on the network),
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
6. RECEIVE Advertisement,
 'Message ID' = (M4: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (OVA),
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'04', -- Advertisement
 'Hub Connection Status' = X'02', -- connected to failover
 'Accept Direct Connections' = (as per the IUT's configuration),
 'Maximum BVLC Length' = (as per the IUT's configuration),
 'Maximum NPDU Length' = (as per the IUT's configuration)

12.YY.1.1.16 Heartbeat-Request Initiation Test

Purpose: To verify that the IUT initiates heartbeats as per its config.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty request to the IUT every heartbeat
interval / 2 seconds. Verify that the IUT does not initiate a Heartbeat-Request. Stop sending messages to the IUT. Wait the
IUT's configured heart-beat interval plus 10 seconds and verify that the IUT sent a Heartbeat-Request, ensuring that no BVLCs
are sent to the IUT during that period.

Configuration Requirements: Place the IUT in a mode where it will not initiate requests for a period longer than the heartbeat
interval (except for the heartbeat request). If the IUT does not support DM-DCC-B and cannot be otherwise configured to
behave in this manner, this test shall be skipped.

Test Steps:

1. REPEAT N = (1..Z) {
 TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M: any valid value),
 'Originating Virtual Address' = (OVA: any valid value, including absent),
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 'Data Options' = ({ X'41'}), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name
 RECEIVE Encapsulated-NPDU,
 'Message ID' = M,
 -- 'Originating Virtual Address' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

30 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Destination Virtual Address' = OVA,
 'Destination Options' (absent or any valid value),
 'Data Options' = ({ X'41' or a list of valid header options including Secure Path}),
 'BACnet NPDU' =
 ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Object_Name,
 'Property Value' = (the IUT's device object name)
 WAIT ½ of IUT's heartbeat interval
 }
2. CHECK(that the IUT did not send a HeartBeat during step 1)

-- Since we already waited ½ of a heartbeat interval, only ½ of that interval is now given for the IUT to
-- generate a Heartbeat-Request
3. BEFORE ½ of IUT's heartbeat interval + 10s
 RECEIVE Heartbeat-Request,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or any valid value),
 -- 'Data Options' absent
4. TRANSMIT Heartbeat-ACK,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or any valid value),
 -- 'Data Options' absent

12.YY.1.1.17 Configurable Reconnect Timeout Test

Purpose: To verify that a device adheres to its configurable reconnect timeout.

Test Concept: Turn on the IUT. When the IUT attempts to connect to the primary hub, the primary hub does not respond.
Verify that the IUT waits at least the configured reconnect timeout, and no longer than 600 seconds before attempting to
reconnect.

Configuration Requirements: The IUT is configured with the TD as the primary hub with no failover hub or as direct connection
initiation peer of the TD. The IUT is configured with a tester selected reconnect timeout, RT, within the range supported by
the IUT and within 2 .. 300 seconds. The IUT starts the test powered off. If the IUT has a fixed reconnect timeout, this test
shall be skipped.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT attempts to open a new WebSocket with the TD)
3. MAKE(place the TD in a mode where it will accept incoming connections)
4. WAIT RT seconds
5. BEFORE 600 - RT seconds
 RECEIVE PORT (IUT-TD primary hub WebSocket)
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT PORT (IUT-TD primary hub WebSocket)
 Connect-Accept,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 31

 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.1.18 Fixed Reconnect Timeout Test

Purpose: To verify that a device's fixed reconnect timeout is in the range 10 .. 30 seconds.

Test Concept: Turn on the IUT. When the IUT attempts to connect to the TD as the primary hub or as a direct connection peer
of the TD, the TD does not respond. Verify that the IUT does not attempt to connect within 10 seconds. Then verify that the
IUT does attempt to connect within the following 590 seconds.

Configuration Requirements: The IUT is configured with the TD as the primary hub with no failover hub, or as a direct
connection peer of the TD. The IUT starts the test powered off. If the IUT does not have a fixed reconnect timeout this test
shall be skipped.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT attempts to open a new WebSocket with the TD)
3. MAKE(place the TD in a mode where it will accept incoming connections)
4. WAIT 10 seconds
5. BEFORE 590 seconds
 RECEIVE PORT (IUT-TD primary hub WebSocket)
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT PORT (IUT-TD primary hub WebSocket)
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.2 Basic Node Negative Tests

12.YY.1.2.1 Direct Connect Not Supported - NAK Address Resolution Test

Reference YY.3.3

Purpose: To verify that devices configured to not accept direct connect requests will NAK an Address-Resolution request.

Test Concept: With the IUT configured to not accept direct connections, and with it connected to the BACnet/SC network,
have device D3 send an Address-Resolution message to the IUT. Verify that the IUT NAKs the request.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

32 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The IUT is configured to not accept direct connections.

Test Steps:

1. TRANSMIT Address-Resolution,
 'Message ID' = (M1: any valid value)
 'Originating Virtual Address' = D3,
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
2. RECEIVE BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'02', -- Address-Resolution
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

12.YY.1.2.2 Malformed BVLC Test

Reference YY.3.1.5

Purpose: Verify that device NAKs malformed / unknown unicast BVLC and ignores malformed / unknown broadcast BVLC.

Test Concept: With the IUT connected to the BACnet/SC network, send a sequence of malformed unicast and broadcast BVLCs
to the IUT. Verify that the IUT responds with an appropriate NAK to each unicast one and does not process nor route the
messages.

Configuration Requirements: The IUT is connected to the BACnet/SC network as a node or hub.

Test Steps:

-- Invalid BVLC function
1. TRANSMIT
 'BVLC Function' = (IV: an invalid 1-octet value),
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
2. RECEIVE BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = IV, -- the supplied invalid BVLC function from the request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = BVLC_FUNCTION_UNKNOWN
3. CHECK(that the IUT did not process nor forward the request)

-- Inclusion of an Originating Virtual Address when it is required to be absent
4. TRANSMIT Disconnect-Request,
 'Message ID' = (M2: any valid value),
 'Originating Virtual Address' = D3,
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 33

 -- 'Data Options' absent
5. RECEIVE BVLC-Result,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'08', -- Disconnect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = (COMMUNICATION or SERVICES),
 'Error Code' = (HEADER_ENCODING_ERROR, INCONSISTENT_PARAMETER,
 PARAMETER_OUT_OF_RANGE or OTHER)

6. CHECK(that the IUT did not process the request)

-- Inclusion of a 'Destination Virtual Address when it is required to be absent
7. TRANSMIT Disconnect-Request,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent,
 'Destination Virtual Address' = (IUT's VMAC),
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
8. RECEIVE BVLC-Result,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'08', -- Disconnect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = (COMMUNICATION or SERVICES),
 'Error Code' = (HEADER_ENCODING_ERROR, INCONSISTENT_PARAMETER,
 PARAMETER_OUT_OF_RANGE or OTHER)
9. CHECK(that the IUT did not process the request)

-- A truncated message
10. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M4: any valid value),
 'Originating Virtual Address' = (OVA: absent, or D3 if IUT is configured as a hub),
 'Destination Virtual Address' = (IUT's VMAC),
 -- 'Destination Options' absent
 -- 'Data Options' absent
 -- no NPDU included in the message
11. RECEIVE BVLC-Result,
 'Message ID' = M4,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = OVA,
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'01', -- Encapsulated-NPDU
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = MESSAGE_INCOMPLETE | PAYLOAD_EXPECTED
12. CHECK(that the IUT did not process the request)

-- A message with extra octets added on
13. TRANSMIT Disconnect-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

34 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message ID' = (M5: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 (extra octets) = ({ X'C1', --a bunch of octets that look like valid data options.
 X'BF0003000012',
 X'3F0003000034'})
14. RECEIVE BVLC-Result,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'08', -- Disconnect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = UNEXPECTED_DATA
15. CHECK(that the IUT did not process the request)

-- A truncated broadcast message
16. TRANSMIT Encapsulated-NPDU,
 DESTINATION = GLOBAL_BROADCAST,
 'Message ID' = (M6: any valid value),
 -- 'Originating Virtual Address' absent,
 'Destination Virtual Address' = (local broadcast VMAC),
 -- 'Destination Options' absent
 'Data Options' = ({ X'E1' -- Secure Path,
 more follows (but none are present)
 })
17. CHECK(that the IUT does not send a BVLC-Result, did not process the message, nor route the message)

12.YY.1.2.3 Discard BVLC with Wrong Address Test

Purpose: To verify that BVLCs with an incorrect VMAC are dropped.

Test Concept: With the IUT connected to the BACnet/SC network, send a ReadProperty to the IUT in an invalid BVLC message
with a BVLC Destination Address that does not match the IUT. Verify that the IUT does not respond with a BVLC NAK nor
with a ReadProperty-ACK.

Test Steps:

1. TRANSMIT Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' (absent or any valid VMAC)
 'Destination Virtual Address' = (any non-broadcast VMAC other than the IUT's),
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request,
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = Object_Name
2. CHECK(that the IUT does not response with a BVLC-Result nor a ReadProperty-ACK)

12.YY.1.2.4 Hub Connector Ignores Malformed Hub URIs Test

Purpose: Verify that the IUT's hub connector will not attempt to connect to malformed URIs or URIs with a scheme other than
wss.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 35

Test Concept: Configure the IUT with a primary hub URI with an invalid scheme or otherwise invalid URI. Verify that the
IUT does not attempt to connect to the invalid URI.

Configuration Requirements: If the IUT cannot be configured with an invalid hub URI this test shall be skipped.

Test Steps:

1. MAKE(configure the primary hub URI in the IUT with a URI having a scheme other than wss)
2. CHECK(that the IUT does not attempt to connect to the URI)

12.YY.1.2.5 Connect-Request Response Wait Time Test

Purpose: To verify that the IUT will close the WebSocket if a response to a Connect-Request is not received before the
connection wait timer expires.

Test Concept: Turn on the IUT. When the IUT attempts to connect to the TD as the primary hub or as a direct connection peer,
the TD will accept the WebSocket connection but will not send a response to the connect request. It is verified that the IUT
closes the WebSocket when the connection wait timer expires.

Configuration Requirements: The IUT is configured with the TD as the primary hub, or as a direct connect peer. The TD is
configured to accept WebSocket connections but to not respond to Connect-Requests.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT attempts to open a new WebSocket with the TD)
3. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. WAIT connect wait timeout
5. CHECK(that the IUT closed the WebSocket)

12.YY.1.2.6 HTTP 1.1 Fallback Test

Purpose: To verify that the IUT is able to fallback to HTTP 1.1.

Test Concept: With the IUT configured to connect to the TD as the primary hub, turn on the IUT and when it attempts to
connect, have the TD indicate that it only supports HTTP 1.1 as specified in RFC 6455. Verify that the IUT falls back to using
HTTP 1.1.

Configuration Requirements: The IUT is configured to use HTTP 2 or later. If the IUT cannot be configured to do so, this test
shall be skipped. The TD is configured to only support HTTP 1.1.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT attempts to connect with HTTP 2 or later)
3. CHECK(that the IUT successfully connects to the TD using HTTP 1.1)
4. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

36 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
5. TRANSMIT Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.2.7 Rejection of Invalid Certificate Outgoing Connection Test

Purpose: To verify that the IUT will drop initiated connection attempts if the peer's certificate is invalid.

Test Concept: With the IUT configured to connect to the TD as the primary hub or as a peer via a direct connection, allow the
IUT to attempt the connection. The TD presents an invalid certificate during the connection. Verify that the WebSocket is not
established.

Configuration Requirements: The TD is configured with an invalid certificate, or a certificate signed by a Certificate Authority
which is not one recognized by the IUT. The TD shall be configured to accept the IUT's certificate.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT initiated a WebSocket connection)
3. CHECK(that the WebSocket connection was failed by the IUT)

12.YY.1.2.8 No Additional Certificate Checks Performed Test On Outgoing Connections

Purpose: Verify that the IUT does not apply checks beyond the 4 listed in YY.7.4 when not configured to do so.

Test Concept: With the IUT configured to connect to the TD as the primary hub, or as a peer via a direct connection, allow the
IUT to attempt to connect. During the connection process the TD presents a valid certificate with field that would be caught if
the IUT applied validation steps outside of those listed in YY.7.4.

Configuration Requirements: The IUT is configured to not perform any additional certificate checks beyond those identified
in YY.7.4. The TD is configured with a certificate with a Common Name, Distinguished Name, or Subject Alternate Name
which does not match the TD device.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. CHECK(that the IUT attempts to connect a WebSocket)
4. RECEIVE Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
5. TRANSMIT Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 37

 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.1.2.9 Invalid WebSocket Data Test

Purpose: To verify that the IUT will drop a WebSocket if a non-BVLC data frame is received on the WebSocket.

Test Concept: The IUT is connected to the network. Send a non-binary WebSocket data frame (the only type allowed for BVLC
packets) to the IUT to hub WebSocket. Verify that the IUT closes the connection.

Configuration Requirements: The IUT is connected to the TD as a primary hub or direct connection peer.

Test Steps:

1. TRANSMIT WebSocket Frame,
 'opcode' = (a value in the range 1, 3 - 7), -- WebSocket opcode for a
 -- non-binary data frame
 Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'BACnet NPDU' =
 ReadProperty-Request
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = Object_Name
2. CHECK(that the IUT closes the WebSocket)

12.YY.1.3 Basic Node Configuration Tests

12.YY.1.3.1 Configuration Via PEM Test

Purpose: To verify that the IUT's configuration tool supports PEM format certificates.

Test Concept: The IUT's configuration tool is made to export a certificate signing request in PEM format. The PEM signing
request is imported into the TD and a PEM format certificate is exported in PEM format. The PEM certificate is then loaded
into the IUT with the IUT's configuration tool. The IUT is then configured to connect to the TD as the primary hub. The IUT
is allowed to connect to the primary hub, and a successful connection is verified.

Test Steps:

1. MAKE(the IUT's configuration tool export a certificate signing request in PEM format)
2. CHECK(that the PEM file is well formed)
3. MAKE(import the PEM file into the TD and generate a PEM format certificate)
4. MAKE(the IUT's configuration tool load the PEM format certificate into the IUT)
5. MAKE(the IUT connect to the TD using the new certificate)

12.YY.1.3.2 Configuration Tool Accepts Arbitrary Valid Certificate Parameters Test

Purpose: To verify that the IUT's configuration tool accepts arbitrary valid certificate parameters.

Test Concept: The tester selects arbitrary valid values for the certificate inputs, and it is verified that the configuration tool
accepts them.

Test Steps:

1. MAKE(the IUT's configuration tool export a certificate signing request using the tester selected
 certificate parameters in PEM format)
2. CHECK(that the PEM file is well formed)
3. MAKE(import the PEM file into the TD and generate a PEM format certificate)
4. MAKE(the IUT's configuration tool load the PEM format certificate into the IUT)
5. MAKE(the IUT connect to the TD using the new certificate)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

38 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

12.YY.1.3.3 Factory Defaults Test

Purpose: To verify that the IUT can be reset to factory defaults and that operational certificates and sensitive data are removed.

Test Concept: The IUT is configured to connect to the BACnet/SC network. Verify that the IUT can connect. Using the IUT's
documented method for returning it to factory defaults, reset the IUT to factory defaults. Reset the IUT. Using the IUT's
configuration tool or another vendor identified method, verify that the IUT no longer has its private data. Reset the IUT and
verify that it does not attempt to connect to the previously configured hub. If the IUT accepts direct connections, attempt to
connect to the previously configured IUT direct connect URL. Verify that the connection does not succeed. If the IUT was
configured as a hub, verify that it does not accept connections using a previously acceptable certificate.

Test Steps:

1. MAKE(the IUT connect to the TD)
2. READ ON = (Device, IUT), Object_Name
3. MAKE(the IUT reset to factory defaults)
4. CHECK(that any private data viewable through the configuration tool has been discarded, including the hub
 URIs)
5. MAKE(reset the IUT)
6. MAKE(set the primary hub URI to the TD's hub URI)
7. MAKE(if the BACnet/SC Network Port has been disabled, enable it)
8. IF (the BACnet/SC port works when enabled without providing it with a certificate) THEN {
 CHECK(that the IUT is not able to connect to the TD due to not having a certificate signed by a
 mutually agreed upon CA)
 }

12.YY.2 Hub Tests

This clause contains test for BACnet/SC hub functions, both primary and failover.

D3 D2F

IUT
node

IUT
hub

D5

D4

Figure X3: Network setup for hub function tests when
the IUT is playing the role of the primary hub.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 39

D3 IUT
node

IUT
hub

D1P
D5

D4

Figure X4: Network setup for hub function tests when
the IUT is playing the role of the failover hub.

D3 IUT
node

IUT
hub

D1P
D5

D4

Figure X5: Network setup for hub function tests when
the IUT is playing the role of the failover hub and not
all nodes have reconnected to the primary.

12.YY.2.1 Hub Positive Tests

12.YY.2.1.1 Local Broadcast Initiation Test

Purpose: To verify that the IUT, as a hub, correctly initiates broadcast messages.

Test Concept: With IUT operating as a hub, make the IUT's node generate a broadcast message. Verify that the broadcast is
sent correctly to all nodes attached to the hub.

Configuration Requirements: Configure the IUT as a hub. If the IUT does not support initiation of broadcast messages, this test
shall be skipped.

Test Steps:

1. MAKE(the IUT send a broadcast NPDU)
2. REPEAT Dx = (D2, D3, D4) {
 RECEIVE PORT (Dx-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Originating Virtual Address' = (IUT's VMAC),
 'Destination Virtual Address' = X'FFFFFFFF' -- the local broadcast VMAC
 'Destination Options' = (absent or any valid value),
 'Data Options' = (secure path, plus 0 more data options),
 'Payload' = (a well formed NPDU)
 }
3. CHECK(that all of the NPDUs received in the preivous step are the same)

12.YY.2.1.2 Local Broadcast Execution Test

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

40 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Purpose: To verify that IUT, as a hub, correctly accepts and processes broadcast messages.

Test Concept: With the IUT operating as a hub, send a broadcast to the hub. Verify that the message is forwarded to all hub
connectors except the one that originated it. Also verify that the hub's local node processes the broadcast.

Configuration Requirements: The IUT is operating as a hub and devices D2, D3, and D4 are connected to it.

Notes to Tester: The order of the broadcasts sent by the hub and the I-Am response can be sent in any order.

Test Steps:

1. TRANSMIT PORT (D4-IUT hub WebSocket),
 Encapsulated-NPDU,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = X'FFFFFFFF', -- the local broadcast VMAC
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload'
 Who-Is-Request
2. REPEAT Dx = (D2, D3) {
 RECEIVE PORT (Dx-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Originating Virtual Address' = (D4's VMAC),
 'Destination Virtual Address' = X'FFFFFFFF', -- the local broadcast VMAC
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload'
 Who-Is-Request
 }
3. RECEIVE PORT (D4-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Originating Virtual Address' = (IUT's VMAC)
 'Destination Virtual Address' = (D4's VMAC or X'FFFFFFFF', the local broadcast VMAC)
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload'
 I-Am-Request,
 'I Am Device Identifier' = (the IUT's Device object),
 'Max APDU Length Accepted' = (the value specified in the EPICS),
 'Segmentation Supported' = (the value specified in the EPICS),
 'Vendor Identifier' = (the identifier registered for this vendor)

12.YY.2.1.3 Minimum NPDU Forwarding Size Test

Purpose: To verify that the hub can forward BVLC messages of length 1497 with 4192 octets of data and destination options.

Test Concept: With the IUT operating as the primary hub, connect devices D3 and D4 to the IUT. D3 sends a BVLC of length
1497 octets with 4192 octets of data options to D4 via the hub. Verify that the BVLC is correctly forwarded to D4.

Configuration Requirements: The IUT is configured as a primary or failover hub and the test devices D3, D4, and D5 are
connected to it.

Test Steps:

1. TRANSMIT PORT (D3-IUT hub WebSocket),
 Encapsulated-NPDU,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (D4's VMAC),
 -- 'Destination Options' absent
 'Data Options' = ({X'C1',
 X'3F105A000034…'
 }), -- replace … with 4186 octets of any value
 'Payload'

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 41

 WriteProperty-Request,
 'Object Identifier' = (O: any object identifier),
 'Property Identifier' = (P: any property identifier),
 'Property Value' = (V: any data value with an encoded length which makes the
 PayLoad 1497 octets)
2. RECEIVE PORT (D4-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Originating Virtual Address' = (D3's VMAC),
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({X'C1',
 X'3F105A000034…'
 }), -- replace … with 4186 octets of any value
 'Payload'
 WriteProperty-Request,
 'Object-Identifier' = O,
 'Property-Identifier' = P,
 'Property Value' = V

12.YY.2.1.4 Failover Hub Connects to Primary Hub Test

Purpose: To verify that when the IUT is operating as a failover hub, the IUT's node connects to the primary hub.

Test Concept: The IUT is configured as a failover hub, and the IUT's node has another hub set as its primary hub. Verify that
the IUT connects to its primary hub.

Configuration Requirements: The IUT is configured as a failover hub with the TD set as its primary hub.

Test Steps:

1. MAKE(the IUT connect to the primary hub)
2. CHECK(that the IUT opens a WebSocket with the TD)
3. RECEIVE PORT (IUT-TD hub WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. TRANSMIT PORT (IUT-TD hub WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)

12.YY.2.1.5 Failover Hub’s Local Node Connects to Failover Hub Test

Purpose: To verify that, when operating as a failover hub, the IUT’s local node connects to the local hub connection when the
primary is offline.

Test Concept: The IUT is configured as the IUT's local node’s failover hub, and the IUT's local node has the TD set as its
primary hub. Verify that the IUT connects to its primary hub. Disconnect the primary from the network. Wait for the IUT to

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

42 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

recognize the primary is offline. Connect D3 to the IUT’s hub connection. Make the IUT’s local node send a message to D3.
Verify that the message is sent from the IUT’s hub connection.

Configuration Requirements: The IUT is configured as a failover hub with the TD set as its local node’s primary hub. The TD
is configured to be a hub.

Test Steps:

1. MAKE(the IUT connect to the primary hub)
2. CHECK(that the IUT opens a WebSocket with the TD)
3. RECEIVE PORT (IUT-TD hub WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. TRANSMIT PORT (IUT-TD hub WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
5. WAIT a tester selected amount of time
6. MAKE(the TD's hub function stop)
7. WAIT 2 times the IUT's HeartBeat timeout
8. MAKE(D3 open a WebSocket with IUT's hub URI)
9. TRANSMIT PORT (D3-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
10. RECEIVE PORT (D3-IUT hub WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
11. MAKE(the IUT's node send an NPDU to D3)
12. RECEIVE PORT (D3-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M3: any valid value),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 43

 'Originating Virtual Address' = (IUT's VMAC),
 'Destination Virtual Address' = (absent or local broadcast)
 'Destination Options' (absent or any valid value),
 'Data Options' = (Secure Path + 0 or more valid data options),
 'Payload' = (any valid NPDU)

12.YY.2.1.6 Failover Hub Split Horizon Test

Purpose: To verify that the IUT, operating as a failover hub, continues to perform hub functions when the IUT node is connected
to the primary hub.

Test Concept: The IUT is configured as a failover hub and is connected to the TD acting as the primary hub. Connect device
D3 to the IUT's hub URI. Verify that the IUT accepts the connection. Connect device D4 to the IUT's hub function. Verify that
the IUT accepts the connection. D3 sends a broadcast to the IUT's hub function. Verify that the broadcast is properly forwarded
to D4 and no other nodes. Verify that the IUT's node does not receive the broadcast. Connect D5 to the primary hub. D5 sends
an Advertisement-Solicitation message to ensure that the IUT is aware of its existence. D3 sends a unicast destined for D5 to
the hub for forwarding. Verify that the IUT does not forward the request.

Configuration Requirements: The IUT is configured as a failover hub with the TD set as its primary hub. The TD is configured
to be a primary hub. The IUT's node is connected to the primary hub.

Test Steps:

1. CHECK(that the IUT's node is connected to the TD's hub function)
2. MAKE(D3 open a WebSocket with IUT's hub URI)
3. TRANSMIT PORT (D3-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
4. RECEIVE PORT (D3-IUT hub WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
5. TRANSMIT PORT (D4-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D4's VMAC),
 'Device UUID' = (D4's UUID),
 'Maximum BVLC Length' = (the D4's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D4's maximum NPDU accepted length)
6. RECEIVE PORT (D4-IUT hub WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

44 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

-- verify that D3 and D4 can communicate with each other and that the IUT's local node does not receive
-- broadcasts generated by D3
7. TRANSMIT PORT (D3-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (X'FFFFFFFF' local broadcast VMAC),
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload' =
 DNET = GLOBAL_BROADCAST,
 Who-Is-Request
8. RECEIVE PORT (D4-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M3: any valid value),
 'Originating Virtual Address' = (D3's VMAC),
 'Destination Virtual Address' = (X'FFFFFFFF' local broadcast VMAC),
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload' =
 DNET = GLOBAL_BROADCAST,
 Who-Is-Request
9. CHECK(that the IUT does not generate an I-Am for its local node)

-- verify that D5, connected to the primary, and the IUT's node can communicate
10. TRANSMIT PORT (IUT-TD hub WebSocket),
 Advertisement-Solicitation,
 'Message ID' = (M4: any valid value),
 'Originating Virtual Address' = (D5's VMAC),
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent

11. RECEIVE PORT (IUT-TD hub WebSocket),
 Advertisement,
 'Message ID' = (M5: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (D5's VMAC),
 'Destination Options' (absent, or a valid list of options),
 -- 'Data Options' absent
 'Payload'
 'Hub Connection Status' = X'01', -- connected to the primary hub
 'Accept Direct Connections' = (as per the IUT's configuration),
 'Maximum BVLC Length' = (as per the IUT's configuration),
 'Maximum NPDU Length' = (as per the IUT's configuration)

-- verify that D3, connected to the failover, and D5, connected to the primary, cannot communicate
12. TRANSMIT PORT (D3-IUT hub WebSocket),
 Advertisement-Solicitation,
 'Message ID' = (M6: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (D5's VMAC),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 45

 -- 'Destination Options' absent
 -- 'Data Options' absent
13. CHECK(that the IUT does not forward the Advertisement-Solicitation)

-- verify that D3, connected to the failover, and the IUT's node, connected to the primary, cannot communicate
14. TRANSMIT PORT(D3-IUT hub WebSocket),
 Advertisement-Solicitation,
 'Message ID' = (M7: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
15. CHECK(that the IUT does not generate an Advertisement)

12.YY.2.1.7 Hub Forwards Unicast BVLCs Test

Purpose: To verify that a hub correctly forwards unicast BVLCs received on any current hub connection.

Test Concept: The IUT is operating as the primary hub. D3 sends a unicast to D4 via the hub. Verify that the IUT correctly
forwards the message to D4.

Configuration Requirements: The IUT is configured as the primary hub. D3 and D4 are connected to the IUT's hub function.

Test Steps:

-- verify that D3 and D4 can communicate with each other
1. TRANSMIT PORT (D3-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (D4's VMAC),
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload' =
 Who-Is-Request
2. RECEIVE PORT (D4-IUT hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = (D3's VMAC),
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({X'41'}), -- Secure Path
 'Payload' =
 Who-Is-Request
3. CHECK(that the Encapsulated-NPDU is not fowarded to any other devices, is not routed, and that the IUT does
 not generate an I-Am)

12.YY.2.1.8 No Additional Certificate Checks Performed Test On Incoming Connections

Purpose: Verify that the IUT does not apply checks beyond the 4 listed in YY.7.4 when not configured to do so.

Test Concept: With the IUT configured to operate as a hub. The TD attempts to connect to the IUT with a valid certificate with
field that would be caught if the IUT applied validation steps outside of those listed in YY.7.4.

Configuration Requirements: The IUT is configured to operate as a hub. The TD is configured with a certificate with a Common
Name, Distinguished Name, or Subject Alternate Name which does not match the TD device.

Test Steps:

1. MAKE(the TD open a WebSocket to the IUT's hub function)
2. TRANSMIT PORT (TD-IUT hub WebSocket)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

46 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
3. RECEIVE PORT (TD-IUT hub WebSocket)
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

12.YY.2.1.9 Duplicate Connection Test

Purpose: To verify that duplicate hub connection requests result in the original connection being dropped.

Test Concept: With the IUT operating as hub, connect device D3 to the IUT's hub URI. When the connection is complete, D3
attempts to bring up a second connection to the IUTs hub URI. Verify that the IUT accepts the second connect request and
closes the first connection. Repeat the reconnection, but with a new VMAC for D3 and ensure that the new request is accepted
and the existing one dropped.

Test Steps:

1. MAKE(D3 connect to the IUT's hub function)
2. TRANSMIT PORT (D3-IUT hub first WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
3. RECEIVE PORT (D3-IUT hub first WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. MAKE(D1 connect a second WebSocket to the IUT's hub function)
5. TRANSMIT PORT (D3-IUT hub second WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 47

 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
6. RECEIVE PORT (D3-IUT hub second WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
7. RECEIVE PORT (D3-IUT hub first WebSocket),
 Disconnect-Request,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
8. TRANSMIT PORT (D3-IUT hub first WebSocket),
 Disconnect-ACK,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
9. CHECK(that the IUT closed D3's initial WebSocket)
10. MAKE(D3 connect a third WebSocket to the IUT's hub function)
11. TRANSMIT PORT (D3-IUT hub second WebSocket),
 Connect-Request,
 'Message ID' = (M4: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (a new VMAC for D3 which does not conflict with any other VMACs),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
12. RECEIVE PORT (D3-IUT hub third WebSocket),
 Connect-Accept,
 'Message ID' = M4,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
13. RECEIVE PORT (D3-IUT hub second WebSocket),
 Disconnect-Request,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
14. TRANSMIT PORT (D3-IUT hub second WebSocket),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

48 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Disconnect-ACK,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
15. CHECK(that the IUT closed D3's second WebSocket)

12.YY.2.1.10 Heartbeat-Request Execution Test

Purpose: To verify that the IUT accepts and responds to Heartbeat-Requests.

Test Concept: With the IUT operating as a hub, the TD connects to the IUT. The TD sends a Heartbeat-Request to the IUT.
Verify that the IUT responds with a Heartbeat-ACK.

Configuration Requirements: The IUT is configured as a hub, and the TD is connected to it.

Test Steps:

1. TRANSMIT PORT (TD-IUT hub WebSocket),
 Heartbeat-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
2. RECEIVE PORT (TD-IUT hub WebSocket),
 Heartbeat-ACK,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent

12.YY.2.2 Hub Negative Tests

12.YY.2.2.1 Hub Discards BVLCs with Non-connected VMAC Test

Reference YY.5.1, YY.5.3.3

Purpose: To verify that a hub will drop received BVLCs with a destination VMAC not connected to the hub.

Test Concept: With the IUT operating as the primary hub, connect to the IUT and send a message to a VMAC which is not
connected to the IUT. Verify that the BVLC is silently dropped.

Configuration Requirements: The IUT is configured as a hub and device D3 is connected but device D4 is not.

Test Steps:

1. TRANSMIT PORT (D3-IUT hub WebSocket),
 Advertisement-Solicitation,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = (D4's VMAC)
 -- 'Destination Options' absent
 -- 'Data Options' absent
2. CHECK(that the Advertisement-Solicitation is silently dropped)

12.YY.2.2.2 Connect-Request Wait Time Test

Purpose: To verify that the hub will close the WebSocket if the Connect-Request is not received before the connection wait
timer expires.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 49

Test Concept: With the IUT connected to the BACnet/SC network. Open a WebSocket connection with the IUT's hub port, but
do not send a connect-request. Verify that the IUT closes the WebSocket after the connection wait timer expires.

Configuration Requirements: The IUT is configured to be a BACnet/SC hub.

Test Steps:

1. MAKE(a WebSocket connection to the IUT's hub function)
2. WAIT the connection wait timer expiration time
3. CHECK(that the IUT closed the WebSocket and did not send any messages on the WebSocket)

12.YY.2.2.3 VMAC Collision Detection Test

Purpose: To verify that connections to devices with a duplicate VMAC are rejected.

Test Concept: With the IUT operating as the primary hub, connect device D3 to the IUT's hub function. Connect D4 to the
IUT's hub function and provide the IUT's VMAC in the Connect-Request. Verify that the IUT NAKs the connect request with
an error code of NODE_DUPLICATE_VMAC. Retry the Connect-Request with D3's VMAC. Verify that the IUT NAK's the
connect request.

Configuration Requirements: The IUT is configured as a hub. D3 is connected to the IUT and D4 is not.

Test Steps:

1. MAKE(D4 connect a WebSocket to the IUT's hub function)
2. TRANSMIT PORT (D4-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (D4's UUID),
 'Maximum BVLC Length' = (the D4's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D4's maximum NPDU accepted length)
3. RECEIVE PORT (D4-IUT hub WebSocket),
 BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC
4. TRANSMIT PORT (D4-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D4's UUID),
 'Maximum BVLC Length' = (the D4's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D4's maximum NPDU accepted length)
5. RECEIVE PORT (D4-IUT hub WebSocket),
 BVLC-Result,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

50 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK
 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC
6. TRANSMIT PORT (D4-IUT hub WebSocket),
 Connect-Request,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D4's VMAC),
 'Device UUID' = (D4's UUID),
 'Maximum BVLC Length' = (the D4's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D4's maximum NPDU accepted length)
7. RECEIVE PORT (D4-IUT hub WebSocket),
 Connect-Accept,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

12.YY.2.2.4 Rejection of Invalid Certificate Incoming Connection Test

Purpose: To verify that the IUT will not accept incoming connections if the peer's certificate is invalid.

Test Concept: With the IUT operating as a hub, D3 attempts to open a WebSocket to the IUT's hub URI. D3 presents an invalid
certificate during the connection process. Verify that the WebSocket is not established.

Configuration Requirements: The IUT is configured to be a hub. The TD is configured with an invalid certificate, or a certificate
signed by a Certificate Authority which is not one recognized by the IUT. The TD shall be configured to accept the IUT's
certificate.

Test Steps:

1. MAKE(D3 attempt to connect to the IUT's hub function with an invalid certificate)
2. CHECK(that the IUT refused the connection)

12.YY.3 Direct Connect Tests

This group of tests verifies secure connect devices using direct connections. The logical configuration of the network used for
these tests is shown in Figure X6. The test descriptions in this clause assume that the TD plays the role of all of the other

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 51

devices in the network configuration. For the tests in this section, unless specified through a PORT parameter, messages
specified by the test are on the IUT to peer device direct connection WebSocket.

D3 D2F

D1PIUT

dc

Figure X6: Network setup for basic node tests showing
connections when the primary hub is active.

12.YY.3.1 Direction Connect Basic Tests

12.YY.3.1.1 Direction Connect Basic Positive Tests

12.YY.3.1.1.1 Unicast Through Direct Connect Test

Purpose: Verify that the IUT correctly composes unicasts aimed at a device through a direct connect.

Test Concept: With the IUT connected to D3 via a direct connection, have D3 send a request to the IUT which requires a
response and verify that the response is sent back through the direct connection. If the IUT initiates APDU requests, make the
IUT initiate a request and verify that it is transmitted through the direct connection.

Configuration Requirements: The IUT is connected to D3 via direct connect.

Test Steps:

1. TRANSMIT PORT (IUT-D3 direct connect WebSocket),
 Encapsulated-NPDU,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({ X'41' }), -- Secure Path
 'Payload'
 ReadProperty-Request,
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = (P: any readable property in O)
2. RECEIVE PORT (IUT-D3 direct connect WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({ X'41' }), -- Secure Path
 'Payload'
 ReadProperty-ACK,
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = (P: any readable property in O),
 'Property Value' = (V: any valid value)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

52 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

12.YY.3.1.1.2 Direct Connect Disconnect Test

Purpose: To verify that the IUT is able to correctly disconnect a direct connection with a non-hub peer BACnet/SC node.

Test Concept: With the IUT connected to another device via a direct connection, make the IUT close the connection. Verify
that the IUT correctly requests and performs a disconnect.

Configuration Requirements: The IUT is directly connected to D3. If the IUT never closes established direct connections, this
test shall be skipped.

Test Steps:

1. MAKE(the IUT drop the direct connection to D3)
2. RECEIVE PORT (IUT-D3 direct connect WebSocket)
 Disconnect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
3. TRANSMIT PORT (IUT-D3 direct connect WebSocket)
 Disconnect-ACK,
 'Message ID' = M1,
 --'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
4. CHECK(that the WebSocket is closed)

12.YY.3.1.1.3 Direct Connect Establishment Failover Test

Purpose: To verify that the IUT is able to continue to communicate with an arbitrary peer BACnet/SC node via the hub after a
direct connect request to the peer is rejected.

Test Concept: With IUT connected to the network, and with a direct connection between the IUT and D3, make the IUT
communicate with D3 to verify that the connection is working. Make D3 drop the direct connection. Make the IUT
communicate with D3, having the IUT initiate the conversation if possible. Verify that the IUT is able to communicate with
D3 through the hub.

Configuration Requirements: The IUT is connected to the primary hub and has a direct connection to D3. D3 shall be configured
such that it will reject any attempts to re-establish the direct connection after the initial direct connection is dropped.

Test Steps:

1. TRANSMIT PORT (IUT-D3 direct connect WebSocket),
 Advertisement,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'Payload'
 'Hub Connection Status' = X'01', -- connected to the primary
 'Accept Direct Connections' = X'00', -- does not accept incoming direct connections.
 'Maximum BVLC Length' = (any valid value),
 'Maximum NPDU Length' = (any valid value)
2. TRANSMIT PORT (IUT-D3 direct connect WebSocket),
 Disconnect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
3. RECEIVE PORT IUT to D3 direct connect WebSocket),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 53

 Disconnect-ACK,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
4. IF the IUT can initiate an NPDU request to D3 THEN {
 MAKE(IUT send an NPDU to D3)
 -- note that the IUT might attempt a reconnect at this point, which will be rejected by D3, and that such an
 -- attempt is acceptable
 RECEIVE PORT (IUT-TD hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M3: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = (Secure Path plus 0 or more valid data options),
 'Payload' = (a valid NPDU)
 } ELSE {
 TRANSMIT PORT (IUT-TD hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M4: any valid value),
 'Originating Virtual Address' = D3,
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 'Data Options' = ({ X'41'}) , -- Secure Path
 'Payload' =
 ReadProperty-Request,
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = (P: any property in O)
 RECEIVE PORT (IUT-TD hub WebSocket),
 Encapsulated-NPDU,
 'Message ID' = (M5: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a valid list of options),
 'Data Options' = (Secure Path plus 0 or more valid data options),
 'Payload' =
 ReadProperty-ACK,
 'Object Identifier' = (O: any object in the IUT),
 'Property Identifier' = (P: any property in O),
 'Property Value' = (any valid value)

12.YY.3.1.2 Direction Connect Basic Negative Tests

12.YY.3.1.2.1 Discard Broadcast BVLC Received on Direct Connect Test

Purpose: To verify that broadcast BVLCs received on a direct connection are discarded.

Test Concept: With the IUT connected to another device, D3, via a direct connection, have D3 send a broadcast to the IUT.
Verify that the IUT does not process the broadcast.

Configuration Requirements: The IUT is connected to the SC network and has a direct connection to D3.

Test Steps:

1. TRANSMIT PORT (IUT-D3 direct connect WebSocket)

 Encapsulated-NPDU,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = X'FFFFFFFF', -- the local broadcast VMAC

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

54 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Destination Options' = (absent or a valid list of options),
 'Data Options' = (Secure Path plus 0 or more valid data options),
 'Payload' =
 Who-Is-Request
2. CHECK(that the IUT does not generate a BVLC-Response nor an I-Am-Request)

12.YY.3.2 Accepting Direct Connect Tests

12.YY.3.2.1 Accepting Direct Connect Positive Tests

12.YY.3.2.1.1 Direct Connect Acceptance Test

Purpose: To verify that the IUT correctly accepts direct connections.

Test Concept: With IUT connected to the network, have peer node D3 establish a direct connection with the IUT. Verify that
the IUT correctly accepts the connection.

Configuration Requirements: The IUT is configured with a single WebSocket-URI at which it accepts direct connections. The
IUT is connected to the primary hub.

Test Steps:

1. TRANSMIT PORT (IUT-TD hub WebSocket)
 Address-Resolution,
 'Message ID' = (M1: any valid value),
 'Originating Virtual Address' = D3,
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
2. RECEIVE PORT (IUT-TD hub WebSocket)
 Address-Resolution-ACK,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a valid list of options),
 -- 'Data Options' absent
 'Payload'
 'WebSocket-URIs' (W: the configured WebSocket URI for the IUT)
 }
3. MAKE(D3 connect a WebSocket to the IUT)
4. TRANSMIT PORT (D3-IUT direct connect WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D1's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D1's maximum NPDU accepted length)
6. RECEIVE PORT (D3-IUT direct connect WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 55

12.YY.3.2.1.2 No Additional Certificate Checks Performed Test On Incoming Connections

Purpose: Verify that the IUT does not apply checks beyond the 4 listed in YY.7.4 when not configured to do so.

Test Concept: With the IUT configured to accept direct connections. The TD attempts to connect to the IUT with a valid
certificate with field that would be caught if the IUT applied validation steps outside of those listed in YY.7.4.

Configuration Requirements: The IUT is configured to accept direct connections. The TD is configured with a certificate with
a Common Name, Distinguished Name, or Subject Alternate Name which does not match the TD device.

Test Steps:

1. MAKE(the TD open a WebSocket to the IUT's direct connect URI)
2. TRANSMIT PORT (TD-IUT direct connect WebSocket)
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (TD's VMAC),
 'Device UUID' = (TD's UUID),
 'Maximum BVLC Length' = (the TD's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the TD's maximum NPDU accepted length)
3. RECEIVE PORT (TD-IUT direct connect WebSocket)
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

12.YY.3.2.2 Accepting Direct Connect Negative Tests

12.YY.3.2.2.1 Connect-Request Wait Time Test

Purpose: To verify that the IUT will close the WebSocket if the Connect-Request is not received before the connection wait
timer expires.

Test Concept: With the IUT connected to the BACnet/SC network, open a WebSocket connection to the IUT's direct connect
URI, but do not send a connect-request. Verify that the IUT closes the WebSocket after the connection wait timer expires.

Configuration Requirements: The IUT is configured to accept direct connections.

Test Steps:

1. MAKE(a WebSocket connection to the IUT's direct connect WebSocket-URI)
2. WAIT the connection wait timer expiration time
3. CHECK(that the IUT closed the WebSocket and did not send any messages on the WebSocket)

12.YY.3.2.2.2 Direct-Connect Duplicate Connection for IUT Accepted Connections Test

Purpose: To verify that duplicate direct connect connection requests result in the original connection being dropped for
connections initiated by the IUT's peer.

Test Concept: With the IUT connected to the BACnet/SC network, D3 connects to the IUT's direct connect URI. When the
connection is complete, D3 attempts to bring up a second connection to the IUTs direct connect URI. Verify that the IUT
accepts the second connect request and closes the first connection. Repeat the reconnection, but with a new VMAC for D3 and
ensure that the new request is accepted and the existing one dropped.

Configuration Requirements: The IUT is configured to accept direct connections.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

56 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. MAKE(D3 connect to the IUT's direct connect WebSocket URI)
2. TRANSMIT PORT (D3-IUT direct connect first WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
3. RECEIVE PORT (D3-IUT direct connect first WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
4. MAKE(D3 connect a second WebSocket to the IUT's direct connect WebSocket-URI)
5. TRANSMIT PORT (D3-IUT direct connect second WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
6. RECEIVE PORT (D3-IUT direct connect second WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
7. RECEIVE PORT (D3-IUT direct connect first WebSocket),
 Disconnect-Request,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
8. TRANSMIT PORT (D3-IUT direct connect first WebSocket),
 Disconnect-ACK,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
9. CHECK(that the IUT closed D3's initial WebSocket)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 57

10. MAKE(D3 connect a third WebSocket to the IUT's direct connect WebSocket URI)
11. TRANSMIT PORT (D3-IUT direct connect third WebSocket),
 Connect-Request,
 'Message ID' = (M4: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (a new VMAC for D3 which does not conflict with any other VMACs),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
12. RECEIVE PORT (D3-IUT direct connect third WebSocket),
 Connect-Accept,
 'Message ID' = M4,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
13. RECEIVE PORT (D3-IUT direct connect second WebSocket),
 Disconnect-Request,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
14. TRANSMIT PORT (D3-IUT direct connect second WebSocket),
 Disconnect-ACK,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
15. CHECK(that the IUT closed D3's second direct connect WebSocket)

12.YY.3.2.2.3 Direct-Connect Duplicate Connection for IUT Initiated Connections Test

Purpose: To verify that duplicate direct connect connection requests result in the original connection being dropped when the
original connection was initiated by the IUT.

Test Concept: With the IUT connected to the BACnet/SC network, the IUT connects to the D3's direct connect URI. When the
connection is complete, D3 attempts to bring up a second connection to the IUTs direct connect URI. Verify that the IUT
accepts the connect request and closes the existing connection. D3 attempts to bring up a second connection to the IUT's direct
connect URI. Verify that the IUT accepts the connect request and closes the existing connection.

Configuration Requirements: The IUT is configured to initiate and accept direct connections. If the IUT does not support both
initiating and accepting direct connections, this test shall be skipped. If the IUT does not support 2 or more simultaneous direct
connect WebSocket connections, this test shall be skipped.

Test Steps:

1. MAKE(IUT connect to D3's WebSocket URI)
2. RECEIVE PORT (IUT-D3 direct connect first WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

58 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
3. TRANSMIT PORT (IUT-D3 direct connect first WebSocket),
 Connect-Accept,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
4. MAKE(D3 connect a second WebSocket to the IUT's direct connect WebSocket-URI)
5. TRANSMIT PORT (D3-IUT direct connect second WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
6. RECEIVE PORT (D3-IUT direct connect second WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
7. RECEIVE PORT (D3-IUT direct connect first WebSocket),
 Disconnect-Request,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
8. TRANSMIT PORT (D3-IUT direct connect first WebSocket),
 Disconnect-ACK,
 'Message ID' = M3,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
9. CHECK(that the IUT closed D3's initial WebSocket)
10. MAKE(D3 connect a third WebSocket to the IUT's direct connect WebSocket URI)
11. TRANSMIT PORT (D3-IUT direct connect third WebSocket),
 Connect-Request,
 'Message ID' = (M4: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 59

 'VMAC Address' = (a new VMAC for D3 which does not conflict with any other VMACs),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
12. RECEIVE PORT (D3-IUT direct connect third WebSocket),
 Connect-Accept,
 'Message ID' = M4,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
13. RECEIVE PORT (D3-IUT direct connect second WebSocket),
 Disconnect-Request,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
14. TRANSMIT PORT (D3-IUT direct connect second WebSocket),
 Disconnect-ACK,
 'Message ID' = M5,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
15. CHECK(that the IUT closed D3's second direct connect WebSocket)

12.YY.3.2.2.4 VMAC Collision Detection Test

Purpose: To verify that connections to devices with a duplicate VMAC are rejected.

Test Concept: With the IUT connected to the network, have D3 open a WebSocket to the IUT's direct connect URI and provide
the IUT's VMAC in the connect request. Verify that the IUT NAKs the connect request with an error code of
NODE_DUPLICATE_VMAC.

Test Steps:

1. MAKE(D3 connect a WebSocket to the IUT's direct connect WebSocket URI)
2. TRANSMIT PORT (D3-IUT direct connect WebSocket),
 Connect-Request,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
3. RECEIVE PORT (D3-IUT direct connect WebSocket),
 BVLC-Result,
 'Message ID' = M1,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'Result for BVLC Function' = X'06', -- Connect-Request
 'Result Code' = X'01', -- NAK

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

60 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Header Marker' = X'00', -- not a header option problem
 'Error Class' = COMMUNICATION,
 'Error Code' = NODE_DUPLICATE_VMAC
4. TRANSMIT PORT (D3-IUT direct connect WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)
5. RECEIVE PORT (D3-IUT direct connect WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)

12.YY.3.2.2.5 Rejection of Invalid Certificate Incoming Connection Test

Purpose: To verify that the IUT will not accept incoming connections if the peer's certificate is invalid.

Test Concept: With the IUT connected to the network, D3 attempts to open a WebSocket to the IUT's direct connect URI. D3
presents an invalid certificate during the connection process. Verify that the WebSocket is not established.

Configuration Requirements: The IUT is configured to accept direct connections. D3 is configured with an invalid certificate.
D3 is configured to accept the IUT's certificate.

Test Steps:

1. MAKE(D3 attempt to connect to the IUT's direct connect URI with an invalid certificate)
2. CHECK(that the IUT refused the connection)

12.YY.3.3 Initiating Direct Connect Tests

12.YY.3.3.1 Initiating Direct Connect Positive Tests
12.YY.3.3.1.1 Direct Connect Establishment Test

Purpose: To verify that the IUT is able to correctly establish a direct connection with a non-hub peer BACnet/SC node.

Test Concept: With IUT connected to the network, make the IUT establish a direct connection to another node on the network.
Verify that the direct connection is correctly established.

Configuration Requirements: The IUT is configured to support establishing direct connections. The IUT is connected to the
primary hub. D3 is configured to support accepting direct connections. The IUT is configured to use dynamic discovery of
WebSocket-URIs if supported, otherwise the WebSocket-URI for D3 is configured into the IUT.

Test Steps:

1. MAKE(the IUT establish a direct connection to D3)
2. IF (the IUT supports discovering direct connection URIs) {
 RECEIVE PORT (IUT-TD hub WebSocket)
 Address-Resolution,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a list of valid options),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 61

 -- 'Data Options' absent
 TRANSMIT PORT (IUT-TD hub WebSocket)
 Address-Resolution-ACK,
 'Message ID' = M1,
 'Originating Virtual Address' = D3
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'Payload'
 'WebSocket-URIs' (W: a WebSocket URI which D3 can be reached at)
 }
4. CHECK(that the IUT opens a WebSocket to D3's WebSocket-URI)
5. RECEIVE PORT (IUT-D3 direct connect WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)

12.YY.3.3.1.2 Direct Connect Multiple URI Test

Purpose: To verify that the IUT is able to correctly connect to a peer with multiple URIs where only 1 of the URIs is valid for
IUT.

Test Concept: With IUT connected to the network, make the IUT establish a direct connection to D3 with D3 configured to
advertise multiple URIs of which only 1 is valid for the IUT. Verify that the direct connection is correctly established.

Configuration Requirements: The IUT is configured to support establishing direct connections. The IUT is connected to the
primary hub. D3 is configured to support accepting direct connections and is configured with multiple WebSocket-URIs. Only
one of the URIs configured into D3 shall be reachable by the IUT, and that URI shall not be the first or last URI in the D3's list
of URIs. The IUT is configured to use dynamic discovery of WebSocket-URIs. If the IUT does not support dynamic discovery
of WebSocket-URIs, this test shall be skipped.

Test Steps:

1. MAKE(the IUT attempt a direct connection to D3)
2. RECEIVE PORT (IUT-TD hub WebSocket)
 Address-Resolution,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 TRANSMIT PORT (IUT-TD hub WebSocket)
 Address-Resolution-ACK,
 'Message ID' = M1,
 'Originating Virtual Address' = D3

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

62 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'Payload'
 'WebSocket-URIs' (W1, …, Wi, …, Wn) -- only Wi is a WebSocket-URI that
 -- will connect to D3
 }
4. CHECK(that the IUT repeatedly attempts to connect to the WebSocket-URIs until Wi is used)
5. RECEIVE PORT (IUT-D3 direct connect WebSocket),
 Connect-Request,
 'Message ID' = (M2: any valid value),
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (IUT's VMAC),
 'Device UUID' = (IUT's UUID),
 'Maximum BVLC Length' = (the IUT's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the IUT's maximum NPDU accepted length)
6. TRANSMIT PORT (IUT-D3 direct connect WebSocket),
 Connect-Accept,
 'Message ID' = M2,
 -- 'Originating Virtual Address' absent
 -- 'Destination Virtual Address' absent
 'Destination Options' (absent or any valid value),
 -- 'Data Options' absent
 'VMAC Address' = (D3's VMAC),
 'Device UUID' = (D3's UUID),
 'Maximum BVLC Length' = (the D3's maximum BVLC accepted length),
 'Maximum NPDU Length' = (the D3's maximum NPDU accepted length)

12.YY.3.3.2 Initiating Direct Connect Negatives Tests

12.YY.3.3.2.1 Invalid Web Socket Scheme In Configured Direct Connect URI Test

Purpose: To verify that the IUT does not attempt to connect to configured direct connect URIs with invalid schemes.

Test Concept: The IUT is configured with the direct connect URI for device D3 and is connected to the BACnet/SC network.
Take the steps that would normally cause the IUT to initiate a direct connect to D3. Verify that the IUT does not attempt to
connect to the invalid URI.

Configuration Requirements: The IUT is configured to support establishing direct connections to D3 and D3's URI is
configured into the IUT so it does not have to dynamically discover it. The configured URI shall have an invalid websocket
scheme. The IUT starts the test already connected to the primary hub. D3 is configured to support accepting direct connections.
If the IUT does not support configured peer URIs or does not accept invalid schemes in configured URIs, this test shall be
skipped.

Test Steps:

1. MAKE(the IUT initiate the establishement of a direct connection to D3)
2. CHECK(that the IUT does not attempt to open a WebSocket to the invalid WebSocket-URI)

12.YY.3.3.2.2 Invalid Web Socket Scheme in Discovered Direct Connect URI Test

Purpose: To verify that the IUT does not attempt to connect to discovered URIs containing invalid websocket schemes.

Test Concept: With the IUT connected to the BACnet/SC network, make the IUT initiate a direct connect to D3. D3 advertises
its direct connect URL with an invalid scheme. Verify that the IUT does not attempt to connect to the invalid URI.

Configuration Requirements: The IUT is configured to support establishing direct connections and is connected to the primary
hub. D3 is configured to support accepting direct connections. If the IUT does not support dynamically determining direct
connect URIs, this test shall be skipped.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 63

Test Steps:

1. MAKE(the IUT initiate the establishement of a direct connection to D3)
2. IF (the IUT supports discovering direct connection URIs) {
 RECEIVE PORT (IUT-TD hub WebSocket)
 Address-Resolution,
 'Message ID' = (M1: any valid value),
 -- 'Originating Virtual Address' absent
 'Destination Virtual Address' = D3,
 'Destination Options' = (absent or a list of valid options),
 -- 'Data Options' absent
 TRANSMIT PORT (IUT-TD hub WebSocket)
 Address-Resolution-ACK,
 'Message ID' = M1,
 'Originating Virtual Address' = D3,
 -- 'Destination Virtual Address' absent
 -- 'Destination Options' absent
 -- 'Data Options' absent
 'Payload'
 'WebSocket-URIs' (W: a WebSocket URI with an invalid scheme)
 }
3. CHECK(that the IUT does not attempt to open a WebSocket to the invalid WebSocket-URI)

12.YY.3.3.2.3 Rejection of Invalid Certificate Outgoing Connection Test

Purpose: To verify that the IUT will drop initiated connection attempts if the peer's certificate is invalid.

Test Concept: With the IUT configured to initiate direct connections. Make the IUT attempt to connect to D3 via a direct
connection. D3 presents an invalid certificate during the connection. Verify that the WebSocket is not established.

Configuration Requirements: The IUT is configured to initiate direct connections. D3 is configured with an invalid certificate.
D3 shall be configured to accept the IUT's certificate.

Test Steps:

1. MAKE(the IUT attempt to establish a direct connection to D3)
2. CHECK(that the IUT initiated a WebSocket connection)
3. CHECK(that the WebSocket connection was failed by the IUT)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

64 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

10 NETWORK LAYER PROTOCOL TESTS

[Add into Clause 10.2, tests 10.2.X3, 10.2.X4, 10.2.X5, 10.2.X6, p. 483]

10.2 Router Functionality Tests

10.2.X3 Data Attributes Forwarding Test

Purpose: To verify that routers which connect multiple network supporting data attributes, correctly route data attributes.

Test Concept: With the IUT configured as a router between two networks which supports data attributes (such as BACnet/SC),
send to the router a message which needs to be routed to the next network, which contains data attributes. Verify that the
message is correctly routed and the data attributes are included in the routed message.

Configuration Requirements: The IUT shall be configured as a router between 2 networks which support data attributes. If the
IUT does not support this configuration this test shall be skipped.

Test Steps:

1. TRANSMIT PORT A,
 DA = LOCAL BROADCAST,
 SOURCE = D1A,
 'Data Options' = (DATA_OPTS: a valid list of options),
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is
2. RECEIVE PORT B,
 DA = LOCAL BROADCAST,
 SA = IUT,
 'Data Options' = DATA_OPTS,
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 SNET = 1,
 SADR = D1A,
 Hop Count = (any integer x: 0 < x < 255),
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is

10.2.X4 Data Attributes Dropping Test

Purpose: To verify that the IUT drops data_attributes from a received message before routing it to a network which does not
support data_attributes.

Test Concept: With the IUT configured as a router from a network which support data_attributes (such as BACnet/SC) to a
network which does not support data_attributes (such as BACnet/IP), send to the router a message which needs to be routed to
the next network, and which contains data_attributes. Verify that message is correctly routed and the data_attributes are silently
dropped.

Test Steps:

1. TRANSMIT PORT A,
 DA = LOCAL BROADCAST,
 SOURCE = D1A,
 'Data Options' = (DATA_OPTS: a valid list of options),
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is
2. RECEIVE PORT B,
 DA = LOCAL BROADCAST,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 65

 SA = IUT,
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 SNET = 1,
 SADR = D1A,
 Hop Count = (any integer x: 0 < x < 255),
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is

10.2.X5 Secure Path Test

Purpose: To verify that a BACnet/SC to BACnet/SC router correctly conveys the 'Secure Path' header option on routed
messages.

Test Concept: With the IUT configured as a router from BACnet/SC to BACnet/SC or another datalink which supports the
'Secure Path' header option, send to the router a message which needs to be routed to the next network, and which contains the
Secure Path header option. Verify that Secure Path option is included in the routed message.

Configuration Requirements: The IUT is connected to 2 networks which support data attributes and are secure. If the IUT does
not support this configuration then this test shall be skipped.

Test Steps:

1. TRANSMIT PORT A,
 DA = LOCAL BROADCAST,
 SOURCE = D1A,
 'Data Options' = (DATA_OPTS: Secure Path),
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is
2. RECEIVE PORT B,
 DA = LOCAL BROADCAST,
 SA = IUT,
 'Data Options' = (DATA_OPTS: Secure Path),
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 SNET = 1,
 SADR = D1A,
 Hop Count = (any integer x: 0 < x < 255),
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is

10.2.X6 Insecure Path Test

Purpose: To verify that a non-BACnet/SC to BACnet/SC router does not include the 'Secure Path' header option on routed
messages from the non-BACnet/SC network.

Test Concept: With the IUT configured as a router from BACnet/SC to a non-BACnet/SC which does not have data options,
send to the router a message on the non-BACnet/SC network which needs to be routed to the BACnet/SC network. Verify that
the Secure Path option is not included in the routed message.

Configuration Requirements: The IUT is connected to 2 networks with PORT A connected to a network type which does not
support secure path, and PORT B connected to a network type which does. If the IUT does not support this configuration then
this test shall be skipped.

Test Steps:

1. TRANSMIT PORT A,
 DA = LOCAL BROADCAST,
 SOURCE = D1A,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

66 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 Hop Count = 255,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is
2. RECEIVE PORT B,
 DA = LOCAL BROADCAST,
 SA = IUT,
 -- 'Data Options' absent
 DNET = GLOBAL BROADCAST,
 DLEN = 0,
 SNET = 1,
 SADR = D1A,
 Hop Count = (any integer x: 0 < x < 255),
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 67

135.1-2019s-4 Add tests for IPv6

Rationale

Addendum 135-2012aj introduced support for IPv6. Addendum 135.1-2019s adds new tests to meet the
requirements of addendum aj.

[Add new Clause 12.X, p. 625]

12.X BACnet/IPv6 Functionality Tests
This clause defines the tests necessary to demonstrate BACnet/IPv6 functionality, as defined in Annex U of the BACnet
standard. For each test case, a sequence of one or more messages that are to be exchanged are described. A passing result
occurs when the IUT and TD exchange messages as described in the test case. Any other combinations of messages
constitute a failure of the test. Some test cases are not valid unless some other test defined in this standard has already been
executed and the IUT passed this test. These dependencies are noted in the test case description.

For the tests in this clause, references to the virtual address mean the 3-octet virtual address. For example, Source-Virtual-
Address = TD means Source-Virtual-Address = (the 3-octet VMAC of TD).

12.X.1 Common Tests
This group of tests verifies that a B/IPv6 device will respond correctly to incoming B/IPv6 messages. All B/IPv6 devices
shall execute these tests.

Configuration Requirements: The IUT’s Network Port object that represents the B/IPv6 port under test shall be configured as
follows:

• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)

12.X.1.1 Execute Original-Unicast-NPDU
Purpose: To verify that an IUT will process an Original-Unicast-NPDU message.

Test Steps:

1. TRANSMIT DA = IUT, SA = TD,
 Original-Unicast-NPDU,
 Source-Virtual-Address = TD,
 Destination-Virtual-Address = IUT,
 ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y
2. RECEIVE DA = TD, SA= IUT
 Original-Unicast-NPDU,

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = TD,
 ReadProperty-ACK,
 'Object Identifier' = X,
 'Property Identifier' = Y

12.X.1.2 Execute Virtual-Address-Resolution
Purpose: To verify that an IUT will process a Virtual-Address-Resolution message.

Test Steps:

1. TRANSMIT DA = IUT, SA = TD,

 Virtual-Address-Resolution,Source-Virtual-Address = TD
2. RECEIVE DA = TD,
 Virtual-Address-Resolution-ACK,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

68 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = TD

12.X.2 IPv6 Normal Mode Tests
This group of tests verifies that a B/IPv6 device that is operating in normal mode (not a BACnet Broadcast Management Device
(BBMD), and not a Foreign Device) will respond correctly to incoming B/IPv6 messages.

Configuration Requirements: The IUT’s Network Port object that represents the B/IPv6 port under test shall be configured as
follows:

• BACnet_IPv6_Mode is NORMAL
• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)

12.X.2.1 Positive Tests

12.X.2.1.1 Initiate Original-Broadcast-NPDU
Purpose: To verify that an IUT, operating in normal IPv6 mode, will correctly initiate an Original-Broadcast-NPDU message.

Test Steps:

1. MAKE(the IUT send a broadcast)
2. RECEIVE DA=Link Local Multicast Address, SA = IUT
 Original-Broadcast-NPDU,

Source-Virtual-Address = IUT,
 (any valid BACnet-Unconfirmed-Request-PDU, with any valid broadcast network options)

12.X.2.1.2 Execute Original-Broadcast-NPDU
Purpose: To verify that an IUT, operating in normal IPv6 mode, will process an Original-Broadcast-NPDU message.

Test Steps:

1. TRANSMIT DA = B/IPv6 Link Local Multicast Address, SA = TD,
 Original-Broadcast-NPDU,

Source-Virtual-Address = TD,
 Who-Is-Request
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = TD, SA = IUT,
 Original-Unicast-NPDU,

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = TD,
 I-Am-Request

ELSE
RECEIVE DA=Link Local Multicast Address, SA = IUT

 Original-Broadcast-NPDU,
Source-Virtual-Address = IUT,

 I-Am-Request
3. CHECK (The IUT does not issue any Forwarded-NPDUs)

12.X.2.1.3 Execute Forwarded-NPDU
Purpose: To verify that an IUT, operating in normal IPv6 mode, will process a Forwarded-NPDU.

Test Steps:

1. TRANSMIT DA = Link Local Multicast Address, SA = TD,

Forwarded-NPDU,
Original-Source-Virtual-Address = D2,
Original-Source-B/IPv6-Address = D2,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 69

Who-Is-Request
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = D2, SA = IUT,
 Original-Unicast-NPDU,

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = D2,
 I-Am-Request

ELSE
RECEIVE DA=Link Local Multicast Address, SA = IUT

 Original-Broadcast-NPDU,
Source-Virtual-Address = IUT,

 I-Am-Request
3. CHECK (The IUT does not issue any Forwarded-NPDU BVLCs)

12.X.2.1.4 Execute Address-Resolution
Purpose: To verify that an IUT, operating in normal IPv6 mode, will process an Address-Resolution message.

Test Steps:

1. TRANSMIT DA = B/IPv6 Link Local Multicast Address, SA = TD,
 Address-Resolution,

Source-Virtual-Address = TD,
 Target-Virtual-Address = IUT
2. RECEIVE DA = TD,
 Address-Resolution-ACK,

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = TD
3. CHECK (The IUT does not issue any Forwarded-Address-Resolution BVLCs)

12.X.2.1.5 Execute Forwarded-Address-Resolution
Purpose: To verify that an IUT, operating in normal IPv6 mode, will process a Forwarded-Address-Resolution message.

Test Concept: The TD, acting as a BBMD, sends a Forwarded-Address-Resolution message to the IUT on behalf of device
D2. It is verified that the IUT responds to D2 with an Address-Resolution message.

1. TRANSMIT DA = IUT, SA = TD,

Forwarded-Address-Resolution,
Original-Source-Virtual-Address = D2,
Target-Virtual-Address = IUT
Original-Source-B/IPv6-Address = D2

2. RECEIVE DA = D2, SA = IUT
Address-Resolution-ACK,
Source-Virtual-Address = IUT,

 Destination-Virtual-Address = D2
3. CHECK (The IUT does not issue any Forwarded-Address-Resolution BVLCs)

12.X.2.2 Negative Tests

12.X.2.2.1 Reject Register-Foreign-Device
Purpose: To verify that an IUT, operating in normal IPv6 mode, will reject a Register-Foreign-Device request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Register-Foreign-Device,
 Source-Virtual-Address = TD
 Time-To-Live = 60

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

70 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Register-Foreign-Device NAK

12.X.2.2.2 Reject Delete-Foreign-Device-Table-Entry
Purpose: To verify that an IUT, operating in normal IPv6 mode, will reject a Delete-Foreign-Device-Table-Entry request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Delete-Foreign-Device-Table-Entry,
 Source-Virtual-Address = TD
 FDT Entry = TD
2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Delete-Foreign-Device-Table-Entry NAK

12.X.2.2.3 Reject Distribute-Broadcast-To-Network
Purpose: To verify that an IUT, operating in normal IPv6 mode, will reject a Distribute-Broadcast-To-Network request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Distribute-Broadcast-To-Network,
 Original-Source-Virtual-Address = TD
 Who-Is-Request
2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Distribute-Broadcast-To-Network NAK

12.X.3 Foreign Device Tests
This group of tests verifies that a B/IPv6 device that is configured as a Foreign Device is able to register with a BBMD and
send and receive broadcast messages through the BBMD.

Configuration Requirements: The IUT’s Network Port object that represents the B/IPv6 port under test shall be configured as
follows:

• BACnet_IPv6_Mode is FOREIGN
• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)

12.X.3.1 Positive Tests

12.X.3.1.1 Initiate Distribute-Broadcast-To-Network-NPDU
Purpose: To verify that an IUT, configured as a Foreign Device, will correctly initiate a Distribute-Broadcast-To-Network -
NPDU message.

Configuration Requirements: The TD is operating as a BBMD, and the IUT has registered as a foreign device with it.

Test Steps:

1. MAKE(the IUT send a broadcast)
2. RECEIVE DA=IUT, SA = IUT
 Distribute-Broadcast-To-Network-NPDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 71

Source-Virtual-Address = IUT,
 (any valid BACnet-Unconfirmed-Request-PDU, with any valid broadcast network options)

12.X.3.1.2 Execute Forwarded-NPDU
Purpose: To verify that an IUT, operating as a foreign device, will process a Forwarded-NPDU.

Configuration Requirements: The TD is operating as a BBMD, and the IUT has registered as a foreign device with it.

Test Steps:

1. TRANSMIT DA = IUT, SA = TD,
 Forwarded-NPDU,

Original-Source-Virtual-Address = D2,
Original-Source-B/IPv6-Address = D2,
Who-Is-Request

2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = D2, SA = IUT,
 Original-Unicast-NPDU,

Source-Virtual-Address = IUT,
 Destination-Virtual-Address = D2,
 I-Am-Request
 ELSE

RECEIVE DA=TD, SA = IUT
 Distribute-Broadcast-To-Network-NPDU,

Source-Virtual-Address = IUT,
 I-Am-Request
3. CHECK (The IUT does not issue any Forwarded-NPDU BVLCs)

12.X.3.1.3 Execute Forwarded-Address-Resolution
Purpose: To verify that an IUT, operating as a foreign device, will process a Forwarded-Address-Resolution message.

Test Concept: The TD, acting as a BBMD, sends a Forwarded-Address-Resolution message to the IUT on behalf of device
D2. It is verified that the IUT responds to D2 with an Address-Resolution message.

Test Steps:

1. TRANSMIT DA = IUT, SA = TD,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = D2,
Target-Virtual-Address = IUT
Original-Source-B/IPv6-Address = D2

2. RECEIVE
DA = D2, SA = IUT
Address-Resolution-ACK,
Source-Virtual-Address = IUT,

 Destination-Virtual-Address = D2
3. CHECK (The IUT does not issue any Forwarded-Address-Resolution BVLCs)

12.X.3.2 Negative Tests

12.X.3.2.1 Ignores Original-Broadcast-NPDU
Purpose: To verify that an IUT, operating as a foreign device, will not process an Original-Broadcast-NPDU message.

Test Steps:

1. TRANSMIT DA = B/IPv6 Link Local Multicast Address, SA = D2,
 Original-Broadcast-NPDU,

Source-Virtual-Address = D2,
 Who-Is-Request

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

72 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. CHECK (The IUT does not issue any I-Am-Requests in response)

12.X.3.2.2 Ignore Address-Resolution
Purpose: To verify that an IUT, operating as a foreign device, will ignore multicast Address-Resolution messages.

Test Steps:

1. TRANSMIT DA = B/IPv6 Link Local Multicast Address, SA = D2,
 Address-Resolution,

Source-Virtual-Address = D2,
 Target-Virtual-Address = IUT
2. CHECK (The IUT does not issue any Address-Resolution-ACK BVLCs)

12.X.3.2.3 Reject Register-Foreign-Device
Purpose: To verify that an IUT, operating as a foreign device, will reject a Register-Foreign-Device request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Register-Foreign-Device,
 Source-Virtual-Address = TD
 Time-To-Live = 60
2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Register-Foreign-Device NAK

12.X.3.2.4 Reject Delete-Foreign-Device-Table-Entry
Purpose: To verify that an IUT, operating as a foreign device, will reject a Delete-Foreign-Device-Table-Entry request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Delete-Foreign-Device-Table-Entry,
 Source-Virtual-Address = TD
 FDT Entry = TD
2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Delete-Foreign-Device-Table-Entry NAK

12.X.3.2.5 Reject Distribute-Broadcast-To-Network
Purpose: To verify that an IUT, operating as a foreign device, will reject a Distribute-Broadcast-To-Network request.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SA = TD,
 Distribute-Broadcast-To-Network,
 Original-Source-Virtual-Address = TD
 Who-Is-Request
2. RECEIVE DESTINATION = TD,
 BVLC-Result,
 Source-Virtual-Address = IUT
 'Result Code' = Distribute-Broadcast-To-Network NAK

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 73

12.X.4 BBMD Tests

12.X.4.1 Positive Tests
This group of tests verifies that a B/IPv6 device that is configured as a BACnet Broadcast Management Device (BBMD) will
correctly process incoming B/IPv6 messages that pertain to BBMDs. Only devices that are configured to support BBMD
functionality shall execute these tests.

Configuration Requirements: The IUT’s Network Port object that represents the B/IPv6 port under test shall be configured as
follows:

• BACnet_IPv6_Mode is BBMD
• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)
• BBMD_Broadcast_Distribution_Table shall contain:

bbmd-address
BBMD1
BBMD2
BBMD3

For purposes of these tests, TD shall be operating as BBMD1.

12.X.4.1.1 Original-Broadcast-NPDU
Purpose: To verify that the IUT, configured as a BBMD, will forward an Original-Broadcast-NPDU request.

Test Steps:

1. TRANSMIT
 DA = B/IPv6 Link Local Multicast Address,
 SA = TD,

Source-Virtual-Address = TD,
 Original-Broadcast-NPDU,
 Who-Is-Request
2. RECEIVE
 DA = BBMD1,
 SA = IUT,
 Forwarded-NPDU,
 Original-Source-Virtual-Address = TD

Original-Source-B/IPv6-Address = TD
 Who-Is-Request
3. RECEIVE
 DA = BBMD2,
 SA = IUT,
 Forwarded-NPDU,
 Original-Source-Virtual-Address = TD

Original-Source-B/IPv6-Address = TD
 Who-Is-Request
4. RECEIVE
 DA = BBMD3,
 SA = IUT,
 Forwarded-NPDU,
 Original-Source-Virtual-Address = TD

Original-Source-B/IPv6-Address = TD
 Who-Is-Request

12.X.4.1.2 Forwarded-NPDU
Purpose: To verify that the IUT, configured as a BBMD, will forward a Forwarded-NPDU request.
Configuration Requirements: Register FD1 as a foreign device with the IUT. FD3 is a registered foreign device with
BBMD1.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

74 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT

DA = IUT,
SA = BBMD1,
Forwarded-NPDU,
Source-Virtual-Address = FD3,
Original-Source-B/IPv6-Address = FD3
I-Am-Request

2. RECEIVE
DA = B/IPv6 Link Local Multicast Address,
SA = IUT
Forwarded-NPDU,
Source-Virtual-Address = FD3,
Original-Source-B/IPv6-Address = FD3
I-Am-Request

3. RECEIVE
DA = FD1,
SA = IUT
Forwarded-NPDU,
Source-Virtual-Address = FD3,
Original-Source-B/IPv6-Address = FD3
I-Am-Request

12.X.4.1.3 Address-Resolution
Purpose: To verify that the IUT, configured as a BBMD, will process an Address-Resolution request when the target virtual
address is not the virtual address of the IUT.

Configuration Requirements: TD shall be a registered foreign device (FD1) with the IUT.

Notes to Tester: The execution of step 7 is not significant but is shown here in order to demonstrate the completion of the
BVLC.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Address-Resolution,
 Source-Virtual-Address = TD,
 Target-Virtual-Address = FD2
2. RECEIVE

DA = B/IPv6 Link Local Multicast Address
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = TD,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = TD

3. RECEIVE
DA = BBMD1,
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = TD,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = TD

4. RECEIVE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 75

DA = BBMD2,
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = TD,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = TD

5. RECEIVE
DA = BBMD3,
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = TD,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = TD

6. RECEIVE
DA = FD2,
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = TD,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = TD

7. TRANSMIT
DA = TD,
SA = FD2,
Address-Resolution-ACK,
Source-Virtual-Address = FD2,
Destination-Virtual-Address = TD

12.X.4.1.4 Forwarded-Address-Resolution
Purpose: To verify that the IUT, configured as a BBMD, will process a Forwarded-Address-Resolution request when the
target virtual address is not the virtual address of the IUT.

Configuration Requirements: TD shall operate as BBMD1 and listed in the IUTs Broadcast Distribution Table.

Notes to Tester: The execution of step 7 is not significant but is shown here in order to demonstrate the completion of the
BVLC. The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Forwarded-Address-Resolution,
 Original-Source-Virtual-Address = FD1,
 Target-Virtual-Address = FD2

Original-Source-B/IPv6-Address = FD1
2. RECEIVE

DA = B/IPv6 Link Local Multicast Address,
SA = IUT,
Forwarded-Address-Resolution,
Original-Source-Virtual-Address = FD1,
Target-Virtual-Address = FD2,
Original-Source-B/IPv6-Address = FD1

3. RECEIVE
 DA = FD2,
 SA = IUT,

Forwarded-Address-Resolution,
Original-Source-Virtual-Address = FD1,
Target-Virtual-Address = FD2,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

76 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Original-Source-B/IPv6-Address = FD1
5. TRANSMIT

DA = TD,
SA = FD2,
Address-Resolution-ACK,
Source-Virtual-Address = FD2,
Destination-Virtual-Address = TD

12.X.4.1.5 Distribute-Broadcast-To-Network
Purpose: To verify that the IUT, configured as a BBMD, will process a Distribute-Broadcast-To-Network request.

Configuration Requirements: Register FD1 as a foreign device with the IUT. FD2 is a registered foreign device with
BBMD1. For purposes of this test, TD is acting as FD1.

Notes to Tester: Steps 1-6 are the processing of the Distributed-Broadcast-To-Network, Step 7 and on is the processing of the
APDU service by the IUT. The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD1,
 Distribute-Broadcast-To-Network,
 Who-Is-Request
2. RECEIVE

DA = B/IPv6 Link Local Multicast Address,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = FD1,
Original-Source-Virtual-Address = FD1,

 Who-Is-Request
3. RECEIVE
 DA = BBMD1,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = FD1,
Original-Source-Virtual-Address = FD1,
Who-Is-Request

4. RECEIVE
 DA = BBMD2,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = FD1,
Original-Source-Virtual-Address = FD1,

 Who-Is-Request
5. RECEIVE
 DA = BBMD3,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = FD1,
Original-Source-Virtual-Address = FD1,

 Who-Is-Request
6. RECEIVE
 DA = FD2,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = FD1,
Original-Source-Virtual-Address = FD1,

 Who-Is-Request

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 77

7. RECEIVE
DA = B/IPv6 Link Local Multicast Address,

 SA = IUT,
 Original-Broadcast-NPDU,

Original-Source-Virtual-Address = IUT,
 I-Am-Request
8. RECEIVE
 DA = BBMD1,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = IUT,
Original-Source-Virtual-Address = IUT,

 I-Am-Request
9. RECEIVE DA = BBMD2,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = IUT,
Original-Source-Virtual-Address = IUT,

 I-Am-Request
10. RECEIVE DA = BBMD3,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = IUT,
Original-Source-Virtual-Address = IUT,

 I-Am-Request
11. RECEIVE
 DA = FD1,
 SA = IUT,
 Forwarded-NPDU,

Source-Virtual-Address = IUT,
Original-Source-Virtual-Address = IUT,

 I-Am-Request
12. RECEIVE
 DA = FD2,
 SA = IUT
 Forwarded-NPDU,

Source-Virtual-Address = IUT,
Original-Source-Virtual-Address = IUT,

 I-Am-Request

12.X.4.2 Negative Tests

12.X.4.2.1 Reject Forwarded-NPDU
Purpose: To verify that the IUT, configured as a BBMD, will drop a Forwarded-NPDU request from a BBMD that’s not in
the IUT’s BDT.

Configuration Requirements: Empty the IUT’s BDT. FD3 is a foreign device registered with the IUT.

Test Steps:

1. TRANSMIT

DA = IUT,
SA = BBMD1,
Forwarded-NPDU,
Source-Virtual-Address = FD3,
Original-Source-B/IPv6-Address = FD3
I-Am-Request

2. CHECK (The IUT does not issue any Forwarded-NPDU BVLCs)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

78 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

12.X.4.2.2 Reject Address-Resolution
Purpose: To verify that the IUT, configured as a BBMD, will not process an Address-Resolution request when the target
virtual address is not the virtual address of the IUT and the SA is not from a device registered with the IUT.

Configuration Requirements: TD shall not be a registered foreign device (FD1) with the IUT.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Address-Resolution,
 Source-Virtual-Address = TD,
 Target-Virtual-Address = FD2
2. RECEIVE
 DA = TD,
 SA = IUT
 BVLC-Result
 Address-Resolution NAK
2. CHECK (The IUT does not issue any Forwarded-Address-Resolution BVLCs)

12.X.4.2.3 Reject Forwarded-Address-Resolution
Purpose: To verify that the IUT, configured as a BBMD, will not process a Forwarded-Address-Resolution request from a
BBMD that is not present in the IUTs BDT.

Configuration Requirements: Empty the IUT’s BDT.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Forwarded-Address-Resolution,
 Original-Source-Virtual-Address = FD1,
 Target-Virtual-Address = FD2

Original-Source-B/IPv6-Address = FD1
2. CHECK (The IUT does not issue any Forwarded-Address-Resolution BVLCs)

12.X.4.2.4 Reject Distribute-Broadcast-To-Network
Purpose: To verify that the IUT, configured as a BBMD, will not process a Distribute-Broadcast-To-Network request from a
device that is not registered as a foreign device with the IUT.

Configuration Requirements: Ensure the TD is not registered as a foreign device with the IUT and that the TD is not listed in
the IUTs FDT.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,
 Distribute-Broadcast-To-Network,
 Who-Is-Request
2. RECEIVE

DA = TD
SA = IUT
BVLC-Result

 Distribute-Broadcast-To-Network-NAK

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 79

12.X.4.3 Broadcast Distribution Table Operations
This group of tests verifies that a BACnet Broadcast Management Device will correctly perform BDT operations.

Configuration Requirements: The IUT’s Network Port object that represents the B/IPv6 port under test shall be configured as
follows:

• BACnet_IPv6_Mode is BBMD

12.X.4.3.1 Verify writability of the BDT
Purpose: To verify the contents of the broadcast distribution table.

Test Steps:

1. TRANSMIT
WriteProperty-Request,

 'Object Identifier' = (Network Port Object that represents this port),
 'Property Identifier' = BBMD_Broadcast_Distribution_Table
 'Property Value' = (WrittenBDT: a list of valid BACnetBDTEntry)
2. RECEIVE

BACnet-SimpleACK-PDU,
3. ReadBDT = READ NP, BBMD_Broadcast_Distribution_Table
4. CHECK(ReadBDT contains the same entries as WrittenBDT, but not necessarily in the same order)

12.X.5 Foreign Device Management Tests
This group of tests verifies that a BBMD with an FDT will correctly perform FDT operations.

Configuration Requirements: The IUT’s Network Port object, NP, that represents the B/IPv6 port under test shall be configured
as follows:

• BACnet_IPv6_Mode is BBMD
• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)
• BBMD_Accept_FD_Registrations is TRUE.

The TD’s Network Port object that represents the B/IPv6 port being used shall be configured as follows:

• BACnet_IPv6_Mode is FOREIGN
• BACnet_IPv6_Multicast_Address is FF02::BAC0 (Link Local Multicast Address)

12.X.5.1 Execute Register-Foreign-Device
Purpose: To verify that the IUT will handle a Register-Foreign-Device request.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = TD,

Source-Virtual-Address = TD,
 Register-Foreign-Device,
 'Time-To-Live' = 60
2. RECEIVE
 DA = TD,
 SA = IUT,

Source-Virtual-Address = IUT,
 BVLC-Result,
 'Result Code' = 0
3. VERIFY NP, BBMD_Foreign_Device_Table = ((B/IPv6 address of FD2, 60, 90-execution time))

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

80 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

12.X.5.2 Execute Delete-Foreign-Device-Table-Entry
Purpose: To verify that the IUT will handle a Delete-Foreign-Device-Table-Entry message when a valid FDT entry is
supplied.

Configuration Requirements: The TD shall take the role of foreign device FD1. The IUT’s FDT must be empty.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD1,

Source-Virtual-Address = FD1,
 Register-Foreign-Device,
 'Time-To-Live' = 60
2. RECEIVE
 DA = FD1,
 SA = IUT,

Source-Virtual-Address = IUT,
 BVLC-Result,
 'Result Code' = 0
3. VERIFY NP, BBMD_Foreign_Device_Table = ((B/IPv6 address of FD1, 60, 90-execution time))

'Property Value' = ((B/IPv6 address of FD1, 60, 90-execution time))
4. TRANSMIT
 DA = IUT,
 SA = FD1,

Source-Virtual-Address = FD1,
 Delete-Foreign-Device-Table-Entry,
 'FDT Entry' = FD1
5. RECEIVE
 DA = FD1,
 SA = IUT,

Source-Virtual-Address = IUT,
 BVLC-Result,
 'Result Code' = Successful completion
6. VERIFY NP, BBMD_Foreign_Device_Table = ()

12.X.5.3 Foreign Device Table Timer Operations

12.X.5.3.1 Non-Zero-Duration Foreign Device Table Timer Operations
Purpose: To verify that the IUT will handle FDT timer operations: finite time Foreign Device registration, re-registration,
adding grace period to the supplied Time-To-Live parameter, and FDT entry clearing upon timer expiration.

Configuration Requirements: The TD shall take the role of foreign device FD2. The value of the IUT’s BBMD_Foreign_Device
Table must be empty.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD2,
 Register-Foreign-Device,
 'Time-To-Live' = 60
2. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,
 'Result Code' = 0
3. VERIFY NP, BBMD_Foreign_Device_Table = ((B/IPv6 address of FD2, 60, 90-execution time))
4. TRANSMIT

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 81

 DA = IUT,
 SA = FD2,
 Register-Foreign-Device,
 'Time-To-Live' = 40
5. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,
 'Result Code' = 0
6. WAIT (30 seconds)
7. VERIFY NP, BBMD_Foreign_Device_Table = ((B/IPv6 address of FD2, 40, 40-execution time))
8. WAIT (50 seconds)
9. VERIFY NP, BBMD_Foreign_Device_Table = ()

12.X.5.3.2 Zero-Duration Foreign Device Timer Operations
Purpose: To verify that the IUT will handle Foreign Device registration with Time-To-Live parameter equal to zero and clears
FDT entry upon timer expiration.

Configuration Requirements: The TD shall take the role of foreign device FD2. The IUTs FDT must be empty.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD2,
 Register-Foreign-Device-Table,
 'Time-To-Live' = 0
2. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,
 'Result Code' = 0
3. WAIT (10 seconds)
4. VERIFY NP, BBMD_Foreign_Device_Table = ((B/IPv6 address of FD2, 0, 20-execution time))
5. WAIT (30 seconds)
6. VERIFY NP, BBMD_Foreign_Device_Table = ()

12.X.5.4 Delete-Foreign-Device-Table-Entry For A Non-existent Entry
Purpose: To verify that the IUT will handle a Delete-Foreign-Device-Table-Entry message when a non-existent FDT entry is
supplied.

Test Concept: The IUT starts with a Foreign Device Table without an entry for FD1. The TD, acting as FD1, attempts to delete
its entry from the IUT’s Foreign Device Table. It is verified that the IUT returns a NAK to the request.

Configuration Requirements: The IUT’s Foreign Device Table does not contain an entry for FD1.

Test Steps:

1. VERIFY NP, BBMD_Foreign_Device_Table = (a list of entries without an entry for FD1)
2. TRANSMIT
 DA = IUT,
 SA = FD1,
 Source-Virtual-Address = FD1,
 Delete-Foreign-Device-Table-Entry,
 'FDT Entry' = FD1
3. RECEIVE
 DA = FD1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

82 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 SA = IUT,
 Source-Virtual-Address = IUT
 BVLC-Result,
 'Result Code' = Delete-Foreign-Device-Table-Entry NAK
4. VERIFY NP, BBMD_Foreign_Device_Table = (the previously read list but with updated lifetimes)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 83

135.1-2019s-5 Add new and correct existing BACnet/IP Functionality Tests

Rationale

Errors have been identified in a number of BACnet/IP functionality tests in ANSI/ASHRAE Standard 135.1-2019.
In addition, the test coverage is increased by the addition of new tests.

Also, all BACnet/IP functionality tests are moved to a subclause of DATA LINK LAYER PROTOCOL TESTS
(Clause 12).

[Renumber existing Clause 14 and ALL subclauses, p.676]

14.12.3. BACnet/IP FUNCTIONALITY TESTS

14.112.3.1 Non-BBMD B/IP Device

[Reviewer Note: This makes changes to all tests in section 14.1 that use the I-Am service, to allow the unicast form of the
response.]

[Change Clause 14.1.7, p. 625]

14.1.712.3.1.7 Forwarded-NPDU (One-hop Distribution)

Purpose: To verify that an IUT, not configured as a BBMD, will process a Forwarded-NPDU message.

Configuration Requirements: The IUT shall not be configured as a BBMD. The TD shall be on a different IP subnet than that
of the IUT.

Test Steps:

1. TRANSMIT DA = Directed IP Broadcast to IUT’s IP Subnet, SOURCESA = TD,
 Forwarded-NPDU,
 Originating-Device = TD,
 NPDU = Who-Is
2. IF (the IUT responds with an unicast I-Am) THEN
 RECEIVE DA = TD,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SOURCE = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

[Change Clause 14.1.8, p.625]

14.1.812.3.1.8 Original-Broadcast-NPDU
Purpose: To verify that an IUT, not configured as a BBMD, will process an Original-Broadcast-NPDU message.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

84 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. TRANSMIT DA = Local IP Broadcast, SOURCESA = TD,
 Original-Broadcast-NPDU,
 NPDU = Who-Is
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = TD,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SOURCE = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

[Change Clause 14.1.10, p.625]

14.1.1012.3.1.10 Forwarded-NPDU (Two-hop Distribution)
Purpose: To verify that an IUT, not configured as a BBMD, will process a Forwarded-NPDU message.

Configuration Requirements: The IUT should not be configured as a BBMD. The TD shall be on the same subnet as the IUT.
D1 is a device on a different IP subnet than the TD.

Test Steps:

1. TRANSMIT DA = Local IP Broadcast, SOURCESA = TD,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = D1,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SOURCE = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

[Add new Clause 12.3.1.X11, p. 625]

12.3.1.X11 Processing Forwarded-NPDU request initiated from different port

Purpose: To verify that an IUT will correctly process a Forwarded-NPDU message received from a device located at an address
where it has a different UDP port number from those in the source and destination of a Forwarded-NPDU.

Test Concept: The IUT and the TD (acting as a BBMD) are configured such that they have the same UDP port number (P1).
The originating device (D2) is selected having different UDP port number (P2) than the IUT and TD. The behavior of the IUT
is verified when it correctly responds to the Forwarded-NPDU message from the device having different UDP number.

Configuration Requirements: The IUT is on the same subnet as the TD and on the same port number (P1). D2 is a device on a
different subnet and has an address using port P2.

Test Steps:

1. TRANSMIT Forwarded-NPDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 85

 Originating-Device = D2 -- (with UDP port P2)
 NPDU = Who-Is
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE Original-Unicast-NPDU,
 DESTINATION = D2, -- (with UDP port P2)
 NPDU = I-Am
 ELSE
 RECEIVE Original-Broadcast-NPDU -- (with UDP port P1.)
 NPDU = I-Am

[Add new Clause 12.3.1.X12, p.625]

12.3.1.X12 Processing Forwarded-NPDU request initiated from different port when registered as a Foreign Device
into a BBMD

Purpose: To verify that an IUT when configured as a Foreign Device, will correctly process a Forwarded-NPDU message
received from a device using a different UDP port number from those in the source and destination of the Forwarded-NPDU.

Test Concept: The IUT and the TD, acting as the BBMD are configured such that they have the same UDP port number (P1).
The IUT must be on a different IP subnet than the BBMD. The IUT is registered as a Foreign Device with the BBMD. The
originating device (D2) is selected having different UDP port number (P2) than the IUT and BBMD. The behavior of the IUT
is verified when it correctly responds to the Forwarded-NPDU message from the device having different UDP number.

Configuration Requirements: TD is acting as a BBMD with port P1. D2 is a device at an address using a different port P2.

Test Steps:

1. TRANSMIT Forwarded-NPDU,
 Originating-Device = D2 -- (with UDP port P2)
 NPDU = Who-Is
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE Original-Unicast-NPDU,
 DESTINATION = D2, -- (with UDP port P2)
 NPDU = I-Am
 ELSE
 RECEIVE Distribute-Broadcast-to-Network
 DESTINATION = TD, -- (with UDP port P1)
 NPDU = I-Am

14.212.3.2 BBMD B/IP Device with a Server Application

[Reviewer Note: This makes changes to all tests in Section 14.2 that use the I-Am service, to allow the unicast form of the
response.]

14.2.112.3.2.1 Execute Forwarded-NPDU

[Change Clause 14.2.1.1, p.625]

14.2.1.112.3.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)
Configuration Requirements: The IUT shall be configured with a BDT that contains:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

86 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

B/IP Address Broadcast Distribution Mask
IUT IP Subnet 1 subnet mask
BBMD1 IP Subnet 2 subnet mask

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = Directed IP Broadcast to IP Subnet 1,
 SA = BBMD1,
 Forwarded-NPDU,
 Originating-Device = BBMD1,
 NPDU = Who-Is
2. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = BBMD1,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE
 DA = Local IP Broadcast on IP Subnet 1,
 SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
3. RECEIVE
 DA = Directed IP Broadcast to IP Subnet 2,
 SA = IUT
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
43. CHECK (The IUT does not forward or resend the Who-Is packet out the port on which it was received)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Clause 14.2.1.2, p. 625]

14.2.1.212.3.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)
Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask
IUT 255.255.255.255
BBMD1 255.255.255.255

When the IUT is configured for NAT, the Originating-Device in Forwarded-NPDUs that originate at the IUT, OD, is equal
to the Global IP Address and Port of the IUT’s Internet Router. When the IUT is not configured for NAT operation, OD is
equal to the IUT.

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SASOURCE = BBMD1,
 Forwarded-NPDU,
 Originating-Device = BBMD1,
 NPDU = Who-Is
2. RECEIVE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 87

 DA = Local IP Broadcast on IP Subnet 1,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = BBMD1,
 NPDU = Who-Is
3. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = BBMD1,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE
 DA = Local IP Broadcast on IP Subnet 1,
 SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
4. RECEIVE
 RECEIVE
 DA = BBMD1,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = ODIUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant

14.2.212.3.2.2 Execute Original-Broadcast-NPDU

[Change Clause 14.2.2.1, p. 625]

14.2.2.112.3.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)
Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask
IUT IP Subnet 1 subnet mask
BBMD1 IP Subnet 2 subnet mask

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = Local IP Broadcast,
 SA = D1,
 Original-Broadcast-NPDU,
 NPDU = Who-Is
2. RECEIVE
 DA = Directed IP Broadcast to IP Subnet 2,
 SA = IUT
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
3. RECEIVE
 DA = Local IP Broadcast,
 SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
4. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = D1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

88 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE
 DA = Directed IP Broadcast to IP Subnet 2,
 SA = IUT
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Clause 14.2.2.2, p. 625]

14.2.2.212.3.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)
Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask
IUT 255.255.255.255
BBMD1 255.255.255.255

When the IUT is configured for NAT, the Originating-Device in Forwarded-NPDUs that originate at the IUT, OD, is equal
to the Global IP Address and Port of the IUT’s Internet Router. When the IUT is not configured for NAT operation, OD is
equal to the IUT.

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = Local IP Broadcast,
 SA = D1,
 Original-Broadcast-NPDU,
 NPDU = Who-Is
2. RECEIVE
 DA = BBMD1,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
3. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = D1,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE
 DA = Local IP Broadcast,
 SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
4. RECEIVE
 RECEIVE
 DA=BBMD1,
 SA=IUT,
 Forwarded-NPDU,
 Originating-Device = ODIUT,
 NPDU = I-Am

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 89

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.312.3.3 Broadcast Distribution Table Operations

[Change Clause 14.3.3, p. 625]

[Reviewer Note: IUTs claiming PR16 and less need to accept Write-Broadcast-Distribution-Table message.]

14.3.312.3.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous
Session
Purpose: To verify that a BBMD will update the BDT in the local configuration database and initialize it at startup.

Configuration Requirements: The IUT’s BDT does not consist of the same entries that are as are written in step 1.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = D1,
 Write-Broadcast-Distribution-Table,
 (List of BDT entries consisting of three entries at least one of which is different from what it has

IUT 255.255.255.255
BBMD1 255.255.255.255
BBMD2 255.255.255.255

)
2. RECEIVE
 DA = D1,
 SA = IUT,
 BVLC-Result,
 'Result Code' = Successful completion
3. WAIT (Vendor specified period for BDT to be saved in non-volatile memory)
4. MAKE (the IUT reset)
5. TRANSMIT
 DA = IUT,
 SA = D1,
 Read-Broadcast-Distribution-Table
6. RECEIVE
 DA = D1,
 SA = IUT,
 Read-Broadcast-Distribution-Table-Ack,
 List of BDT Entries
7. CHECK (IUT’s BDT holds the entries which it was configured in step 1)List of BDT Entries consisting of three entries
(order unspecified)

IUT 255.255.255.255
BBMD1 255.255.255.255
BBMD2 255.255.255.255

)

[Add new Clause 12.3.3.X1, p.625]

[Reviewer Note: Clause J.4.4.2 mandates a change and that all devices claiming Protocol_Revision >= 17 shall behave in this
changed way.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

90 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

12.3.3.X1 Write-BDT service is required to return Write-BDT-NAK
Purpose: To verify that any IUT with Protocol_Revision claimed as 17 or higher, will return Write-Broadcast-Distribution-
Table NAK to every Write-Broadcast-Distribution-Table request.

Configuration Requirements: If the Protocol_Revision claimed is less than 17, this test shall be skipped.

Test Steps:

1. TRANSMIT Write-Broadcast-Distribution-Table
2. RECEIVE BVLC-Result,
 'Result Code' = Write-Broadcast-Distribution-Table NAK

14.612.3.6 Foreign Device Management

14.6.312.3.6.3 Foreign Device Table Timer Operations

[Change Clause 14.6.3.1, p. 625]

[Reviewer Note: Added in Network Port FDT checks.]

14.6.3.112.3.6.3.1 Non-Zero-Duration Foreign Device Table Timer Operations
Purpose: To verify that the IUT will handle FDT timer operations: finite time Foreign Device registration, re-registration,
adding grace period to the supplied Time-To-Live parameter, and FDT entry clearing upon timer expiration.

Configuration Requirements: The TD shall take the role of foreign device FD2. The IUT’s FDT must be empty. The Network
Port object for the BACnet/IP network is NP.

Notes to Tester: The accuracy of the FDT timer shall be specified by the vendor.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD2,
 Register-Foreign-Device,
 'Time-To-Live' = 60
2. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,
 'Result Code' = 0
3. WAIT (10 seconds)
4. TRANSMIT
 DA = IUT,
 SA = FD2,
 Read-Foreign-Device-Table
5. RECEIVE
 DA = FD2,
 SA = IUT,
 Read-Foreign-Device-Table-Ack,
 B/IP address of FD2, Time-To-Live = 60, Remaining-Time = 80 minus test execution time.
 -- (50 is also acceptable if Protocol_Revision < 7)
6. IF Protocol_Revision >= 17 THEN
 VERIFY NP, BBMD_Foreign_Device_Table = ((B/IP address of FD2, 60, 80 - execution time))
7. TRANSMIT
 DA = IUT,
 SA = FD2,
 Register-Foreign-Device,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 91

 'Time-To-Live' = 40
8. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,
 'Result Code' = 0
9. WAIT (30 seconds)
10. TRANSMIT
 DA = IUT,
 SA = FD2,
 Read-Foreign-Device-Table
11. RECEIVE
 DA = FD2,
 SA = IUT,
 Read-Foreign-Device-Table-Ack,
 B/IP address of FD2, Time-To-Live = 40, Remaining-Time = 40 minus test execution time
 -- (10 is also acceptable if Protocol_Revision < 7)
12. IF Protocol_Revision >= 17 THEN
 VERIFY NP, BBMD_Foreign_Device_Table = ((B/IP address of FD2, 40, 40 - execution time))
13. WAIT (50 seconds)
14. TRANSMIT
 DA = IUT,
 SA = FD2,
 Read-Foreign-Device-Table
15. RECEIVE
 DA = FD2,
 SA = IUT,
 Read-Foreign-Device-Table-Ack,
 (No FDT entries)
16. IF Protocol_Revision >= 17 THEN
 VERIFY NP, BBMD_Foreign_Device_Table = ()

Notes to tester: the accuracy of the FDT timer shall be specified by the vendor.

[Change Clause 14.6.3.2, p. 625]

[Reviewer Note: Added in Network Port FDT checks.]

14.6.3.212.3.6.3.2 Zero-Duration Foreign Device Timer Operations

Purpose: To verify that the IUT will handle Foreign Device registration with Time-To-Live parameter equal to zero and clears
FDT entry upon timer expiration.

Configuration Requirements: The TD shall take the role of foreign device FD2. The IUTs FDT must be empty. The Network
Port object for the BACnet/IP network is NP.

Notes to Tester: The accuracy of the FDT timer shall be specified by the vendor.

Test Steps:

1. TRANSMIT
 DA = IUT,
 SA = FD2,
 Register-Foreign-Device-Table,
 'Time-To-Live' = 0
2. RECEIVE
 DA = FD2,
 SA = IUT,
 BVLC-Result,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

92 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Result Code' = 0
3. WAIT (10 seconds)
4. TRANSMIT
 DA = IUT,
 SA = FD2,
 Read-Foreign-Device-Table
5. RECEIVE
 DA = FD2,
 SA = IUT,
 Read-Foreign-Device-Table-Ack,
 B/IP address of FD2, Time-To-Live = 0, Remaining-Time = 20 minus test execution time
 -- (0 is also acceptable if Protocol_Revision < 7)
6. IF Protocol_Revision >= 17 THEN
 VERIFY NP, BBMD_Foreign_Device_Table = ((B/IP address of FD2, 0, 20 - execution time))
7. WAIT (30 seconds)
8. TRANSMIT
 DA = IUT,
 SA = FD2,
 Read-Foreign-Device-Table
9. RECEIVE
 DA = FD2,
 SA = IUT,
 Read-Foreign-Device-Table-Ack,
 (No FDT entries)
10. IF Protocol_Revision >= 17 THEN
 VERIFY NP, BBMD_Foreign_Device_Table = ()

Note to tester: The accuracy of the FDT timer shall be specified by the vendor.

14.712.3.7 Broadcast Management (BBMD, Foreign Devices, Local Application)

[Reviewer Note: This makes changes to all tests in Section 14.7 that use the I-Am service, to allow the unicast form of the
response.]

14.7.112.3.7.1 Broadcast Message from Directly Connected IP Subnet

[Change Clause 14.7.1.1, p. 625]

14.7.1.112.3.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)
Configuration Requirements: The IUT’s BDT shall contain the following three entries:

B/IP Address Broadcast Distribution Mask
IUT IP Subnet 1 subnet mask
BBMD1 IP Subnet 2 subnet mask
BBMD2 IP Subnet 3 subnet mask

The TD shall be on the same subnet as the IUT. D1 is a device on a different IP subnet than the TD.

Notes to Tester: Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 6 is steps 6-10 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT
 DA = Local IP Broadcast,
 SA = D1,
 Original-Broadcast-NPDU,
 NPDU = Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 93

2. RECEIVE
 DA = Directed IP Broadcast to IP Subnet 2,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
3. RECEIVE
 DA = Directed IP Broadcast to IP Subnet 3,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
4. RECEIVE
 DA = FD1,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
5. RECEIVE
 DA = FD2,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
6. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = D1, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Clause 14.7.1.2, p. 625]

14.7.1.212.3.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)
Configuration Requirements: The BDT shall contain the following three entries:

B/IP Address Broadcast Distribution Mask
IUT 255.255.255.255
BBMD1 255.255.255.255

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

94 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

BBMD2 255.255.255.255

Notes to Tester: Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 6 is steps 6-10 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT DA = Local IP Broadcast, SA = D1,
 Original-Broadcast-NPDU,
 NPDU = Who-Is
2. RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
3. RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
4. RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
5. RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
6. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = D1, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.212.3.7.2 Broadcast Message Forwarded by a Peer BBMD

[Change Clause 14.7.2.1, p. 625]

14.7.2.112.3.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 95

Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Notes to Tester: Steps 2-3 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 4 is steps 4-8 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT DA = Directed IP Broadcast to IP Subnet 1, SA = BBMD1,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
2. RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
3. RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
4. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = D2, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Clause 14.7.2.2, p. 625]

14.7.2.212.3.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)
Configuration Requirements: The BDT shall be configured as in test 14.7.1.2

Notes to Tester: Steps 2-4 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 5 is steps 5-9 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT DA = IUT, SOURCEA = BBMD1,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

96 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. RECEIVE DA = Local IP Broadcast, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
3. RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
4. RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D2,
 NPDU = Who-Is
5. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DESTINATION = D2, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.312.3.7.3 Broadcast Message from a Foreign Device
[Change Clause 14.7.3.1, p. 625]

14.7.3.112.3.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)
Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Notes to Tester: Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 6 is steps 6-10 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT DA = IUT, SA = FD1,
 Distribute-Broadcast-To-Network,
 NPDU = Who-Is
2. RECEIVE DA = Local IP Broadcast, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
3. RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 97

 Originating-Device = FD1,
 NPDU = Who-Is
4. RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
5. RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
6. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = FD1, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Clause 14.7.3.2, p. 625]

14.7.3.212.3.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)
Configuration Requirements: The BDT and FDT shall be configured as in test 14.7.1.2.

Notes to Tester: Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet
network, step 6 is steps 6-10 are the distribution of the I-Am response from the local application. The order of the messages
transmitted by the IUT is not significant.

Test Steps:

1. TRANSMIT DA = IUT, SA = FD1,
 Distribute-Broadcast-To-Network,
 NPDU = Who-Is
2. RECEIVE DA = Local IP Broadcast, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
3. RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

98 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

4. RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
5. RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = FD1,
 NPDU = Who-Is
6. IF (the IUT responds with Unicast I-Am) THEN
 RECEIVE DA = FD1, SA = IUT,
 Original-Unicast-NPDU,
 NPDU = I-Am
 ELSE
 RECEIVE DA = Local IP Broadcast, SA = IUT,
 Original-Broadcast-NPDU,
 NPDU = I-Am
 RECEIVE DA = BBMD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = BBMD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD1, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am
 RECEIVE DA = FD2, SA = IUT,
 Forwarded-NPDU,
 Originating-Device = IUT,
 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

[Change Title of Clause 14.8 and renumber, p. 625]

[Reviewer Note: Renumber to allow multiple foreign device tests. Add in check that lifetime is within the range required by
NM-FDR-A.]

14.8 Registering as a Foreign Device12.3.8 Foreign Device Tests

[Change Clause Number 14.8 to 12.3.8.1, p. 625]

14.812.3.8.1 Registering as a Foreign Device
Dependencies: None

BACnet Reference Clause: J.5.2
Purpose: This test case verifies that the IUT can register as a foreign device with a BBMD.

Test Concept: The IUT is caused to register as a foreign device with the TD.

Configuration Requirements: The IUT is configured to register as a foreign device with the TD.

Test Steps:
1. RECEIVE DESTINATION = TD, SOURCE = IUT,
 Register-Foreign-Device

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 99

 'Time-to-Live' = (any value between 30 seconds and 9 hours)
2. TRANSMIT DESTINATION = IUT, SOURCE = TD,
 BVLC-Result,
 'Result Code' = Sucessful completion

[Add new Clause 12.3.8.X1, p. 625]

12.3.8.X1 Register-Foreign-Device Enable and Disable Test
Purpose: Verify that the option to issue Register-Foreign-Device requests can be configured by the product end-user.

Test Concept: Using a product end-user interface, configure the mode for use of Register-Foreign-Device requests, and then
configure the mode to cease use of Register-Foreign-Device requests.

Configuration Requirements: The means by which the product is here configured shall be part of the product's end-user
interface. BBMD1 is the TD simulating a correctly functioning BBMD implementation.

Test Steps:

1. MAKE (IUT enter mode for use of Register-Foreign-Device requests)
2. RECEIVE DA = BBMD1,
 Register-Foreign-Device
3. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion
4. MAKE (the IUT not in mode for use of Register-Foreign-Device requests)
5. WAIT (more than 31 seconds longer than the 'Time-to-Live' parameter used in Register-Foreign-Device requests)
6. CHECK (that the IUT did not send any Register-Foreign-Device requests)

[Add new Clause 12.3.8.X2 p. 625]

[Reviewer Note: This tests in continuous manner what 12.3.9.1 tests just once.]

12.3.8.X2 Recurring Register-Foreign-Device Test
Purpose: Verify that mode for use of Register-Foreign-Device and setting of 'BBMD Address' parameter are persistent across
reset, and that the issuance of Register-Foreign-Device precedes the first issuance of any broadcast, when in that mode.

Test Concept: IUT is put in a mode to use Register-Foreign-Device requests, and it is observed that Register-Foreign-Device
requests are sent sufficiently frequently to prevent expiration of the registration at the BBMD.

Configuration Requirements: The product's setting of 'BBMD Address' parameter is configured as BBMD1. BBMD1 is the TD
simulating a correctly functioning BBMD implementation.

Notes to Tester: There is no need for the recurring request to be sent any more quickly than precisely the 'Time-to-Live' since
the standard mandates that the BBMD preserve the registration for 30 seconds past the 'Time-to-Live'.

Test Steps:

1. MAKE (IUT enter mode for use of Register-Foreign-Device requests)
2. RECEIVE DA = BBMD1,
 Register-Foreign-Device
3. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion
4. BEFORE (the time configured for the 'Time-to-Live' parameter used for Register-Foreign-Device requests)
 RECEIVE DA = BBMD1,
 Register-Foreign-Device
5. TRANSMIT BVLC-Result,
 ‘Result Code’ = Successful completion
6. BEFORE (the time configured for the 'Time-to-Live' parameter used for Register-Foreign-Device requests)
 RECEIVE DA = BBMD1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

100 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Register-Foreign-Device
7. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion

[Add new Clause 12.3.8.X3 p. 625]

[Reviewer Note: This tests that the behavior in test 12.3.8 can be configured by the product end-user.]

12.3.8.X3 BBMD Address Configuration Test
Purpose: Verify that the parameter in Register-Foreign-Device in test 12.3.8 can be configured by the product end-user.

Test Concept: Using a product end-user interface, configure the 'BBMD Address' parameter that is used in Register-Foreign-
Device requests.

Configuration Requirements: The means by which the product is configured for a 'BBMD Address' can be anything in the
product's end-user interface. BBMD1 is the TD simulating a correctly functioning BBMD implementation.

Test Steps:

1. MAKE (through the product's end-user interface, the setting of 'BBMD Address' parameter equal BBMD1)
2. MAKE (IUT enter mode for use of Register-Foreign-Device requests)
3. RECEIVE DA = BBMD1,
 Register-Foreign-Device
4. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion

[Add new Clause 12.3.8.X4 p. 625]

[Reviewer Note: This tests in the specific case of startup, what test 12.3.9.1 expects to observe during ordinary ongoing
operation.]

12.3.8.X4 Transmits a Broadcast at Startup preceded by Register-Foreign-Device
Purpose: Verify that mode for use of Register-Foreign-Device and setting of 'BBMD Address' parameter are persistent across
reset, and that the issuance of Register-Foreign-Device precedes the first issuance of any broadcast, when in that mode.

Test Concept: IUT is put in a mode to use Register-Foreign-Device requests persistently so it will be re-established, then IUT
is reset, and the timing of Register-Foreign-Device request to re-establish that precedes the first issuance of any broadcast.

Configuration Requirements: The product's setting of 'BBMD Address' parameter is configured as BBMD1. BBMD1 is the TD
simulating a correctly functioning BBMD implementation.

Notes to Tester: For the I-Am, one can precede the Register-Foreign-Device command, as long as then after the Register-
Foreign-Device occurs, it is followed by a Distribute-Broadcast-To-Network again, of that I-Am.

Test Steps:
1. MAKE (IUT enter mode for use of Register-Foreign-Device requests, persistently
 so it will be re-established after any reset)
2. MAKE (IUT reset)
3. RECEIVE DA = BBMD1,
 Register-Foreign-Device
4. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion
5. RECEIVE DA = BBMD1,
 Distribute-Broadcast-To-Network,
 NPDU = (any broadcast)
6. TRANSMIT BVLC-Result,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 101

 'Result Code' = Successful completion

[Add new Clause 12.3.8.X5 p. 625]

[Reviewer Note: Adds verification that the behavior in test 12.3.8 can be configured by the product end-user.]

12.3.8.X5 Time-to-Live Configuration Test
Purpose: Verify that the parameter in Register-Foreign-Device in test 12.3.8 can be configured by the product end-user, through
a reasonable range (120 through 28800 is sufficient; the absolute upper limit is 65535 seconds, approximately 17 hours).

Test Concept: Using a product end-user interface, configure the 'Time-to-Live' parameter that is used in Register-Foreign-
Device requests.

Configuration Requirements: The means by which the product is configured can be anything in the product's end-user interface.
BBMD1 is the TD simulating a correctly functioning BBMD implementation.

Test Steps:

1. MAKE (through the product's end-user interface, the setting of 'Time-to-Live' parameter equal 120,
 or any larger value supported by the implementation)
2. MAKE (IUT enter mode for use of Register-Foreign-Device requests)
3. RECEIVE DA = BBMD1,
 Register-Foreign-Device,
 'Time-to-Live' = (value configured in step 1)
4. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion

14.912.3.9 Initiating BVLL Service Requests Conveying an NPDU

[Change Clause 14.9.1, p. 625]

[Reviewer Note: Modified test to enforce the behavior specified in Clause J.2.12.]

14.9.112.3.9.1 Distribute-Broadcast-To-Network

Dependencies: 14.8, “Registering as a Foreign Device”

BACnet Reference Clause: J.2.10

Purpose: This test case verifies that the IUT, registered as a foreign device, can issue a request to a BBMD to broadcast the
message on all subnets in the BBMD’s BDT.

Test Concept: The IUT is configured to register itself as a foreign device with the TD, then after registration is achieved it is
caused to initiate a broadcast message to be conveyed to the BBMD for distribution. If the IUT does not support foreign device
registration, or cannot initiate broadcast messages conveying a BACnet NPDU, then this test shall be omitted.

Test Steps:

1. RECEIVE DESTINATION = TD, SOURCE = IUT,
 Register-Foreign-Device
2. TRANSMIT DESTINATION = IUT, SOURCE = TD,
 BVLC-Result,
 ‘Result Code’ = Successful completion
3. MAKE (a condition that would make the IUT normally initiate a broadcast)
4. RECEIVE DESTINATION = TD, SOURCE = IUT,
 Distribute-Broadcast-To-Network
5. CHECK (that the IUT does not transmit an Original-Broadcast-NPDU on this port)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

102 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Add Clause 12.3.X1, p.625]

12.3.X1 BBMD Configuration Tests – A side

12.3.X1.1 Read-Broadcast-Distribution-Table Initiation
Purpose: To verify that an IUT which configures BBMDs is able to query and present an arbitrary broadcast distribution table.

Test Steps:

1. RECEIVE Read-Broadcast-Distribution-Table
2. TRANSMIT Read-Broadcast-Distribution-Table-Ack,
 List of BDT Entries
3. CHECK (the IUT presents the table entries, in any order)

12.3.X1.2 Write-Broadcast-Distribution-Table Initiation
Purpose: To verify that an IUT which configures BBMDs is able to generate an arbitrary Write-Broadcast-Distribution-Table
request.

Test Steps:

1. MAKE (the IUT generate a Write-Broadcast-Distribution-Table to configure the TD with a tester selected BDT, B)
2. RECEIVE Write-Broadcast-Distribution-Table,
 (B: a valid list of BDT entries)
2. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion

12.3.X1.3 Read-Foreign-Device-Table Initiation
Purpose: To verify that an IUT which configures BBMDs is able to query and present an arbitrary foreign device table.

Test Steps:

1. RECEIVE Read-Foreign-Device-Table
2. TRANSMIT Read-Foreign-Device-Table-Ack,
 List of FDT Entries
3. CHECK (the IUT presents the table entries, in any order)

12.3.X1.4 Delete-Foreign-Device-Table-Entry Initiation
Purpose: To verify that an IUT which configures BBMDs is able to generate an arbitrary Delete-Foreign-Device-Table-Entry
request.

Configuration Requirements: The IUT is configured with a non-empty FDT.

Test Steps:

1. MAKE (the IUT generate a Delete-Foreign-Device-Table-Entry to configure the TD with a tester selected FDT, F)
2. RECEIVE Delete-Foreign-Device-Table-Entry,
 (F: a valid FDT entry in IUT’s FDT)
3. TRANSMIT BVLC-Result,
 'Result Code' = Successful completion

[Add Clause 12.3.X2, p.625]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 103

12.3.X2 BBMD Configuration Tests – B side

[Reviewer Note: NM-BBMDC-B specifically mandates this capacity behavior is supported by the product.]

12.3.X2.1 Broadcast-Distribution-Table Holds at Least 5 Entries
Purpose: Verify that IUT implements capacity mandated for the product by NM-BBMDC-B.

Test Concept: Fill the IUT's broadcast distribution table with at least five distinct peer BBMDs entries (in addition to the entry
containing the address of itself in the table).

Notes to Tester: In a device claiming Protocol_Revision 16 or less, the means by which the product's Broadcast Distribution
Table is configured is not restricted to BACnet network transmissions and can be through the product's end-user interface.

Test Steps:

1. MAKE (IUT enter mode functioning as a BBMD implementation)
2. MAKE (the IUT's broadcast distribution table contain its own entry and entries for at least 5 other BBMDs)
3. TRANSMIT Read-Broadcast-Distribution-Table
4. RECEIVE Read-Broadcast-Distribution-Table-Ack,
 'List of BDT Entries' = (the table as configured, in any order)

[Reviewer Note: NM-BBMDC-B specifically mandates this capacity behavior is supported by BBMDs.]

12.3.X2.2 Holds at Least 5 Foreign Device Registrations
Purpose: Verify that when configured to accept foreign device registrations, the IUT supports at least five simultaneous foreign
device registrations.

Test Concept: The IUT is configured to support foreign device registrations. Five Register-Foreign-Device requests are sent
from 5 different devices, to verify that it supports five registrations simultaneously in the FDT.

Configuration Requirements: Set BBMD_Accept_FD_Registrations in the Network Port object representing the port operating
as a BBMD to TRUE. The TD will be configured to emulate 5 devices.

Test Steps:

1. REPEAT X = 1 to 5 {
 TRANSMIT Register-Foreign-Device
 SOURCE = (device X)
 'Time-to-Live ' = (a value longer than the length of the test)
 RECEIVE BVLC-Result,
 ‘Result Code’ = Successful completion
}
2. TRANSMIT Read-Foreign-Device-Table
3. RECEIVE Read-Foreign-Device-Table-Ack
 List of FDT entries = (the 5 registered devices)

[Reviewer Note: The standard specifically mandates that BBMD_Accept_FD_Registrations property is writable if present in
BBMDs.]

12.3.X2.3 Negative Foreign Device Registration when BBMD_Accept_FD_Registrations is FALSE
Purpose: Verify that when BBMD_Accept_FD_Registrations is configured as FALSE, the BBMD will accept no more foreign
device registrations.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

104 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: The IUT is configured with BBMD_Accept_FD_Registrations property as FALSE. Then it is verified that no
more Register-Foreign-Device registrations succeed, though those already in the FDT operate as normal.

Configuration Requirements: BBMD_Accept_FD_Registrations in the Network Port object representing the port is initially
TRUE.

Test Steps:

1. WRITE BBMD_Accept_FD_Registrations = FALSE
2. TRANSMIT ReinitializeDevice-Request
 'Reinitialized State of Device' = ACTIVATE_CHANGES
3. WAIT Activate Changes Fail Time
4. TRANSMIT Register-Foreign-Device
5. RECEIVE BVLC-Result,
 ’Result Code’ = Register-Foreign-Device NAK

[Reviewer Note: With the advent of Network Port objects, BBMDs now need to accept hostname BDT entries.]

12.3.X2.4 Broadcast Distribution Table Configuration via Hostname Entries
Purpose: Verify that the IUT accepts and resolves hostname entries in the BBMD_Broacast_Distribution_Table.

Test Concept: Fill the BBMD_Broadcast_Distribution_Table with 4 entries: the IUT, an entry with an IP address (IP1), an
entry with a resolvable hostname (at IP address IP2), and an entry with a non-resolvable hostname. Send a broadcast that the
IUT should distribute to its peer BBMDs and verify that it sends to the resolvable entries. Verify that the Broadcast Distribution
Table contains the correct entries.

Configuration Requirements: The IUT is configured to operate as a BBMD and the TD is located on the same IP subnet.

Notes to Tester: The Forwarded-NPDU messages can be received in any order.

Test Steps:

1. WRITE BBMD_Broadcast_Distribution_Table = (4 entries:
 the IUT,
 an entry with an IP address,
 an entry with a resolvable hostname,
 an entry with a non-resolvable hostname)
2. TRANSMIT ReinitializeDevice-Request
 'Reinitialized State of Device' = ACTIVATE_CHANGES
3. WAIT Activate Changes Fail Time
4.WAIT until the IUT completes DNS resolution
5. TRANSMIT
 DA = Local IP Broadcast,
 SA = D1,
 Original-Broadcast-NPDU,
 NPDU = Who-Is-Request
6. RECEIVE
 DA = IP1,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is
7. RECEIVE
 DA = IP2,
 SA = IUT,
 Forwarded-NPDU,
 Originating-Device = D1,
 NPDU = Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 105

8. READ BDT = BBMD_Broadcast_Distribution_Table -- re-read the table to determine the order the IUT
 -- placed the entries in
9. RECEIVE Read-Broadcast-Distribution-Table-Ack,
 'List of BDT Entries' = (4 entries:
 the IUT's IP address,
 the IP address entry,
 the IP address for the resolved hostname entry,
 X'000000000000' for the non-resolvable entry
 -- in the same order as read from BBMD_Broadcast_Distribution_Table)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

106 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-6 Renumber Clause 15

Rationale

Changes made in 135.1-2019s-5 require Clause 15 to be renumbered.

[Renumber existing Clause 15, p.704]

15.14. Reporting Test Results
A report of the test results shall be provided to the manufacturer that contains:
 (a) a summary of each test case executed;
 (b) the results (pass/fail) for each test case executed; and
 (c) any diagnostic information available for test cases that failed.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 107

135.1-2019s-7 Add new and correct existing Object Support Tests

Rationale

Errors have been identified in a number of object support tests in ANSI/ASHRAE Standard 135.1-2019.
In addition, the test coverage is increased by the addition of new tests.

7. OBJECT SUPPORT TESTS

7.1 Read Support for Properties in the Test Database

[Change Clause 7.1.1, p. 19]

[Reviewer Note: Updated the error codes allowed if prior to Protocol_Revision 13. Added Explanatory Notes To Tester for
using with ReadPropertyMultiple. Moved line from Purpose to Test Concept. Added 'server' entry in Abort response.]

7.1.1 Read Support Test Procedure
Dependencies:ReadProperty Service Execution Tests, 9.18.

Purpose: To verify that all properties of all objects can be read using ReadProperty and ReadPropertyMultiple services. The
test is performed once using ReadProperty and once using ReadPropertyMultiple, if supported. When verifying array
properties, the whole array shall be read without using an ARRAY INDEX, where possible.

Test Concept: The test is performed once using ReadProperty and once using ReadPropertyMultiple, if supported. When
verifying array properties, the whole array shall be read without using an array index, where possible.

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the "?" symbol, any
value that is of the correct datatype shall be considered to be a match. When using the ReadPropertyMultiple service, a
received ReadPropertyMultiple-ACK containing the specified Error Class and Error Code shall also be considered a Passing
result.

Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
 REPEAT Y = (all properties in object X) DO {
 IF (Y = property indicated as not accessible via the ReadProperty Service) THEN
 TRANSMIT ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y
 IF (Protocol_Revision >= 137) THEN
 RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = READ_ACCESS_DENIED
 ELSE
 RECEIVE BACnet-Error PDU,
 'Error Class' = OBJECT | PROPERTY,
 'Error Code' = (any of the error codes for an OBJECT or PROPERTY class)
 Error Class = PROPERTY,
 Error Code = READ_ACCESS_DENIED | OTHER
 | (BACnet-Error-PDU,
 Error Class - OBJECT,
 Error Code = OTHER),
 | (BACnet-Error-PDU,
 Error Class 'Error Class' = SERVICES,
 Error Code 'Error Code' = SERVICE_REQUEST_DENIED | OTHER)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

108 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 ELSE IF (Y is an array and is too long to return given the IUT's
 APDU and segmentation limitations) THEN
 TRANSMIT ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y
 RECEIVE BACnet-Abort-PDU,
 'Server’ = TRUE,
 'Abort Reason' = SEGMENTATION_NOT_SUPPORTED
 | BUFFER_OVERFLOW
 TRANSMIT ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Array Index' = 0
 RECEIVE ReadProperty-ACK,
 'Object Identifier' = X,
 'PropertyIdentifier' = Y,
 'Property Array Index' = 0,
 'Property Value' = (N: the number of array elements in Y as indicated in the EPICS)
 REPEAT Z = (1 .. N)) DO {
 VERIFY (X), Y = (the value for element Z as indicated in the EPICS), ARRAY INDEX = Z
 }
 ELSE
 VERIFY (X), Y = (the value for this property specified in the EPICS)
 }
 }

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the "?" symbol, any value
that is of the correct datatype shall be considered to be a match.

[Change Clause 7.1.2, p. 21]

[Reviewer Note: Revised test to exclude special property identifiers. Add a test step to cover the range add from revision 20.]

7.1.2 Non-documented Property Test
Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not document
as being part of the object.

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where some
instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability
of a property, then one instance of each variant of that object type should be selected.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {
 REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)) DO {
 IF (the property Y is not in the EPICS for object X) THEN
 TRANSMIT ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY
 }
 }
2. IF (Protocol_Revision >= 20) THEN
 REPEAT Y = (random selection of N property IDs between 4194304 and (232 - 1)) DO {
 IF (the property Y is not in the EPICS for object X) THEN
 TRANSMIT ReadProperty-Request,
 Object Identifier' = X,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 109

 'Property Identifier' = Y
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY
 }

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where
some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the
writability of a property, then one instance of each variant of that object type should be selected.

[Change Clause 7.1.3, p. 21]

[Reviewer Note: BTL-CR-0413 directed to add a Note to Tester mentioning that element by element reading of the properties
may be necessary.]

7.1.3 Verifying Property_List against the EPICS
Purpose: To verify the correct content of the Property_List using the properties in each object as claimed in the EPICS.

Test Concept: Match the properties in each object as claimed in the EPICS, against the content of each object’s Property_List.

Test Conditionality: If Protocol_Revision is not present, or Protocol_Revision < 14, then this test shall be skipped.

Notes to Tester: Object_Name (77), Object_Type (79), Object_Identifier (75), and Property_List (371) will appear in the
EPICS but shall not appear in the Property_List value. Any proprietary properties that are supported for the object-type shall
be in the Property_List but are not required to appear in the EPICS. The order in which property identifiers appear in the
EPICS is not required to match the order that they appear in the Property_List value. If the whole BACnetARRAY cannot be
read because it exceeds the Maximum Transmissible APDU, then the tester shall read it element-by-element in order to obtain
the complete value.

Test Steps:

1. READ OL = Object_List
2. REPEAT O1 = (each object in the content of OL) DO {
 READ PL = O1, Property_List
 CHECK (that the property identifiers in the EPICS for O1 and those in PL match, except as specified in Notes to
Tester)
}

Notes to Tester: Object_Name (77), Object_Type (79), Object_Identifier (75), and Property_List (371) will appear in the
EPICS, but shall not appear in the Property_List value. Any proprietary properties that are supported for the object-type shall
be in the Property_List, but are not required to appear in the EPICS. The order in which property identifiers appear in the
EPICS, is not required to match the order that they appear in the Property_List value.

7.2 Write Support for Properties in Test Database

7.2.1 Functional Range Requirements for Property Values

[Change Clause 7.2.1.3, p. 22]

[Reviewer Note: Added Support for UTF-8.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

110 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.2.1.3 Octetstrings and Characterstrings

Properties with an octetstring or characterstring datatype shall be tested with a string of the minimum
supported length, a
string with the maximum supported length, and a string with some length between the two. The vendor shall
provide the
values of the minimum and maximum string lengths in the EPICS. For string properties that do not have a
fixed maximum
length, the vendor shall provide a maximum length that is acceptable under normal operating conditions for
use in these tests.
In such cases, no statement is made as to whether or not a longer string value would or would not be
accepted by the
property.See Clause 4.4.2.
When testing character string properties in a device that supports UTF-8 (Protocol_Revision >= 10), at least one of the data
values shall contain multi-byte characters.

[Change Clause 7.2.2, p. 22]

[Reviewer Note: 'Notes to Tester' is missing. Added in special handling for properties in the Network Port object. Moved
content from the Purpose into Test Concept as appropriate.]

7.2.2 Write Support Test Procedure
Purpose: To verify that all writable properties of all objects can be written to using BACnet WriteProperty and
WritePropertyMulitiple services. The test is performed once using WriteProperty and once using WritePropertyMultiple. When
writing to array properties, the whole array shall be written without using an array index, where possible.

Test Concept: Each writable property is written multiple times verifying the writable range. After each write, the value is
verified to have been updated in the property. The test is performed once using WriteProperty and once using
WritePropertyMultiple. When writing to array properties, the whole array shall be written without using an array index, where
possible.

Notes to Tester: An internal process may set the Present_Value of some properties back to the default value after a successful
write, as in the case of a momentary pushbutton, or the Record_Count property. For properties that exhibit this type of
behavior, skip the VERIFY step.

Notes to Tester: When a property is currently not writable, the IUT shall return an Error-PDU with 'Error Class' = PROPERTY
and 'Error Code' = WRITE_ACCESS_DENIED.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Test Steps:

1. REPEAT X = (all objects in the IUT's database, except Network Port objects) DO {
 REPEAT Y = (all writable properties in object X) DO {
 REPEAT Z = (all values meeting the functional range requirements of 7.2.1, and any additional
 restrictions placed on the allowable property values by the vendor) DO {
 WRITE (X), Y = Z,
 VERIFY (X), Y = Z
 }
 }
 }

[Change Clause 7.2.3, p. 23]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 111

[Reviewer Note: This test corrects the use of the READ statement. Added 'Configuration Requirements'. Moved 'Notes to
Tester'.]

7.2.3 Read-only Property Test
Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the
property as read from the device and verify that an error is returned. Write another value that is within the acceptable range for
the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt to modify
the property with AddListElement and verify that an error is returned. If the IUT does not support the WriteProperty service,
then this test shall be skipped.

Configuration Requirements: If the IUT does not support the WriteProperty service, then this test shall be skipped.

Notes to Tester: The objects selected by the tester should include one instance of each supported object type.
Where some instances of an object type differ in the set of supported properties, the allowable value ranges
for a property, or the writability of a property, then one instance of each variant of that object type should be
selected.

Notes to Tester: When modifying a property, it is expected that an Error Class of PROPERTY with an error code
of WRITE_ACCESS_DENIED will be returned, but the IUT may instead return an error_class of PROPERTY with
an error_code of VALUE_OUT_OF_RANGE, or an error_class of RESOURCES with an error_code of
NO_SPACE_TO_WRITE_PROPERTY.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {
 REPEAT Y = (all read-only properties in object X) DO {
 IF (the property is not an array) THEN
 READ Z = X
 READ Z = (X), property Y
 TRANSMIT WriteProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Value' = Z
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED

 TRANSMIT WriteProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Value' = (any value meeting the range requirements of 7.2.1 except Z)
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED

 IF (the IUT supports AddListElement and the property is a list) THEN
 TRANSMIT AddListElement-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'List of Elements' = (any elements value meeting the range requirements of 7.2.1 excluding those

in Z)
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

112 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Code' = WRITE_ACCESS_DENIED
 ELSE
 READ LEN = X, Array_Index = 0
 READ LEN = (X), Y, ARRAY INDEX =0
 IF (LEN > 0) THEN
 READ Z = X, Array Index = 1
 READ Z = (X), Y, ARRAY INDEX=1
 TRANSMIT WriteProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Value' = Z,
 'Property Array Index' = 1
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED

 TRANSMIT WriteProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Value' = (any value meeting the range requirements of 7.2.1 except Z)
 'Property Array Index' = 1
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED

 IF (the IUT supports AddListElement and the property is an array of lists) THEN
 TRANSMIT AddListElement-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Array Index' = 1
 'List of Elements' = (any elements value meeting the range requirements of 7.2.1 excluding

those in Z)
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED
 ELSE
 TRANSMIT WriteProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Property Value' = (any value meeting the range requirements of 7.2.1)
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED
 }
 }

Notes to Tester: The objects selected by the tester should include one instance of each supported object type.
Where some instances of an object type differ in the set of supported properties, the allowable value ranges
for a property, or the writability of a property, then one instance of each variant of that object type should be
selected.

Notes to Tester: When modifying a property, it is expected that an error class of PROPERTY with an error code
of WRITE_ACCESS_DENIED will be returned, but the IUT may instead return an error_class of PROPERTY with
an error_code of VALUE_OUT_OF_RANGE, or an error_class of RESOURCES with an error_code of
NO_SPACE_TO_WRITE_PROPERTY.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 113

[Add new Clause 7.2.X1, p.24]

7.2.X1 Date Pattern Properties Test
Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value, written
to the property, is the date D1 with one of its fields replaced with one of the date special values. If the property is a complex
datatype, the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes from the
Chapter 21 Application Types section on Date. The day-of-week field is redundant information and can be regenerated from
the other fields. In order to not fail devices which always ensure this field is consistent with the other fields in the date value,
the use of an unspecified day of week is always tested in conjunction with another pattern value.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single
BACnetCalendarEntry in the form of a Date. If Date_List property cannot be configured with a BACnetCalendarEntry in the
form of a Date, then this test shall be skipped.

Notes to Tester: If P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

Test Steps:

1. IF (Protocol_Revision is not present or Protocol_Revision < 4) THEN

 Specials = (year unspecified, month unspecified, day of month unspecified)
ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10) THEN

Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of
month)

ELSE
Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days)
2. REPEAT SV = (each value in Specials) DO {
 IF (SV <> day of week unspecified) THEN
 V1 = D1 updated with the value SV
 ELSE
 V1 = D1 updated with the value SV and any other value from Specials

 WRITE P1 = (V1)
 VERIFY P1 = (V1)
}

[Add new Clause 7.2.X2, p.24]

7.2.X2 Time Pattern Properties Test
Purpose: To verify that the property being tested accepts special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property
accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written
to the property, is the time T1 with one of its fields replaced with one of the time special values. If the property is a complex
datatype, the other fields in the value shall be set within the range accepted by the IUT.

Notes to Tester: If P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

114 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
 WRITE P1 = (T1 updated with the value SV)
 VERIFY P1 = (T1 updated with the value SV)
 }

[Add new Clause 7.2.X3, p.24]

7.2.X3 DateTime Pattern Properties Test
Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the
property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A time,
T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the property, is
the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the property is a complex
datatype which contains the BACnetDateTime, the other fields in the value shall be set within the range accepted by the IUT.
The list of DateSpecials comes from the Chapter 21 Application Types section on Date, and the list of TimeSpecials comes
from the Chapter 21 Application Types section on Time.

Notes to Tester: If P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

Test Steps:
1. IF (Protocol_Revision is not present or Protocol_Revision < 4) THEN

 DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified)
ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10) THEN

DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd
months, even months, last day of month)

ELSE
DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd

months, even months, last day of month, even days, odd days)
2. TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)
3. REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {

 WRITE P1 = (D1+T1 updated with the value SV)
 VERIFY P1 = (D1+T1 updated with the value SV)
}

[Add new Clause 7.2.X4, p.24]

7.2.X4 Date Non-Pattern Properties Test
Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value, V1,
written to the property, is the date D1 with one of its fields replaced with one of the date special values. If the property is a
complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied
to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: If P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:
1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, day of week unspecified,
 odd months, even months, last day of month, even days, odd days) DO {
 TRANSMIT WriteProperty-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (V1 updated with the special value SV)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 115

 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.2.X5, p.24]

7.2.X5 Time Non-Pattern Properties Test
Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property
does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value,
V1, written to the property, is the time T1 with one of its fields replaced with one of the time special values. If the property is
a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied
to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: If P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:
1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

 TRANSMIT WriteProperty-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (V1 updated with the special value SV)
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.2.X6, p.24]

7.2.X6 DateTime Non-Pattern Properties Test
Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special datetime field values to ensure that the property
does not accept them. A datetime DT1 is selected which is within the range that the IUT will accept for the property. The value,
V1, written to the property, is the datetime DT1 with one of its fields replaced with one of the date or time special values. If the
property is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall
only be applied to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: If P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:
1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days, hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
 TRANSMIT WriteProperty-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (DT1 updated with the special value SV)
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.2.X7, p.24]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

116 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.2.X7 BACnetDateRange Non-Pattern Properties Test
Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: A BACnetDateRange property, or property that is a complex datatype containing a BACnetDateRange, P1 is
written with each of the special date field values to ensure that the property does not accept them. Each half of the dateRange
DR1 is selected so it is within the range that the IUT will accept for the property. The value, V1, written to the property, is the
dateRange DR1 with one of its fields replaced with one of the date special values. If the property is a complex datatype such as
a BACnetCalenderEntry, the other fields in the value shall be set within the range accepted by the IUT.

Configuration Requirements: This test shall only be applied to devices claiming Protocol_Revision 11 or higher. The IUT shall
be configured with a Calendar object that contains a Date_List with a single BACnetCalendarEntry in the form of a
BACnetDateRange. If Date_List property cannot be configured with a BACnetCalendarEntry in the form of a
BACnetDateRange, then this test shall be skipped.

Notes to Tester: If P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days) DO {
 TRANSMIT WriteProperty-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (DR1 with startDate updated with the special value SV)
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
 TRANSMIT WriteProperty-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (DR1 with endDate updated with the special value SV)
 Receive BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.2.X8, p.24]

7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test
Purpose: To verify that the property being tested accepts a fully unspecified date in either or both halves of the value.

Test Concept: A BACnetDateRange property, or property that has a complex datatype containing a BACnetDateRange, P1 is
written with a fully unspecified date in either or both halves to ensure that the property accepts them. DR1 is selected which is
within the date range that the IUT will accept for the property. The value, written to the property, is the dateRange DR1 replaced
with a fully unspecified date in either or both startDate and endDate. If the property is a complex datatype, the other fields in
the value shall be set within the range accepted by the IUT.

Configuration Requirements: This test shall only be applied to devices claiming Protocol_Revision 11 or higher. The IUT shall
be configured with a Calendar object that contains a Date_List with a single BACnetCalendarEntry in the form of a
BACnetDateRange.If Date_List property cannot be configured with a BACnetCalendarEntry in the form of a
BACnetDateRange, then this test shall be skipped.

Notes to Tester: If P1 is an array, then an array index shall be provided in the WRITEs and VERIFYs.

Test Steps:

1. WRITE P1 = (DR1 updated with a fully unspecified date in startDate)
2. VERIFY P1 = (the value written)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 117

3. WRITE P1 = (DR1 updated with a fully unspecified date in endDate)
4. VERIFY P1 = (the value written)
5. WRITE P1 = (DR1 updated with a fully unspecified date in both startDate and endDate)
6. VERIFY P1 = (the value written)

7.3 Object Functionality Tests

7.3.1 Property Tests

[Change and renumber Clause 7.3.1.1, p. 24]

7.3.1.1.X1 7.3.1.1 Out_Of_Service, Status_Flags, and Reliability Test

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.7, 12.1.9, 12.1.10, 12.2.7, 12.2.9, 12.2.10, 12.3.7, 12.3.9, 12.3.10, 12.4.6, 12.4.8,12.4.9,
12.6.7, 12.6.9, 12.6.10, 12.7.7, 12.7.9, 12.7.10, 12.8.6, 12.8.8, 12.8.9, 12.15.8, 12.15.10, 12.15.11, 12.16.8, 12.16.10, 12.16.11,
12.17.6, 12.17.8, 12.17.9, 12.18.7, 12.18.9, 12.18.10, 12.19.7, 12.19.9, 12.19.10, 12.20.6, 12.20.8, 12.20.9, 12.23.7, 12.23.9,
and 12.23.10.

Purpose: This test case verifies that To verify that Present_Value is writable when Out_Of_Service is TRUE and. It also that
the interrelationship between the Out_Of_Service, Status_Flags, and Reliability properties. If the PICS indicates that the
Out_Of_Service property of the object under test is not writable, and if the value of the property cannot be changed by other
means, then this test shall be omitted. This test applies to Accumulator, Analog Input, Analog Output, Analog Value, Binary
Input, Binary Output, Binary Value, Life Safety Point, Life Safety Zone, Multi-state Input, Multi-state Output, Multi-state
Value, Loop and Pulse Converter objects.

Test Concept: The IUT will select one instance of each appropriate object type and test it as described. If the Reliability property
is not supported then step 4 shall be omitted.The value of the Out_Of_Service property is set to TRUE, and the Present_Value
property is tested to be writable. The value of the Status_Flags property is validated and, if present, the value of the Reliability
property is also validated. The value of the Status_Flags property, SF1, and, if present, the Reliability property, R1, are checked
to ensure they return to there initial values when the value of the Out_Of_Service property is set to FALSE.

Configuration Requirements: If the selected object is commandable, the values of the entries in the Priority_Array above the
selected priority, PTY1, shall be NULL.

Test Steps:

1. SF1 = Status_Flags
2. R1 = Reliability
31. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
42. VERIFY Out_Of_Service = TRUE
53. VERIFY Status_Flags = (?, FALSE?, ?, TRUE)
64. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
 WRITE Present_Value, PTY1 = X
 VERIFY Present_Value = X
 }
75. IF (Reliability is present and writable) THEN
 REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
 NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags = (?, TRUE, ?, TRUE)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

118 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 WRITE Reliability = NO_FAULT_DETECTED
 VERIFY Reliability = NO_FAULT_DETECTED
 VERIFY Status_Flags = (?, FALSE, ?, TRUE)
 }
86. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service FALSE)
97. VERIFY Out_Of_Service = FALSE
108. VERIFY Status_Flags = (?, ?, ?, FALSE)SF1
11. VERIFY Reliability = R1

Notes to Tester: If the object being tested is commandable and there is an internal process writing to the Present_Value property,
then each WriteProperty request shall contain a priority sufficient to override the internal process. After step 4 the priority array
slot shall be relinquished.

[Add new Clause 7.3.1.1.X2, p. 24]

7.3.1.1.X2 Out_Of_Service for Commandable Value Objects Test

Purpose: To verify that Present_Value is no longer updated by software local to the IUT when Out_Of_Service is TRUE.

Test Concept: Select an object whose Present_Value is being modified by software local to the IUT at Priority PTY1. The
value of the Out_Of_Service property is set to TRUE, the Present_Value property is written at PTY1, and the Present_value is
checked to ensure the Present-Value is no longer being modified by software local to the IUT.

Configuration Requirements: The values of the entries in the Priority_Array above PTY1 shall be NULL.

Test Steps:

1. MAKE (Present_Value = PV1, any valid value, using software local to the IUT)
2. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
3. VERIFY Present_Value = PV1
4. WRITE Present_Value, PTY1 = PV2, any valid value other than PV1
5. MAKE (Present_Value = PV3, any valid value other than PV2, using software local to the IUT)
6. VERIFY Present_Value = PV2

[Add new Clause 7.3.1.1.X3, p. 24]

7.3.1.1.X3 Out_Of_Service, Status_Flags, and Reliability Test for Objects without Present_Value

Purpose: This test verifies the interrelationship between the Out_Of_Service, Status_Flags, and Reliability properties. If the
PICS indicates that the Out_Of_Service property of the object under test is not writable, and if the value of the property cannot
be changed by other means, then this test shall be omitted. This test applies to objects that do not contain Present_Value.

Test Concept: Write to and verify the interrelationship between the Out_Of_Service, Status_Flags, and Reliability properties
of an object which does not contain Present_Value.

Configuration Requirements: The selected object is configured such that its Reliability is NO_FAULT_DETECTED before
execution of this test.

Test Steps:

1. IF (Out_Of_Service is writable) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 119

 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service = TRUE)
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, FALSE, ?, TRUE)
4. IF (Reliability is present and writable) THEN
 REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
 NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags =(?, TRUE, ?, TRUE)
 WRITE Reliability = NO_FAULT_DETECTED
 VERIFY Reliability = NO_FAULT_DETECTED
 VERIFY Status_Flags = (?, FALSE, ?, TRUE)
 }
5. CHECK (funtionality that should stop or be disabled is. For example, with a Network Port object, all communication
 of the protocol modeled by the object, through that port is disabled)
6. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service = FALSE)
7. VERIFY Out_Of_Service = FALSE
8. VERIFY Status_Flags = (?, ?, ?, FALSE)

[Add new Clause 7.3.1.6, p. 29]

7.3.1.6 Minimum On/Off Time Tests

[Change and renumber Clause 7.3.1.6, p. 29]

[Reviewer Note: The test was re-written to remove the dependence on the presence of the Minimum_Off_Time property. This
test was renumbered from 7.3.1.6 to 7.3.1.6.1.]

7.3.1.6.1 Override of Minimum Time

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.

BACnet Reference Clause: 19.

Purpose: To verify that higher priority commands override minimum on or off times. If neither minimum on time or minimum
off time is supported this test shall be omitted. This test applies to Binary Output and commandable Binary Value objects.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE and it is controlled at a priority numerically
greater (lower priority) than 6. The object has been in this state long enough for any minimum off and/or minimum on time to
have expired. The Present_Value is written to with a value of ACTIVE at priority 7. The value of slot 6 of the Priority_Array
is monitored to verify that it contains the value ACTIVE. Before the minimum on time expires the Present_Value is written to
with a value of INACTIVE and a priority numerically lower (higher priority) than 6. This overrides the minimum on time and
immediately initiates the minimum off time algorithm.

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array numerically
less than 7 have a value of NULL and no internal algorithms are issuing commands to this object at a priority numerically lesser
(higher priority) than the priority that is currently controlling Present_Value. Minimum_On_Time must be configured with a
large enough value to allow execution of all test steps before it expires.

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by using
INACTIVE in steps 1, 2, 3, and 6 through 3 and ACTIVE in steps 4 through 76 and 5, and by using the Minimum_Off_Time in
Step 4.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

120 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = 7
2. VERIFY Present_Value = ACTIVE
3. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
4. BEFORE Minimum_On_Time
 WRITE Present_Value = INACTIVE, PRIORITY = (any value numerically lower than 6 (higher priority))
5. VERIFY Present_Value = INACTIVE
6. VERIFY Priority_Array = INACTIVE, PRIORITY = 6
6. VERIFY Priority_Array <> ACTIVE, ARRAY INDEX = 6

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by
using INACTIVE in steps 1 through 3 and ACTIVE in steps 4 through 6, and by using Minimum_Off_Time in step 4.

[Add new Clause 7.3.1.6.2, p. 29]

7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6

Purpose: To verify that commands written at a lower priority than 6 will not affect Present_Value while Minimum_Off_Time
is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE, and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for
any minimum on time to have expired. The Present_Value of the object is set to INACTIVE at a priority P9. Before
Minimum_Off_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where P7
is a priority between P9 and 6. The Priority_Array is monitored to verify that it contains the appropriate values, and
Present_Value is monitored to verify that it does not change before Minimum_Off_Time expires.

Test Step(s) Start of
Test 1-3 4-6 7-10 11-15 16

Present_Value Active Inactive Inactive Inactive Inactive Active

PA_Index = 6 Null Inactive Inactive Inactive Inactive <>Inactive
PA_Index = P7 Null Null Null Active Active Active
PA_Index = P9 Null Inactive Null Null Active Active
Relinquish_Default Active Active Active Active Active Active

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array from P9 and
higher (numerically lesser) have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY = P9
2. VERIFY Present_Value = INACTIVE
3. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
4. WRITE Present_Value = NULL, PRIORITY = P9
5. VERIFY Present_Value = INACTIVE
6. VERIFY Priority_ Array = INACTIVE, ARRAY INDEX = 6

End of
Test Minimum_Off_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 121

--…(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY INDEX = 6 or PV)
7. WRITE Present_Value = ACTIVE, PRIORITY = P7 (6 < P7 < P9)
8. VERIFY Present_Value = INACTIVE
9. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = P7
10. VERIFY Priority_ Array = INACTIVE, ARRAY INDEX = 6
--…(Steps 7-10:Check that an ACTIVE value at P7 does not affect ARRAY INDEX = 6 or PV)
11. WRITE Present_Value = ACTIVE, PRIORITY = P9
12. VERIFY Present_Value = INACTIVE
13. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = P9
14. VERIFY Priority_ Array = INACTIVE, ARRAY INDEX = 6
--…(Steps 11-14:Check that an ACTIVE value at P9 does not affect ARRAY INDEX = 6 or PV)
15. WAIT (Minimum_Off_Time + Internal Processing Fail Time)
16. VERIFY Present_Value = ACTIVE

[Add new Clause 7.3.1.6.3, p. 29]

7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6

Purpose: To verify that commands written at a lower priority than 6 will not affect Present_Value while Minimum_On_Time
is in effect.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE, and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for
any minimum off time to have expired. The Present_Value of the object tested is set to ACTIVE at a priority P9. Before
Minimum_On_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where P7 is
a priority between P9 and 6. The Priority_Array is monitored to verify that it contains the appropriate values, and
Present_Value is monitored to verify that it does not change before Minimum_On_Time expires.

Test Step(s) Start of
Test 1-3 4-6 7-10 11-15 16

Present_Value Inactive Active Active Active Active Inactive

PA_Index = 6 Null Active Active Active Active <>Active
PA_Index = P7 Null Null Null Inactive Inactive Inactive
PA_Index = P9 Null Active Null Null Inactive Inactive
Relinquish_Default Inactive Inactive Inactive Inactive Inactive Inactive

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots from P9 and higher (numerically
lesser) in the Priority_Array have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = P9
2. VERIFY Present_Value = ACTIVE
3. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
4. WRITE Present_Value = NULL, PRIORITY = P9
5. VERIFY Present_Value = ACTIVE
6. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6

End of
Test

Minimum_On_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

122 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

--…(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY INDEX = 6 or PV)
7. WRITE Present_Value = INACTIVE, PRIORITY = P7 (6 < P7 < P9)
8. VERIFY Present_Value = ACTIVE
9. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = P7
10. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6
--…(Steps 7-10:Check that an INACTIVE value at P7 does not affect ARRAY INDEX = 6 or PV)
11. WRITE Present_Value = INACTIVE, PRIORITY = P9
12. VERIFY Present_Value = ACTIVE
13. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = P9
14. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6
--…(Steps 11-14:Check that an INACTIVE value at P9 does not affect ARRAY INDEX = 6 or PV)
15. WAIT (Minimum_On_Time + Internal Processing Fail Time)
16. VERIFY Present_Value = INACTIVE

[Add new Clause 7.3.1.6.4, p. 29]

7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum off time is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE, and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any minimum
on time to have expired. The Present_Value of the object tested is set to INACTIVE at a priority P5 (P5 < 6). Before
Minimum_Off_Time expires, Present_Value is written with values of NULL and ACTIVE, and the Present_Value and
Priority_Array properties are observed for correct behavior.

Test Steps Start of Test 1-3 4-7 8-11

Present_Value Active Inactive Inactive Active

PA_Index = P5 Null Inactive Null Active
PA_Index = 6 Null Inactive Inactive <>Inactive
Relinquish_Default Active Active Active Active

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY = P5
2. VERIFY Present_Value = INACTIVE
3. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
4. WRITE Present_Value = NULL, PRIORITY = P5
5. VERIFY Present_Value = INACTIVE
6. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
7. VERIFY Priority_ Array = NULL, ARRAY INDEX = P5
--…(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY INDEX = 6 or PV)
8. WRITE Present_Value = ACTIVE, PRIORITY = P5
9. VERIFY Present_Value = ACTIVE

Minimum Off Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 123

10. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = P5
11. VERIFY Priority_ Array <> INACTIVE, ARRAY INDEX = 6
--…(Steps 8-11:Check that an ACTIVE value at P5 will change ARRAY INDEX = 6 and PV)

[Add new Clause 7.3.1.6.5, p. 29]

7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum on time is in effect.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE, and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any minimum
off time to have expired. The Present_Value of the object tested is set to ACTIVE at a priority P5 (P5 < 6). Before
Minimum_On_Time expires, Present_Value is written with values of NULL and INACTIVE, and the Present_Value and
Priority_Array properties are observed for correct behavior.

Test Steps Start of
Test 1-3 4-7 8-11

Present_Value Inactive Active Active Inactive
PA_Index = P5 Null Active Null Inactive
PA_Index = 6 Null Active Active <>Active
Relinquish_Default Inactive Inactive Inactive Inactive

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = P5
2. VERIFY Present_Value = ACTIVE
3. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
4. WRITE Present_Value = NULL, PRIORITY = P5
5. VERIFY Present_Value = ACTIVE
6. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
7. VERIFY Priority_ Array = NULL, ARRAY INDEX = P5
--…(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY INDEX = 6 or PV)
8. WRITE Present_Value = INACTIVE, PRIORITY = P5
9. VERIFY Present_Value = INACTIVE
10. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = P5
11. VERIFY Priority_ Array <> ACTIVE, ARRAY INDEX = 6
--…(Steps 8-11:Check that an INACTIVE value at P5 will change ARRAY INDEX = 6 and PV)

[Add new Clause 7.3.1.6.6, p. 29]

Minimum_On_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

124 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.1.6.6 Minimum_Off_Time - Clock is not affected by additional write operations

Purpose: To verify that the Minimum_Off_Time timer is not affected by subsequent write operations that do not cause present-
value to change.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE, and the value at slot 6 in the priority-array
has a value of NULL. Present_Value of the object is written to INACTIVE at priority P8, such that present-value and slot 6 in
the priority-array change to INACTIVE. At time T1, which occurs before minimum off time expires, another write request, at
priority P9, with a value of INACTIVE, is executed by the device. After minimum off time expires but before T1 +
Minimum_Off_Time, slot 6 in the priority-array is checked to verify that it returned to NULL and was not affected by the
second request.

Test Step(s) 1-2 3-4 5-8 9

Present_Value Active Inactive Inactive Inactive

PA_Index = P6 Null Inactive Inactive Null
PA_Index = PX8 Null Inactive Inactive Inactive
PA_Index = PY9 Null Null Inactive Inactive

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and slot
6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than any
other commanding priority.

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

Test Steps:

1. VERIFY Present_Value = ACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. WRITE Present_Value = INACTIVE, PRIORITY = P8
4. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
--…(Execute step 5 at time T1)
5. WRITE Present_Value = INACTIVE, PRIORITY = PY9
--…(Execute steps 6 and 7 before Minimum_Off_Time expires)
6. VERIFY Present_Value = INACTIVE
7. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
8. WAIT for Minimum_Off_Time to expire
--…(Execute step 9 before T1 + Minimum_Off_Time)
9. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6

[Add new Clause 7.3.1.6.7, p. 29]

7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations

Purpose: To verify that the Minimum_On_Time timer is not affected by subsequent write operations that do not cause present-
value to change.

Minimum Off Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 125

Test Concept: The initial Present_Value of the object being tested is set to INACTIVE, and the value at slot 6 in the priority-
array has a value of NULL. Present_Value of the object is written to ACTIVE, at priority P8, such that present-value and slot
6 in the priority-array change to ACTIVE. At time T1, which occurs before minimum on time expires, another write request,
at priority P9, with a value of ACTIVE, is executed by the device. After minimum on time expires but before T1 +
Minimum_On_Time, Sslot 6 in the priority-array is checked to verify that it returned to NULL and was not affected by the
second request.

Test Step(s) 1-2 3-4 5-8 9

Present_Value Inactive Active Active Active

PA_Index = P6 Null Active Active Null
PA_Index = P8 Null Active Active Active
PA_Index = P9 Null Null Active Active

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE, and
slot 6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than
any other commanding priority.

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

Test Steps:

1. VERIFY Present_Value = INACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. WRITE Present_Value = ACTIVE, PRIORITY = P8
4. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
--…(Execute step 5 at time T1)
5. WRITE Present_Value = ACTIVE, PRIORITY = P9
--…(Execute steps 6 and 7 before Minimum_On_Time expires)
6. VERIFY Present_Value = ACTIVE
7. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
8. WAIT for Minimum_On_Time to expire
--…(Execute step 9 before T1 + Minimum_On_Time)
9. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6

[Add new Clause 7.3.1.6.8, p. 29]

7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE

Purpose: To verify that Minimum_Off_Time does not start immediately after a write operation while Minimum_On_Time is
in effect and present-value is ACTIVE.

Test Concept: The initial Present_Value of the object being tested is set to INACTIVE, and the value at slot 6 in the priority-
array has a value of NULL. Present_Value of the object is written to ACTIVE at P9, where P9 is a priority between 7 and 16,
such that present-value and slot 6 in the priority-array change to ACTIVE. Before Minimum_On_Time expires, Present_Value
is written to INACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value would change if
Minimum_On_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it
contains the appropriate value. Time references T1 and T2 are defined for this test as follows:
T1 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time

Minimum On Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

126 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

T2 = the time when the ACTIVE request is executed by the device + Minimum_On_Time + Minimum_Off_Time

Test Steps 1-2 3-5 6-9 10-11 12-13 14-15
Present_Value Inactive Active Active Inactive Inactive Inactive

PA_Index = 6 Null Active Active Inactive Inactive Null
PA_Index = P7 Null Null Inactive Inactive Inactive Inactive
PA_Index = P9 Active Active Active Active Active

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE, and
slot 6 in the Priority_Array has a value of NULL. The object being tested must also be configured with Minimum_On_Time
and Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object exists with both
Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Notes to Tester: P9 and P7 may be equal.

Test Steps:

1. VERIFY Present_Value = INACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. WRITE Present_Value = ACTIVE, PRIORITY = P9
4. VERIFY Present_Value = ACTIVE
5. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
--…(Execute steps 6 through 7 before Minimum_On_Time expires)
6. WRITE Present_Value = INACTIVE, PRIORITY = P7
7. VERIFY Present_Value = ACTIVE
8. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
9. WAIT for Minimum_On_Time to expire
--…(Execute steps 10 and 11 before T1)
10. VERIFY Present_Value = INACTIVE
11. VERIFY Priority_ Array = INACTIVE, ARRAY INDEX = 6
--…(Execute step 12 between T1 and T2
12. VERIFY Present_Value = INACTIVE
13. VERIFY Priority_ Array = INACTIVE, ARRAY INDEX = 6
--..(Execute step 14 and 15 after T2)
14. VERIFY Present_Value = INACTIVE
15. VERIFY Priority_Array = NULL, ARRAY INDEX = 6

[Add new Clause 7.3.1.6.9, p. 29]

7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE

Purpose: To verify that Minimum_On_Time does not start immediately after a write operation while Minimum_Off_Time is
in effect and present-value is INACTIVE.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE, and the value at slot 6 in the priority-array
has a value of NULL. Present_Value of the object is written to INACTIVE at P9, where P9 is a priority between 7 and 16,
such that present-value and slot 6 in the priority-array change to INACTIVE. Before Minimum_Off_Time expires,
Present_Value is written to ACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value would change if

T1 T2

Minimum_On_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 127

Minimum_Off_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it
contains the appropriate value. Time references T1 and T2 are defined for this test as follows:
T1 = the time when the ACTIVE request is executed by the device + Minimum_On_Time
T2 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time + Minimum_On_Time

Test Steps 1-2 3-5 6-9 10-11 12-13 14-15
Present_Value Active Inactive Inactive Active Active Active

PA_Index = 6 Null Inactive Inactive Active Active Null
PA_Index = P7 Null Null Active Active Active Active
PA_Index = P9 Inactive Inactive Inactive Inactive Inactive

Note: Bold font indicates the
change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE, and slot
6 in the Priority_Array has a value of NULL. The object being tested must also be configured with Minimum_On_Time and
Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object exists with both
Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Notes to Tester: P9 and P7 may be equal.

Test Steps:

1. VERIFY Present_Value = ACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. WRITE Present_Value = INACTIVE, PRIORITY = P9
4. VERIFY Present_Value = INACTIVE
5. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
--…(Execute steps 6 through 7 before Minimum_Off_Time expires)
6. WRITE Present_Value = ACTIVE, PRIORITY = P7
7. VERIFY Present_Value = INACTIVE
8. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
9. WAIT for Minimum_Off_Time to expire
--…(Execute steps 10 and 11 before T1)
10. VERIFY Present_Value = ACTIVE
11. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6
--…(Execute step 12 between T1 and T2
12. VERIFY Present_Value = ACTIVE
13. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6
--..(Execute step 14 and 15 after T2)
14. VERIFY Present_Value = ACTIVE
15. VERIFY Priority_Array = NULL, ARRAY INDEX = 6

[Add new Clause 7.3.1.6.10, p. 29]

7.3.1.6.10 Ensuring Minimum Times Are Not Affected By Time Changes

Purpose: To verify that minimum times are not affected by changing the time in a device via TimeSynchronization or
UTCTimeSynchronization requests.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE, and the value at slot 6 in the priority-array
has a value of NULL. Present_Value of the object is written to INACTIVE such that present-value and slot 6 in the priority-

T1 T2

Minimum_On_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

128 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

array change to INACTIVE. Before Minimum_Off_Time expires, the time is changed to a value T1 which is more than
Minimum_Off_Time in the future and Present_Value, and Slot 6 in the priority-array are read to verify that they were not
affected by the time change. After Minimum_Off_Time expires, slot 6 in the priority-array is read again to verify that it is no
longer INACTIVE.

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE, and slot
6 in the Priority_Array has a value of NULL. If the IUT does not support TimeSynchronization or UTC-TimeSynchronization,
then this test shall be omitted.

Notes to Tester: The test above is written for Minimum_Off_Time. To execute this test for Minimum_On_Time, use
INACTIVE where ACTIVE is specified, ACTIVE where INACTIVE is specified, and Minimum_On_Time where
Minimum_Off_Time is specified.

Test Steps:

1. VERIFY Present_Value = ACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. WRITE Present_Value = INACTIVE
4. VERIFY Present_Value = INACTIVE
5. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
6. TRANSMIT
 DA = GLOBAL BROADCAST,
 SA = TD
 BACnet-Unconfirmed-Request-PDU,
 ‘Service Choice’ = TimeSynchronization-Request,
 Date = T1,
 Time = T1
7. TRANSMIT
 DA = GLOBAL BROADCAST,
 SA = TD
 BACnet-Unconfirmed-Request-PDU,
 ‘Service Choice’ = UTC-TimeSynchronization-Request,
 Date = T1,
 Time = T1
8. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
9. WAIT (the remainder of Minimum_Off_Time)
10. VERIFY Priority_Array <> INACTIVE, ARRAY INDEX = 6

[Add new Clause 7.3.1.6.11, p. 29]

7.3.1.6.11 Minimum_Off_Time - Value Source Mechanism

Purpose: To verify that the value source used for priority 6 is the commanded object while Minimum_Off_Time is in effect.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. When
Minimum_Off_Time takes effect, the Present_Value is written. The Value_Source and Value_Source_Array properties are
monitored to verify that the source for priority 6 is the commanded object.

Configuration Requirements: The object, O1, to be tested shall be configured such that slot 6 in the Priority_Array and
Value_Source_Array has a value of NULL. The object being tested must also be configured with Minimum_Off_Time values
sufficiently large enough to allow execution of this test. If no object exists with Minimum_Off_Time property, this test shall
be skipped.

Test Steps:
1. VERIFY Value_Source = (any valid value)
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. VERIFY Value_Source_Array = NULL, ARRAY INDEX = 6
4. WRITE Present_Value = INACTIVE, PRIORITY > 6
5. VERIFY Present_Value = INACTIVE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 129

6. VERIFY Priority_Array = INACTIVE, ARRAY INDEX = 6
7. VERIFY Value_Source = O1
8. VERIFY Value_Source_Array = O1, ARRAY INDEX = 6
9. WAIT (Minimum ON/OFF Fail Time + Minimum_Off_Time)
10. VERIFY Value_Source = 'None'

[Add new Clause 7.3.1.6.12, p. 29]

7.3.1.6.12 Minimum_On_Time - Value Source Mechanism

Purpose: To verify that the value source used for priority 6 is the commanded object while Minimum_On_Time is in effect.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. When
Minimum_On_Time takes effect, the Present_Value is written. The Value_Source and Value_Source_Array properties are
monitored to verify that the source for priority 6 is the commanded object.

Configuration Requirements: The object, O1, to be tested shall be configured such that slot 6 in the Priority_Array and
Value_Source_Array has a value of NULL. The object being tested must also be configured with Minimum_On_Time values
sufficiently large enough to allow execution of this test. If no object exists with Minimum_On_Time property, this test shall
be skipped.

Test Steps:
1. VERIFY Value_Source = (any valid value)
2. VERIFY Priority_ Array = NULL, ARRAY INDEX = 6
3. VERIFY Value_Source_Array = NULL, ARRAY INDEX = 6
4. WRITE Present_Value = ACTIVE, PRIORITY > 6
5. VERIFY Present_Value = ACTIVE
6. VERIFY Priority_Array = ACTIVE, ARRAY INDEX = 6
7. VERIFY Value_Source = O1
8. VERIFY Value_Source_Array = O1, ARRAY INDEX = 6
9. WAIT (Minimum ON/OFF Fail Time + Minimum_On_Time)
10. VERIFY Value_Source = 'None'

[Change Clause 7.3.1.7, p. 29]

7.3.1.7 COV Tests

Tests to demonstrate COV functionality are covered in 8.2 and 9.6.

[Add new Clause 7.3.1.7.X1, p. 29]

7.3.1.7.X1 COV_Resubscription_Interval Test

Purpose: To verify that object O1 acquiring data via COV notification reissues its subscription at the interval set by
COV_Resubscription_Interval.

Test Concept: O1 is configured to acquire data from the TD by COV notification. The TD verifies the resubscription interval.

Configuration Requirements: O1 is configured to acquire data from TD by COV notification. Non-zero values shall be chosen
for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this property.

Test Steps:

1. IF (the IUT uses SubscribeCOV) THEN
 RECEIVE SubscribeCOV-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

130 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Subscriber Process Identifier' = (SPI1, any value),
 'Monitored Object Identifier' = (MOI1, the object to be monitored),
 'Issue Confirmed Notifications' = (ICN1 = TRUE | FALSE),
 'Lifetime' = (L1, any value >= COV_Resubscription_Interval)
 ELSE
 RECEIVE SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (SPI1, any value),
 'Monitored Object Identifier' = (MOI1, the object to be monitored),
 'Issue Confirmed Notifications' = (ICN1 = TRUE | FALSE),
 'Lifetime' = (L1, any value >= COV_Resubscription_Interval),
 'Monitored Property Identifier' = (MPI1, the property to be monitored),
 'COV Increment' = (CI1, Client_COV_Increment -- optional)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = SPI1,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Time Remaining' = (any value <= L1),
 'List of Values' = (appropriate BACnetPropertyValue(s))
4. RECEIVE BACnet-SimpleACK-PDU
5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and L1LifeTime from step
1)
 IF (the IUT uses SubscribeCOV) THEN
 RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = SPI1,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Lifetime' = (L2, any value >= COV_Resubscription_Interval)
 ELSE
 RECEIVE SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = SPI1,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Lifetime' = (L2, any value >= COV_Resubscription_Interval)
 'Monitored Property Identifier' = MPI1,
 'COV Increment' = CI1
6. TRANSMIT BACnet-SimpleACK-PDU
7. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = SPI1,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Time Remaining' = (any value <= L2),
 'List of Values' = (appropriate BACnetPropertyValue(s))
8. RECEIVE BACnet-SimpleACK-PDU
9. WAIT (COV_Resubscription_Interval - Re-subscription Interval Tolerance)
10. BEFORE (2 * Re-subscription Interval Tolerance)
 IF (the IUT uses SubscribeCOV) THEN
 RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = SPI1,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Lifetime' = L1
 ELSE
 RECEIVE SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = SPI1,
 'Monitored Object Identifier' = MOI1,
 'Issue Confirmed Notifications' = ICN1,
 'Lifetime' = L1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 131

 'Monitored Property Identifier' = MPI1,
 'COV Increment' = CI1
11. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval +
Re-subscription Interval Tolerance, the IUT shall send the subsequent SubscribeCOV request within Lifetime seconds even
though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the IUT
shall fail the test.

[Change Clause 7.3.1.8, p. 29]

[Reviewer Note: Renamed the test and modified steps to express using READ, WRITE and VERIFY commands.]

7.3.1.8 Binary Object Change of State Tests
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.6.14, 12.6.15, 12.6.16, 12.7.14, 12.7.15, 12.7.16, 12.8.12, 12.8.13, and 12.8.14.

Purpose: To verify that the properties of binary objects that collectively track state changes (changes in Present_Value) function
as required. If the Change_Of_State_Count, Change_Of_State_Time, and Time_Of_State_Count_Reset properties are not
supported this test shall be omitted. This test applies to Binary Input, Binary Output, and Binary Value objects.

Test Concept: The Present_Value of the binary object under test is changed. The Change_Of_State_Count property is checked
to verify that it has been incremented, and the Change_Of_State_Time property is checked to verify that it has been updated.
The Change_Of_State_Count is reset and Time_Of_State_Count_Reset is checked to verify that it has been updated
appropriately.

Configuration Requirements: The object being tested shall be configured such that the Present_Value and
Change_Of_State_Count properties are writable, or another means of changing these properties shall be provided.

Test Steps:

1. READ PV = Present_Value
2. READ N = Change_of_State_Count
3. IF (PV = ACTIVE) THEN
 IF (Present_Value is writable) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 MAKE (Present_Value = INACTIVE)
 ELSE
 IF (Present_Value is writable) THEN
 WRITE Present_Value = ACTIVE
 VERIFY Present_Value = ACTIVE
 ELSE
 MAKE (Present_Value = ACTIVE)
4. VERIFY (Change_of_State_Count = N+1)
5. VERIFY (Change_Of_State_Time ~= the current local date and time)
6. IF (Change_of_State_Count is writable) THEN
 WRITE Change_of_State_Count = 0
 ELSE
 MAKE (Change_of_State_Count = 0)
7. VERIFY Time_Of_State_Count_Reset ~= (the current local date and time)
1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Present_Value
2. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Present_Value,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

132 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Property Value' = ACTIVE | INACTIVE
3. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Count
4. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Count,
 'Property Value' = (any valid value, N)
5. IF (Present_Value is writable) THEN
 IF (the value returned in step 2 was ACTIVE) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 WRITE Present_Value = ACTIVE
 VERIFY Present_Value = ACTIVE
 ELSE
 MAKE (Present_Value change to the opposite state)
6. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date
7. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local Date,
 'Property Value' = (the current local date, D)
8. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time
9. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (the current local time, TLOC)
10. WAIT Internal Processing Fail Time
11. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Time
12. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Time,
 'Property Value' = (a date and time such that the date = D and the time is approximately TLOC)
13. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Count
14. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Change_Of_State_Count,
 'Property Value' = N + 1
15. IF (Change_Of_State_Count is writable) THEN
 WRITE Change_Of_State_Count = 0
 VERIFY Change_Of_State_Count = 0
 ELSE
 MAKE (Change_Of_State_Count = 0)
16. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time
17. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (the current local time, TLOC)
18. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 133

 'Property Identifier' = Time_Of_State_Count_Reset
19. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Time_Of_State_Count_Reset,
 'Property Value' = (a date and time such that the date = D and the time is approximately TLOC)

[Change Clause 7.3.1.9, p. 31]

[Reviewer Note: Changes were made to address errors which were pointed out via BTL-CR-0253, and in order to express using
READ, WRITE and VERIFY commands.]

7.3.1.9 Binary Object Elapsed Active Time Tests
Purpose: To verify that the properties of binary objects that collectively track active time function properly. If the
Elapsed_Active_Time and Time_Of_Active_Time_Reset properties are not supported then this test shall be omitted. This test
applies to Binary Input, Binary Output, and Binary Value and Binary Lighting Output objects.

Test Concept: The Present_Value or Feedback_Value of the binary object being tested is set to INACTIVE. The
Elapsed_Active_Time property is checked to verify that it does not accumulate time while the object is in an INACTIVE state.
The Present_Value or Feedback_Value is then set to ACTIVE. The Elapsed_Active_Time property is checked to verify that it
is accumulating time while the object is in an ACTIVE state. The Present_Value or Feedback_Value is then set to INACTIVE
and the Elapsed_Active_Time is reset. The Time_Of_Active_Time_Reset property is checked to verify that it has been updated.

Configuration Requirements: The object being tested shall be configured such that the Present_Value or Feedback_Value if
that is used for the calculation, and Elapsed_Active_Time properties are writable or another means of changing these properties
shall be provided. Whether Present_Value or Feedback_Value is used as the indicator for the calculation of the
Elapsed_Active_Time is a local matter.

Notes To Tester: It was intentional to specify that the alternative use of Feedback_Value tracking specified in 135-2010ad-3 is
allowed regardless of the Protocol_Revision claimed by the implementation.

Test Steps:

1. IF (Present_Value is writable) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 MAKE (Present_Value = INACTIVE)
2. IF (Feedback_Value is used for Elapsed_Active_Time tracking) THEN
 WAIT(long enough for Feedback_Value to reflect the Present_Value)
 VERIFY Feedback_Value = INACTIVE
 TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time
3. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time,
 'Property Value' = (the elapsed active time, TELAPSED in seconds)
3. READ Elapsed_Active_Time = initialElapsedTime

-- verify that Elapsed_Active_Time does not change when the object is INACTIVE
4. WAIT (1 minute) WAIT (more than Internal_Processing Fail Time + at least 1 second)
5. VERIFY Elapsed_Active_Time = initialElapsedTime

-- verify that Elapsed_Active_Time correctly reflects the time the object is ACTIVE5. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time
6. RECEIVE ReadProperty-ACK,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

134 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time,
 'Property Value' = (the same TELAPSED as step 3)
6. IF (Present_Value is writable) THEN
 WRITE Present_Value = ACTIVE
 VERIFY Present_Value = ACTIVE
 ELSE
 MAKE (Present_Value = ACTIVE)
7. IF (Feedback_Value is used for Elapsed_Active_Time tracking) THEN
 WAIT (long enough for Feedback_Value to reflect the Present_Value)
 VERIFY Feedback_Value = ACTIVE
8. READ initialTime = (the IUT’s Device object) Local_Time
9. WAIT (more than Internal Processing Fail Time + 30 seconds)
10. IF (Present_Value is writable) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 MAKE (Present_Value = INACTIVE)
11. IF (Feedback_Value is used for Elapsed_Active_Time tracking) THEN
 WAIT (long enough for Feedback_Value to reflect the Present_Value)
 VERIFY Feedback_Value = INACTIVE
12. READ currentTime = (the IUT’s Device object) Local_Time
13. READ totalElapsedTime = Elapsed_Active_Time
14. CHECK (totalElapsedTime ~= (currentTime - initialTime) - initialElapsedTime)

-- verify ability to reset Elapsed_Active_Time, if it is writable
15. IF (Elapsed_Active_Time is writable) THEN
 WRITE Elapsed_Active_Time = 0
 READ currentDate = (the IUT’s Device object) Local_Date
 READ currentTime = (the IUT’s Device object) Local_Time
 VERIFY Time_Of_Active_Time_Reset ~= { currentDate, currentTime }

10. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time
11. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Elapsed_Active_Time,
 'Property Value' = (T: (TELAPSED + 30) ≤ T ≤ (TELAPSED + TimeX, where TimeX is the time between the beginning
of step 7 and this step30 + Internal Processing Fail Time))
11. IF (Present_Value is writable) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 MAKE (Present_Value = INACTIVE)
12. IF (Elapsed_Active_Time is writable) THEN
 WRITE Elapsed_Active_Time = 0
 VERIFY Elapsed_Active_Time = 0
 ELSE
 MAKE (Elapsed_Active_Time = 0)
13. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date
14. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local Date,
 'Property Value' = (the current local date, D)
15. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 135

16. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (the current local time, TLOC)
17. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Time_Of_Active_Time_Reset
18. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Present_ValueTime_Of_Active_Time_Reset,
 'Property Value' = (a date and time such that the date = D and the time is approximately TLOC)

7.3.1.10 Event_Enable Tests

[Change Clause 7.3.1.10.1, p. 32]

[Reviewer Note: This test was modified to add a clarifying sentence to Purpose and clarify that the received response in step
11 is from O1.]

7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL, and TO_FAULT

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event
transition has a value of TRUE. This test applies to Event Enrollment objects and objects that support intrinsic reporting.

Test Concept: The IUT is configured with an event-generatig object, O1, such that the Event_Enable property is tested in all
supported states. Each event transition is triggered and the IUT is monitored to verify that notification messages are transmitted
only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: If the Event_Enable property is configurable, repeat the test with Event_Enable =
(T,F,F),(F,T,F),(F,F,T). If the Event_Enable property is not configurable, then follow the test steps as written and verify correct
behavior for the value of the Event_Enable property. All other properties in O1, and any supporting objects, shall be configured
to allow these events to be generated. The event-generating object shall be in a NORMAL state at the start of the test. D1 is
either the pTimeDelay parameter or, in the case of the EXTENDED and proprietary algorithms, a vendor specific delay (may
be zero).

D2 is either the pTimeDelayNormal parameter or, in case of the EXTENDED and proprietary algorithms, a vendor specific
delay (may be zero).

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. WAIT (pTimeDelay + Notification Fail Time)
3. IF (O1 contains pFeedbackValue) THEN
 MAKE (pFeedbackValue differ from pMonitoredValue)
 ELSE IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that is OFFNORMAL)
 ELSE
 MAKE (pMonitoredValue have a value that is OFFNORMAL)
4. WAIT (D1)
5. BEFORE Notification Fail Time
 IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN {
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

136 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = (values appropriate to the event type)
 TRANSMIT BACnet-SimpleACK-PDU
 }
 ELSE
 CHECK (verify that the IUT did not transmit an event notification message)
6. VERIFY pCurrentState = OFFNORMAL
7. IF (O1 contains pFeedbackValue) THEN
 MAKE (pFeedbackValue equal to pMonitoredValue)
 ELSE IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that is NORMAL)
 ELSE
 MAKE (pMonitoredValue have a value that is NORMAL)
8. WAIT (D2)
9. BEFORE Notification Fail Time
 IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN {
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = NORMAL,
 'Event Values' = (values appropriate to the event type)
 TRANSIMIT BACnet-SimpleACK-PDU
 }
 ELSE
 CHECK (verify that the IUT did not transmit an event notification message)
10. VERIFY pCurrentState = NORMAL
11. IF (O1 can be placed into a fault condition) THEN {
 MAKE (a condition exist that will cause O1 to generated a TO-FAULT transition)
 BEFORE Notification Fail Time
 IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN {
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1(the event-generating object configured for this test),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-FAULT transition),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 137

 'Event Values' = (values appropriate to the event type)
 TRANSMIST BACnet-SimpleACK-PDU
 }
 ELSE
 CHECK (verify that the IUT did not transmit an event notification message)
 VERIFY Event_State = FAULT
 }

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

[Change Clause 7.3.1.11, p.36]

[Reviewer Note: Corrected errata issues which exist in 135.1-2019. Improved the text for Notes To Tester. Renumbered and
renamed the test to make it a subclause of 7.3.1.11.]

7.3.1.11 Acked_Transitions Tests

7.3.1.11.1 Acked_Transitions TestsTest

Purpose: To verify that the Acked_Transitions property tracks whether or not an acknowledgment has been received for a
previously issued event notification. It also verifies the interrelationship between Status_Flags and Event_State.

Test Concept: The IUT is configured such that the Event_Enable property indicates that all event transitions are to trigger an
event notification. The Acked_Transitions property shall have the value (TRUE, TRUE, TRUE) indicating that all previous
transitions have been acknowledged. Each event transition is triggered and the Acked_Transitions property is monitored to
verify that the appropriate bit is cleared when a notification message is transmitted and reset if an acknowledgment is received.

Configuration Requirements: The Event_Enable and Acked_Transitions properties shall be configured with a value of (TRUE,
TRUE, TRUE). For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE). The
referenced event-triggering property shall be set to a value that results in a NORMAL condition. The value of the Transitions
parameter for all recipients shall be (TRUE, TRUE, TRUE).

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in
which case the TD shall skip sending the BACnet-SimpleACK-PDU messages after receiving the notifications.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)
3. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
4. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that is OFFNORMAL)
 ELSE
 MAKE (pMonitoredValue have a value that is OFFNORMAL)
5. WAIT (pTimeDelay)
6. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI1: any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Toffnormal: any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Poffnormal: the value configured to correspond to a TO-OFFNORMAL
 transition),
 'Event Type' = (any valid event type),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

138 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = (values appropriate to the event type)
7. TRANSMIT BACnet-SimpleACK-PDU
8. VERIFY pCurrentState = OFFNORMAL
9. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)
10. IF (Protocol_revision is present AND Protocol_Revision >= 13 THEN
 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
11. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that is NORMAL)
 ELSE
 MAKE (pMonitoredValue have a value that is NORMAL)
12. WAIT (pTimeDelayNormal)
13. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI2: any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tnormal: any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Pnormal: the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = OFNORMAL,
 'To State' = NORMAL,
 'Event Values' = (values appropriate to the event type)
14. TRANSMIT BACnet-SimpleACK-PDU
15. VERIFY pCurrentState = NORMAL
16. VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)
17. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (FALSE, FALSE, ?,?)
18. IF (the event-triggering object can be placed into a fault condition) THEN {
 MAKE (a condition exist that will cause the object to generate a fault condition)
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI3: any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tfault: any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Pfault: the value configured to correspond to a TO-FAULT transition),
 'Event Type' = IF (Protocol_Revision < 13) THEN
 (any valid event type),
 ELSE
 CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (values appropriate to the event type)
 TRANSMIT BACnet-SimpleACK-PDU
 VERIFY pCurrentState = FAULT
 VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)
 TRANSMIT AcknowledgeAlarm-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 139

 'Acknowledging Process Identifier' = (PI3),
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Event State Acknowledged' = FAULT,
 'Acknowledgement Source' = (a character string),
 'Time Stamp' = (Tfault),
 'Time of Acknowledgment' = (the TD’s current time)
 RECEIVE BACnet-SimpleACK-PDU
 IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI3),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tfault the IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Pfault),
 'Event Type' = IF (Protocol_Revision < 13)
 (any valid event type),
 ELSE
 CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = FAULT
 ELSE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI3),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tfault the IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Pfault),
 'Event Type' = (any valid event type),
 'Notify Type' = ACK_NOTIFICATION
 TRANSMIT BACnet-SimpleACK-PDU
 VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)
 }
19. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (PI2),
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Event State Acknowledged' = NORMAL,
 'Time Stamp' = (Tnormal),
 'Acknowledgement Source' = (a character string),
 'Time of Acknowledgment' = (the TD’s current time)
20. RECEIVE BACnet-SimpleACK-PDU
21. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI2),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tnormalthe IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Pnormal),
 'Event Type' = (any valid event type),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = NORMAL
 ELSE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

140 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Process Identifier' = (PI2),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Tnormalthe IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object bind tested),
 'Priority' = (Pnormal),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
22. TRANSMIT BACnet-SimpleACK-PDU
23. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)
24. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (PI1),
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Event State Acknowledged' = OFFNORMAL,
 'Time Stamp' = (Toffnormal),
 'Acknowledgement Source' = (a character string),
 'Time of Acknowledgment' = (the TD’s current time)
25. RECEIVE BACnet-SimpleACK-PDU
26. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI1),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Toffnormalthe IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Poffnormal),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = OFFNORMAL
 ELSE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI1),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-generating object configured for this test),
 'Time Stamp' = (Toffnormal the IUT's current time or sequence number),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (Poffnormal),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
27. TRANSMIT BACnet-SimpleACK-PDU
28. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

[Add new Clause 7.3.1.11.2, p.40]

7.3.1.11.2 Acked_Transitions Test for Latching Objects

Purpose: To verify that the Acked_Transitions property tracks the acknowledgment state for a transition type.

Test Concept: This test is a single transition test for latching life safety objects which are not able to perform the regular
Acked_Transitions test for all transitions. An object, O1, in the IUT is made to generate a transition which requires an

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 141

acknowledgement. The Acked_Transitions property is verified that the corresponding flag is cleared (set to FALSE). The
transition is acknowledged, and the flag is verified to have been set back to TRUE.

Configuration Requirements: O1 is configured to generate events and to require acknowledgements for the transition being
tested. O1 should have no event transitions which have outstanding acknowledgements.

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in
which case the TD shall skip sending the BACnet-SimpleACK-PDU messages after receiving the notifications.

Test Steps:

1. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)
2. MAKE (O1 transition)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI1: any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (NC1: the class corresponding to the object being tested),
 'Priority' = (PRIO1: the value configured to correspond to the transition type),
 'Event Type' = (E1: any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = S1,
 'To State' = S2,
 'Event Values' = (values appropriate to the event type)
5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY pCurrentState = S2
7. IF S2 is NORMAL THEN
 VERIFY Acked_Transitions = (TRUE, TRUE, FALSE)
 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
 ELSE IF S2 is FAULT THEN
 VERIFY Acked_Transitions = (TRUE, FALSE, TRUE)
 VERIFY pStatusFlags = (TRUE, TRUE, ?, ?)
 ELSE
 VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)
 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
8. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = PI1,
 'Event Object Identifier' = O1,
 'Event State Acknowledged' = S2,
 'Time Stamp' = T1,
 'Acknowledgement Source' = (a character string),
 'Time of Acknowledgment' = (the TD’s current time)
9. RECEIVE BACnet-SimpleACK-PDU
10. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = PI1,
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = the IUT's current time or sequence number,
 'Notification Class' = NC1,
 'Priority' = PRIO1,
 'Event Type' = E1,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

142 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'To State' = S2
 ELSE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = PI1,
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = the IUT's current time or sequence number,
 'Notification Class' = NC1,
 'Priority' = PRIO1,
 'Event Type' = E1,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
11. TRANSMIT BACnet-SimpleACK-PDU
12. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

7.3.1.13 Limit_Enable Tests

[Change Clause 7.3.1.13.1, p.41]

[Reviewer Note: The 'Event Type' is checked to be an out-of-range algorithm appropriate to the object type.]

7.3.1.13.1 Limit_Enable Test, LowLimitEnable

Purpose: To verify that the LowLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of out of
range events. This test applies to objects with a Limit_Enable property.

Test Concept: The LowLimitEnable flag is set to true in the Limit_Enable property, and the event-triggering property is
manipulated to cause the low limit to be exceeded. This should generate an event notification and make Event_State =
Low_Limit. After the event-triggering property is returned to a normal value, the LowLimitEnable flag is set to false, and the
event-triggering property is again manipulated to exceed the low limit. No event notification should be observed and the
Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit, and pDeadband values such that pLowLimit
+ pDeadband < pHighLimit and both the pLowLimit and pHighLimit values are within the valid range of values for the event-
triggering property. If the device cannot be configured with limit values that meet these conditions, then this test shall be
skipped. The Event_Enable property shall be set to (TRUE, ?, TRUE) for this test. If the Event_Enable property cannot be
configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test shall be skipped.

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

Test Steps:

1. MAKE pLimitEnable = (TRUE, ?)
2. VERIFY pCurrentState = NORMAL
3. MAKE (pMonitoredValue a value less than pLowLimit)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object configured for this test),
 'Time Stamp' = (the current local time),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 143

 'Event Type' = (the algorithm appropriate to the object type i.e., OUT_OF_RANGE,
 SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, or
 DOUBLE_OUT_OF_RANGE),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = LOW_LIMIT,
 'Event Values' = (values appropriate to the event type)
6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY pCurrentState = LOW_LIMIT
8. MAKE (pMonitoredValue a value that is between pLowLimit + pDeadband and pHighLimit)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object configured for this test),
 'Time Stamp' = (the current local time),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = (the algorithm appropriate to the object type i.e. OUT_OF_RANGE,
 SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, or
 DOUBLE_OUT_OF_RANGE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = LOW_LIMIT,
 'To State' = NORMAL,
 'Event Values' = (values appropriate to the event type)
11. TRANSMIT BACnet-SimpleACK-PDU
12. MAKE pLimitEnable = (FALSE, ?)
13. VERIFY pCurrentState = NORMAL
14. MAKE (pMonitoredValue a value less than pLowLimit)
15. WAIT (pTimeDelay + Notification Fail Time)
16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

[Change Clause 7.3.1.13.2, p.42]

[Reviewer Note: The 'Event Type' is checked to be an out-of-range algorithm appropriate to the object type.]

7.3.1.13.2 Limit_Enable Test, HighLimitEnable

Purpose: To verify that the HighLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of out
of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The HighLimitEnable flag is set to true in the Limit_Enable property and the event-triggering property is
manipulated to cause the high limit to be exceeded. This should generate an event notification and make Event_State =
High_Limit. After the event-triggering property is returned to a normal value, the HighLimitEnable flag is the set to false and
the event-triggering property is again manipulated to exceed the high limit. No event notification should be observed and the
Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that pHighLimit
- pDeadband > pLowLimit and both the pLowLimit and pHighLimit values are within the valid range of values for the event
triggering property. If the device cannot be configured with limit values that meet these conditions, then this test shall be

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

144 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

skipped. The Event_Enable property shall be set to (TRUE, ?, TRUE) for this test. If the Event_Enable property cannot be
configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test shall be skipped.

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

Test Steps:

1. MAKE pLimitEnable = (?, TRUE)
2. VERIFY pCurrentState = NORMAL
3. MAKE (pMonitoredValue a value that exceeds pHighLimit)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object configured for this test),
 'Time Stamp' = (the current local time),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
 'Event Type' = (the algorithm appropriate to the object type i.e., OUT_OF_RANGE,
 SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, or
 DOUBLE_OUT_OF_RANGE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = HIGH_LIMIT,
 'Event Values' = (values appropriate to the event type)
6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY pCurrentState = HIGH_LIMIT
8. MAKE (pMonitoredValue a value that is between pLowLimit and pHighLimit - pDeadband)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object configured for this test),
 'Time Stamp' = (the current local time),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = (the algorithm appropriate to the object type i.e., OUT_OF_RANGE,
 SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, or
 DOUBLE_OUT_OF_RANGE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = HIGH_LIMIT,
 'To State' = NORMAL,
 'Event Values' = (values appropriate to the event type)
11. TRANSMIT BACnet-SimpleACK-PDU
12. MAKE pLimitEnable = (?, FALSE)
13. VERIFY pCurrentState = NORMAL
14. MAKE (pMonitoredValue a value that exceeds pHighLimit)
15. WAIT (pTimeDelay + Notification Fail Time)
16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in
which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 145

[Change Clause 7.3.1.17, p.46]

[Reviewer Note: Removed the allowance for the test to be skipped.]

7.3.1.17 Event_Message_Texts Tests
Purpose: To verify that the value of the Event_Message_Texts property is updated when an object generates an event
notification.

Test Concept: Read the Event_Message_Texts from the object. Transition the object through each event state which is enabled
in the object saving the Message Text parameter from the received notification. Verify that the Event_Message_Texts updates
with the Event_Message_Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O1 which shall be in a NORMAL
Event_State at the beginning of the test, and if Event_Enable is configurable, it shall have all bits set to TRUE for which the
object supports transtions. If the algorithm of the object does not support NORMAL to NORMAL transitions, then the TO-
OFFNORMAL bit of the Event_Enable shall be TRUE. If the IUT does not contain any objects which can transition to any
offnormal state, then this test shall be skipped.

Test Steps:

1. READ EMT = Event_Message_Texts
2. IF (Event_Enable is (TRUE, ?, ?) and O1 can generate TO_OFFNORMAL transitions) THEN {
3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that is offnormal)
 ELSE
 MAKE (pMonitoredValue a value that is offnormal)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid timestamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the configured TO_OFFNORMAL priority),
 'Event Type' = (any valid event type),
 'Message Text' = (M: any valid value placed into EMT[1]),
 'Notify Type' = Notify_Type,
 'AckRequired' = (the configured value for the TO_OFFNORMAL transition),
 'From State' = NORMAL,
 'To State' = (any valid offnormal state),
 'Event Values' = (values appropriate to the event type)
6. VERIFY Event_Message_Texts = EMT
 }
7. IF (Event_Enable is (?, ?, TRUE) and O1 can generate TO_NORMAL transitions) THEN {
8. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value that will result in a TO_NORMAL transition)
 ELSE
 MAKE (pMonitoredValue a value that will result in a TO_NORMAL transition)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

146 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Priority' = (the configured TO_NORMAL priority),
 'Event Type' = (any valid event type),
 ‘Message Text’ = (M: any valid value placed into EMT[3]),
 'Notify Type' = Notify_Type,
 'AckRequired' = (the configured value for the TO_NORMAL transition),
 'From State' = (any valid value),
 'To State' = NORMAL,
 'Event Values' = (values appropriate to the event type)
11. VERIFY Event_Message_Texts = EMT
 }
12. IF (Event_Enable is (?, TRUE, ?) and O1 can generate TO_FAULT transtions) THEN {
13. MAKE (a condition exist that will cause O1 to generate a TO_FAULT transition)
14. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object being tested),
 'Priority' = (the configured TO_FAULT priority),
 'Event Type' = (IF (Protocol_Revision < 13 THEN
 (any valid event type),
 ELSE
 (CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (M: any valid value placed into EMT[2]),
 'Notify Type' = Notify_Type,
 'AckRequired' = (the configured value for the TO_FAULT transition),
 'From State' = (any valid value),
 'To State' = FAULT,
 'Event Values' = (values appropriate to the event type)
15. VERIFY Event_Message_Texts = EMT
 }

7.3.1.20 Event_Algorithm_Inhibit_Ref Tests

[Change Clause 7.3.1.20.1, p.52]

7.3.1.20.1 Event_Algorithm_Inhibit_Ref Test

Purpose: To verify that the object referenced by Event_Algorithm_Inhibit_Ref controls Event_Algorithm_Inhibit and thus
whether or not the event state detection algorithm is executed.

Test Concept: Execute test 7.3.1.X2.17.3.1.19.1 against an object O2 which supports both Event_Algorithm_Inhibit_Ref and
Event_Algorithm_Inhibit and instead of writing Event_Algorithm_Inhibit, write the property referenced by
Event_Algorithm_Inhibit_Ref to change the value in the Event_Algorithm_Inhibit property.

Configuration Requirements: If the IUT has no object which has an in which the Event_Algorithm_Inhibit_Ref property is
absent or can be made uninitialized, or has no object in which Event_Detection_Enable can be made TRUE, this test shall be
skipped.

[Change Clause 7.3.1.20.2, p.52]

7.3.1.20.2 Event_Algorithm_Inhibit Writable Test

Purpose: To verify that whenever if the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized then the
Event_Algorithm_Inhibit property shall be writable.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 147

Configuration Requirements: Select an event-initiating object, O1 which has an Event_Algorithm_Inhibit property, but in
which Event_Algorithm_Inhibit_Ref property is absent or is uninitialized. If the IUT has no such object, this test shall be
skipped.

Test Steps:

1. WRITE Event_Algorithm_Inhibit = TRUE
2. WRITE Event_Algorithm_Inhibit = FALSE

7.3.1.21 Reliability_Evaluation_Inhibit Tests

[Change Clause 7.3.1.21.1, p.52]

7.3.1.21.1 Reliability_Evaluation_Inhibit Test

Purpose: To verify that Reliability_Evaluation_Inhibit controls whether or not fault conditions are detected.

Test Concept: Select an event generating object, O1, which supports the Reliability_Evaluation_Inhibit property. With
Reliability_Evaluation_Inhibit FALSE, make a fault condition exist. Verify that Reliability changes and, if event reporting is
supported, that a notification is generated. Set Reliability_Evaluation_Inhibit to TRUE. Verify that the Reliability changes to
NO_FAULT_DETECTED and, if event reporting is supported, that a TO_NORMAL notification is generated. Remove the
fault condition and ensure that no notification is generated. Make a fault condition exist and verify that Reliability remains
NO_FAULT_DETECTED, and that no notification is generated.

Test Configuration: O1 is configured to detect and, if event reporting is supported, report unconfirmed events, is in the
NORMAL state, and Reliability_Evaluation_Inhibit equals FALSE, so that reliability evaluation for that object is configured
to detect fault conditions. If no object exists in the IUT for which fault conditions can be generated then this test shall be
skipped.

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not necessary
to test both.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. VERIFY Reliability = NO_FAULT_DETECTED
3. MAKE(a condition exist that would cause O1 to generate a TO_FAULT transitiona fault condition exist for O1)
4. IF the IUT supports event reporting THEN
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (the value configured for the transition),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid timestamp),
 'Priority' = (any valid priority),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (any values appropriate to CHANGE_OF_RELIABILITY)
5. VERIFY Reliability <> NO_FAULT_DETECTED
6. IF Reliability_Evaluation_Inhibit is writable THEN
 WRITE Reliability_Evaluation_Inhibit = TRUE
 ELSE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

148 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 MAKE(Reliability_Evaluation_Inhibit TRUE)
7. IF the IUT supports event reporting THEN
 BEFORE Internal Processing Fail Time + Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (the value configured for the transition),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid timestamp),
 'Priority' = (any valid priority),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (any values appropriate to CHANGE_OF_RELIABILITY)
8. VERIFY Reliability = NO_FAULT_DETECTED
9. VERIFY pCurrentState = NORMAL
10. MAKE(remove the fault condition)
11. WAIT(pTimeDelayNormal)
12. WAIT Notification Fail Time
13. CHECK (that the IUT did not send any event notifications for O1)
14. VERIFY Reliability = NO_FAULT_DETECTED
15. MAKE(a condition exist that would cause O1 to generate a TO_NORMAL transitiona fault condition exist for O1)
16. WAIT Notification Fail Time
17. VERIFY Reliability = NO_FAULT_DETECTED
18. VERIFY pCurrentState = NORMAL
19. CHECK (that the IUT did not send any event notifications for O1)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not necessary
to test both.

[Add new Clause 7.3.1.X16, p. 55]

[Reviewer Note: 135.1-2019 has a test case using WriteProperty service. Added a new test case using WritePropertyMultiple
service.]

7.3.1.X16 Array Resizing Test using WritePropertyMultiple Service
Purpose: To verify that resizable arrays are resized in accordance with the rules added in Protocol_Revision 4.

Test Concept: The resizable array property P1 of object O1 is written with WritePropertyMultiple as a whole to set it to a non-
zero size. It is then resized smaller and larger by writing the entire array. It is then resized smaller and larger by writing to
element number zero. An attempt is made to increase it with an invalid write. After each operation, the array size and array
contents are checked. Finally, if it can be resized to have zero elements, it is then written to size zero. If possible, all elements
in the arrays should be distinguishable from each other and across WritePropertyMultiple operations.

Test Steps:
1. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (array A1 of non-zero size N1)
2. RECEIVE BACnet-SimpleACK-PDU
3. VERIFY P1= (array A1), ARRAY INDEX = 0, (array size i.e. N1)

--Resize the array to make it smaller in size

4. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 149

 'Property Identifier' = P1
 'Property Value' = (array A2 of non-zero size N2, where N2 ≤ N1)
5. RECEIVE BACnet-SimpleACK-PDU
6. VERIFY P1 = (array A2), ARRAY INDEX = 0, (array size N2)

--Resize the array to make it larger in size

7. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1
 'Property Value' = (array A3 of non-zero size N3, where N3 ≥ N1),
8. RECEIVE BACnet-SimpleACK-PDU
9. VERIFY P1 = (array A3), ARRAY INDEX = 0, (array size N3)

--Modify the existing content of element

10. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (array A4 of non-zero unsigned value N4, where N4 ≤ N1),
11. RECEIVE BACnet-SimpleACK-PDU
12. VERIFY P= (array A4), ARRAY INDEX = 0, (array size N4)

--Resize the array by writing the size of the array

13. TRANSMIT WritePropertyMultiple-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1
 'Property Value' = (N5, where N5 ≥ N4),
 'Property Array Index' = 0,
14. RECEIVE BACnet-SimpleACK-PDU
15. VERIFY (array contains unchanged first N4 elements of the array written in step 10, plus N5-N4 additional elements,
 initialized to particular values for the array property being tested)
16. VERIFY P1, ARRAY INDEX = 0, (array size N5)

--Try to add the array element at Array Index which is greater than the size of the array

17. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (one array element),
 'Property Array Index' = (N6, where N6 ≥ N5),
18. RECEIVE WritePropertyMultiple-Error
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = N6
19. VERIFY (array is unchanged from step 15)

--Resize the array to size zero

20. IF (the array can be resized to have zero elements) THEN
 TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (empty array),
 BACnet-SimpleACK-PDU
21. VERIFY P1 = (array is empty), ARRAY INDEX = 0, (array size is zero)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

150 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Add new Clause 7.3.1.X18, p. 55]

[Reviewer Note: Additional behavior was specified in Protocol Revision 16 (135-2012az-1 and 135-2012az-2) when the
Change_of_State_Count property accepts writes of non-zero values.]

7.3.1.X18 Non-zero Writable State Count Test
Purpose: To verify that the properties of objects that count the number of transitions and the time when that number of the
transitions tracking started function properly.

Test Concept: The Change_of_State_Count property is set with a non-zero value. The Time_Of_State_Count_Reset property
is checked to verify that it has not been updated. The Time_Of_State_Count_Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall contain Change_of_State_Count and Time_Of_State_Count_Reset
properties, and its Change_of_State_Count property must accept writes of non-zero values.

Test Steps:

1. READ TSCR = Time_Of_State_Count_Reset
2. WRITE Change_of_State_Count = (a value > 0)
3. VERIFY Time_Of_State_Count_Reset = TSCR
4. WRITE Time_Of_State_Count_Reset = (T1: any valid value)
5. VERIFY Time_Of_State_Count_Reset = T1

[Add new Clause 7.3.1.X19, p. 55]

[Reviewer Note: Additional behavior was specified in Protocol Revision 16 (135-2012az-1 and 135-2012az-2) when the
Elapsed_Active_Time property accepts writes of non-zero values.]

7.3.1.X19 Non-zero Writable Elapsed Active Time Test
Purpose: To verify that Time_Of_Active_Time_Reset is writable when Elapsed_Active_Time accepts writes of non-zero
values and does not automatically change when Elapsed_Active_Time is written to a non-zero value.

Test Concept: The Present_Value or Feedback_Value is made INACTIVE and the Elapsed_Active_Time is set with a non-
zero value. The Time_Of_Active_Time_Reset property is checked to verify that it has not been updated. The
Time_Of_Active_Time_Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall be chosen in which Elapsed_Active_Time and
Time_Of_Active_Time_Reset properties are present, and in which the Elapsed_Active_Time property accepts writes of non-
zero values.

Test Steps:

1. IF (Present_Value is writable) THEN
 WRITE Present_Value = INACTIVE
 VERIFY Present_Value = INACTIVE
 ELSE
 MAKE (Present_Value = INACTIVE)
2. READ TATR = Time_Of_Active_Time_Reset
3. WRITE Elapsed_Active_Time = a supported non-zero value
4. VERIFY Time_Of_Active_Time_Reset = TATR
5. WRITE Time_Of_Active_Time_Reset = (T1: any valid value)
6. VERIFY Time_Of_Active_Time_Reset = T1

[Add new Clause 7.3.1.X20, p. 55]

[Reviewer Note: Additional behavior was specified in Protocol Revision 16 (135-2012az-1) when the Strike_Count property
accepts writes of non-zero values.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 151

7.3.1.X20 Strike Count Tests

7.3.1.X20.1 Non-zero Writable Strike Count Test

Purpose: To verify that Time_Of_Count_Reset is writable when Strike_Count accepts writes of non-zero values and does not
automatically change when Strike_Count is written to a non-zero value.

Test Concept: The Strike_Count property is set with a non-zero value. The Time_Of_Strike_Count_Reset property is checked
to verify that it has not been updated. The Time_Of_Strike_Count_Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall be chosen in which Strike_Count and Time_Of_Strike_Count_Reset
properties are present, and in which the Strike_Count property accepts writes of non-zero values.

Test Steps:
1. READ TSCR = Time_Of_Strike_Count_Reset
2. WRITE Strike_Count = (a value > 0)
3. VERIFY Time_Of_Strike_Count_Reset = TSCR
4. WRITE Time_Of_Strike_Count_Reset = (T1: any valid value
5. VERIFY Time_Of_Strike_Count_Reset = T1

7.3.1.X20.2 Strike Count Test

Purpose: To verify that the properties of an object (O1) that tracks strike counts.

Test Concept: The Present_Value or Feedback_Value of O1 can be used as the source S1 to increment Strike_Count. S1 is
transitioned from OFF to ON. The Strike_Count property is checked to verify that it has been incremented. The Strike_Count
is reset and Time_Of_Strike_Count_Reset is checked to verify that it has been updated appropriately. Strike_Count is set to a
non-zero value and the Time_Of_Strike_Count_Reset is unchanged.

Configuration Requirements: O1 shall be configured such that the Present_Value property is writable, or another means of
changing these properties shall be provided.

Test Steps:
1. C1 = Strike_Count
2. MAKE (S1 transition OFF to ON)
3. VERIFY (Strike_Count = C1 + 1)
4. IF (Strike_Count is writable) THEN
 MAKE (Strike_Count = 0)
 VERIFY (Time_Of_Strike_Count_Reset = current local time)
5. IF (Strike_Count is writable to a non-zero value) THEN
 MAKE (Strike_Count > 0)
 VERIFY (Time_Of_Strike_Count_Reset is unchanged)

[Add new Clause 7.3.1.X41, p. 55]

7.3.1.X41 Blink Warn Tests

7.3.1.X41.Y1 Blink-Warn WARN Command Test

Purpose: To verify the correct operation of the blink-warn WARN command.

Test Concept: Select an object O1 that supports blink-warn WARN command. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn WARN command by writing C1 to PROP_REF at
a priority PTY1 of O1 and validate the specified blink-warn command functions correctly. Validate the Priority_Array value
at priority PTY1 remains.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
The Priority_Array at PTY1 has a value V1, Blink_Warn_Enable is TRUE, Egress_Active is FALSE.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

152 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Binary Lighting Output

object

Lighting Output object

PROP_REF Present_Value Present_Value or Lighting_Command

C1 WARN -1.0 if PROP_REF = Present_Value, otherwise WARN

V1 ON >1.0

Test Steps:
1. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Active = FALSE
4. WRITE PROP_REF = C1, PRIORITY = PTY1
5. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
6. VERIFY Egress_Active = FALSE
7. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1

7.3.1.X41.Y2 Blink-Warn WARN_OFF Command Test

Purpose: To verify the correct operation of the blink-warn WARN_OFF command.

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn WARN_OFF command by writing C1 to
PROP_REF at a priority PTY1 of O1 and validate the specified blink-warn command functions correctly. Validate the
Priority_Array value at priority PTY1 after Egress_Time seconds has elapsed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
The Priority_Array at PTY1 has a value V1, Blink_Warn_Enable is TRUE, Egress_Active is FALSE, and Egress_Time is a
non-zero value.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN_OFF -3.0 if PROP_REF = Present_Value, otherwise WARN_OFF
V1 ON >1.0
V2 OFF 0.0

Test Steps:
1. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Time > 0
4. VERIFY Egress_Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY = PTY1
6. T1 = current local time
7. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
8. WHILE (Egress_Active = TRUE)
 VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
9. T2 = current local time
10. VERIFY Egress_Time ~= (T1 – T2) +/- Internal Processing Fail Time
11. VERIFY Priority_ Array = V2, ARRAY INDEX = PTY1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 153

7.3.1.X41.Y3 Blink-Warn WARN_RELINQUISH Command Test

Purpose: To verify the correct operation of the blink-warn WARN_RELINQUISH commands.

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn WARN_RELINQUISH command by writing C1
to PROP_REF at a priority PTY1 of O1 and validate the specified blink-warn command functions correctly. Validate the
Priority_Array value at priority PTY1 after Egress_Time seconds has elapsed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V2, and all
other slots numerically greater than PTY1 shall have a value of V0. No internal algorithms are issuing commands to O1 at any
priority. The Priority_Array at PTY1 has a value V1, Blink_Warn_Enable is TRUE, Egress_Time is a non-zero value, and
Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN_RELINQUISH -2.0 if PROP_REF = Present_Value, otherwise WARN_OFF
V0 NULL or OFF NULL or 0.0
V1 ON >1.0
V2 OFF 0.0

Test Steps:
1. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Time > 0
4. VERIFY Egress_Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY = PTY1
6. T1 = current local time
7. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
8. WHILE (Egress_Active = TRUE)
 VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
9. T2 = current local time
10. VERIFY Egress_Time ~= (T1 – T2) +/- Internal Processing Fail Time
11. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1

7.3.1.X41.Y4 Blink-Warn STOP Command Test

Purpose: To verify the correct operation of the blink-warn STOP command.

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn command by writing C1 to PROP_REF at a priority
PTY1 of O1 and validate that blink-warn occurs. Before the Egress_Time times out, STOP the egress process and validate the
Priority_Array value at PTY1 remains equal to V1 after Egress_Time.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V2, and all
other slots numerically greater than PTY1 shall have a value of V0. No internal algorithms are issuing commands to O1 at a
priority numerically less than or equal to PTY1. The Priority_Array at PTY1 has a value V1, Blink_Warn_Enable is TRUE,
Egress_Time is a non-zero value, and Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Lighting_Command

C1 WARN_RELINQUISH or

WARN_OFF
WARN_RELINQUISH or WARN_OFF

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

154 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

V0 NULL or OFF NULL or 0.0
V1 ON >1.0
V2 OFF 0.0

Test Steps:
1. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Time > 0
4. VERIFY Egress_Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY = PTY1
6. T1 = current local time
7. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
8. VERIFY Egress_Active = TRUE
9. WAIT less than Egress_Time
 WRITE PROP_REF = STOP, PRIORITY = PTY1
10. T2 = current local time
11. WAIT Internal Processing Fail Time
12. VERIFY Egress_Active = FALSE
13. WAIT Egress_Time – (T2 – T1) + Internal Processing Fail Time
14. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1

7.3.1.X41.Y5 Blink-Warn WARN Command Failure Test

Purpose: To verify blink-warn WARN command does not occur when, the specified priority is not the highest active priority,
the value at the specified priority is off or Blink_Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority_Array is
not affected.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
Select a priority, PTY2, which is numerically less than PTY1 and not equal to 6. Blink_Warn_Enable is TRUE, Egress_Active
is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN -1.0 if PROP_REF = Present_Value, otherwise WARN
V1, V2 ON >1.0
V3 OFF 0.0

Test Steps:
-- Test for the specified priority is not the highest active priority
1. VERIFY Blink_Warn_Enable = TRUE
2. WRITE Present_Value = V1, PRIORITY = PTY1
3. VERIFY Egress_Active = FALSE
4. WRITE Present_Value = V2, PRIORITY = PTY2
5. WRITE PROP_REF = C1, PRIORITY = PTY1
6. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
7. VERIFY Egress_Active = FALSE
8. VERIFY Priority_Array = V1, ARRAY INDEX = PTY1
9. WRITE Present_Value = NULL, PRIORITY = PTY2

-- Test for the value at the specified priority is either OFF or 0.0
10. WRITE Present_Value = V3, PRIORITY = PTY1
11. WRITE PROP_REF = C1, PRIORITY = PTY1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 155

12. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
13. VERIFY Egress_Active = FALSE
14. VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1
15. WRITE Present_Value = V1, PRIORITY = PTY1

-- Test for Blink_Warn_Enable is FALSE
16. IF (Blink_Warn_Enable is writable) THEN
 WRITE Blink_Warn_Enable = FALSE
 WRITE PROP_REF = C1, PRIORITY = PTY1
 WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
 VERIFY Egress_Active = FALSE
 VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1

7.3.1.X41.Y6 Blink-Warn WARN_OFF Command Failure Test

Purpose: To verify blink-warn WARN_OFF command does not occur when the specified priority is not the highest active
priority, the Present_Value is either 0.0 or OFF, or Blink_Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority_Array is
correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
Blink_Warn_Enable is TRUE, Egress_Time is a non-zero value and Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN_OFF -3.0 if PROP_REF = Present_Value, otherwise WARN_OFF
V1, V2 ON >1.0
V3 OFF 0.0

Test Steps:
-- Test for the specified priority is not the highest active priority
1. VERIFY Blink_Warn_Enable = TRUE
2. VERIFY Egress_Time > 0
3. WRITE Present_Value = V1, PRIORITY = PTY1
4. VERIFY Egress_Active = FALSE
5. WRITE Present_Value = V2, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
6. WRITE PROP_REF = C1, PRIORITY = PTY1
7. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
8. VERIFY Egress_Active = FALSE
9. VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1
10. WRITE Present_Value = V1, PRIORITY = PTY1

-- Test for the Present_Value is OFF or 0.0
11. WRITE Present_Value = V3, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
12. WRITE PROP_REF = C1, PRIORITY = PTY1
13. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
14. VERIFY Egress_Active = FALSE
15. VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1
16. WRITE Present_Value = NULL, PRIORITY = PTY2
17. WRITE Present_Value = V1, PRIORITY = PTY1

-- Test for Blink_Warn_Enable is FALSE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

156 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

18. IF (Blink_Warn_Enable is writable) THEN
 WRITE Blink_Warn_Enable = FALSE
 WRITE PROP_REF = C1, PRIORITY = PTY1
 WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
 VERIFY Egress_Active = FALSE
 VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1

7.3.1.X41.Y7 Blink-Warn WARN_RELINQUISH Command Failure Test

Purpose: To verify blink-warn WARN_RELINQUISH command does not occur when the specified priority is not the highest
active priority, the value at the specified priority is V0, the value of the next highest non-NULL priority, including
Relinquish_Default, is V1, or Blink_Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority_Array is
correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V2, and all
other slots numerically greater than PTY1 shall have a value of V0. No internal algorithms are issuing commands to O1 at any
priority. Blink_Warn_Enable is TRUE, Egress_Time is a non-zero value, Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN_RELINQUISH -2.0 if PROP_REF = Present_Value, otherwise

WARN_RELINQUISH
V0 OFF or NULL 0.0 or NULL
V1 ON >1.0
V2 OFF 0.0

Test Steps:
-- Test for the specified priority is not the highest active priority
1. VERIFY Blink_Warn_Enable = TRUE
2. VERIFY Egress_Time > 0
3. WRITE Present_Value = V1, PRIORITY = PTY1
4. VERIFY Egress_Active = FALSE
5. WRITE Present_Value = V1, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
6. WRITE PROP_REF = C1, PRIORITY = PTY1
7. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
8. VERIFY Egress_Active = FALSE
9. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1
10. WRITE Present_Value = NULL, PRIORITY = PTY2

-- Test for the value at the specified priority is OFF or 0.0
11. WRITE Present_Value = V2 PRIORITY = PTY1
12. WRITE PROP_REF = C1, PRIORITY = PTY1
13. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
14. VERIFY Egress_Active = FALSE
15. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1

-- Test for the value at the specified priority is NULL
16. WRITE Present_Value = NULL, PRIORITY = PTY1
17. WRITE PROP_REF = C1, PRIORITY = PTY1
18. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 157

19. VERIFY Egress_Active = FALSE
20. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1

-- Test for the value of the next highest non-NULL priority is ON or > 1.0
21. WRITE Present_Value = V1 PRIORITY = PTY1
22. WRITE Present_Value = V1, PRIORITY = PTY3, a value numerically greater than PTY1
23. WRITE PROP_REF = C1, PRIORITY = PTY1
24. WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
25. VERIFY Egress_Active = FALSE
26. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1
27. WRITE Present_Value = NULL, PRIORITY = PTY3

-- Test for the value of Relinquish_Default is ON or > 1.0
28. IF (Relinquish_Default is writable) THEN
 WRITE Present_Value = V1, PRIORITY = PTY1
 WRITE Relinquish_Default = V1
 WRITE PROP_REF = C1, PRIORITY = PTY1
 WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
 VERIFY Egress_Active = FALSE
 VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1
 WRITE Relinquish_Default = V2

-- Test for Blink_Warn_Enable is FALSE
29. IF (Blink_Warn_Enable is writable) THEN
 WRITE Present_Value = V1, PRIORITY = PTY1
 WRITE Blink_Warn_Enable = FALSE
 WRITE PROP_REF = C1, PRIORITY = PTY1
 WAIT Internal Processing Fail Time
 CHECK (blink-warn did not occur)
 VERIFY Egress_Active = FALSE
 VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1

7.3.1.X41.Y8 Blink-Warn WARN_OFF Command Halted Test

Purpose: To verify blink-warn WARN_OFF execution is halted when a higher priority entry is written or the Present_Value at
the specified priority is changed.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command will
generate a blink-warn. Before the Egress timer expires, verify the specified actions clear the blink-warn properties and the
Priority_Array is correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
Blink_Warn_Enable is TRUE, Egress_Time is a non-zero value and Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object

PROP_REF Present_Value Present_Value or Lighting_Command

C1 WARN_OFF -3.0 if PROP_REF = Present_Value, otherwise

WARN_OFF

V1 to V3 ON >1.0

V4 OFF 0.0

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

158 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:
-- Test for a higher priority entry is written to a non NULL value
1. WRITE Present_Value = V1, PRIORITY = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Time > 0
4. VERIFY Egress_Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY = PTY1
6. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
7. BEFORE Egress_Active = FALSE
 WRITE Present_Value = V2, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
8. VERIFY Egress_Active = FALSE
9. VERIFY Priority_ Array = V4, ARRAY INDEX = PTY1
10. WRITE Present_Value = NULL, PRIORITY = PTY2

-- Test for the Present_Value at the specified property is changed
11. WRITE Present_Value = V1, PRIORITY = PTY1
12. VERIFY Blink_Warn_Enable = TRUE
13. VERIFY Egress_Time > 0
14. VERIFY Egress_Active = FALSE
15. WRITE PROP_REF = C1, PRIORITY = PTY1
16. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
17. BEFORE Egress_Active = FALSE
 WRITE Present_Value = V3, PRIORITY = PTY1
18. VERIFY Egress_Active = FALSE
19. VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1

7.3.1.X41.Y9 Blink-Warn WARN_RELINQUISH Command Halted Test

Purpose: To verify blink-warn WARN_RELINQUISH execution is halted when a higher priority entry is written or the
Present_Value at the specified priority is changed.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command will
generate a blink-warn. Before the Egress timer expires, verify the specified actions clear the blink-warn properties and the
Priority_Array is correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V1 and all
other slots numerically greater than PTY1 shall have a value of V0. No internal algorithms are issuing commands to O1 at any
priority. Blink_Warn_Enable is TRUE, Egress_Time is a non-zero value, Egress_Active is FALSE.

 Binary Lighting Output object Lighting Output object
PROP_REF Present_Value Present_Value or Lighting_Command
C1 WARN_RELINQUISH -2.0 if PROP_REF = Present_Value, otherwise

WARN_RELINQUISH
V0 OFF or NULL 0.0 or NULL
V1 OFF 0.0
V2 ON >1.0
V3 OFF any value >1.0 and not equal to V2

Test Steps:
-- Test for a higher priority entry is written to a non NULL value
1. WRITE Present_Value = V2, PRIORITY = PTY1
2. VERIFY Blink_Warn_Enable = TRUE
3. VERIFY Egress_Time > 0
4. VERIFY Egress_Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY = PTY1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 159

6. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
7. BEFORE Egress_Active = FALSE
 WRITE Present_Value = V2, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
8. VERIFY Egress_Active = FALSE
9. VERIFY Priority_ Array = NULL, ARRAY INDEX = PTY1
10. WRITE Present_Value = NULL, PRIORITY = PTY2

-- Test for the Present_Value at the specified property is changed
11. WRITE Present_Value = V2, PRIORITY = PTY1
12. VERIFY Blink_Warn_Enable = TRUE
13. VERIFY Egress_Time > 0
14. VERIFY Egress_Active = FALSE
15. WRITE PROP_REF = C1, PRIORITY = PTY1
16. BEFORE Internal Processing Fail Time
 CHECK (blink-warn occurred)
17. BEFORE Egress_Active = FALSE
 WRITE Present_Value = V3, PRIORITY = PTY1
18. VERIFY Egress_Active = FALSE
19. VERIFY Priority_ Array = V3, ARRAY INDEX = PTY1

[Add new Clause 7.3.1.X42 p. 55]

7.3.1.X42 Value Source Mechanism Tests

7.3.1.X42.Y1 Writing to the Value_Source Property by a Device Other than the Device that Commanded the Object.

Purpose: To verify the IUT correctly refuses an attempt to write a Value_Source property by a device other than the device that
most recently commanded the object.

Test Concept: Command an object, O1, that supports the value source mechanism, from device D1, and verify the updated
Value_Source. Attempt to write to the Value_Source property from device D2. Verify that an error is returned and
Value_Source does not change.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 SOURCE = D1,
 'Object Identifier' = O1,
 'Property Identifier' = (P1: the property monitored by the Value_Source mechanism for this object type),
 'Priority' = (PRIO: absent or any value other than 6)
 'Property Value' = (X2: any valid value)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (O1 is commandable) THEN
 VERIFY Priority_Array = X2, ARRAY_INDEX = PRIO
 ELSE
 VERIFY (P1) = X2
4. VERIFY Value_Source = (D1's device identifier or network address)
5. TRANSMIT WriteProperty-Request,
 SOURCE = D2,
 'Object Identifier' = O1,
 'Property Identifier' = Value_Source,
 'Priority' = PRIO,
 'Property Value' = (any valid value)
6. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED
7. VERIFY Value_Source = (D1's device identifier or network address)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

160 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.1.X42.Y2 Non-commandable Value_Source Property Test

Purpose: To verify that the Value_Source property indicates the source of the current Present_Value in a non-commandable
object.

Test Concept: Select a non-commandable object with a writable Present_Value which supports the Value Source mechanism.
Present_Value is written, and it is verified that Value_Source is updated appropriately. Value_Source is then written to verify
that the last writer can update it.

Test Steps:

1. WRITE Present_Value = V1
2. VERIFY Present_Value = V1
3. VERIFY Value_Source = (TD's device identifier or network address)
4. WRITE Value_Source = (any valid value, V2)
5. VERIFY Value_Source = V2

7.3.1.X42.Y3 Value_Source Property None Test

Purpose: To verify that the Value_Source property shall have the value 'None' when there is no active value source.

Test Concept: If there is no active value source, i.e., the Present_Value has taken on the value of Relinquish_Default, then the
Value_Source property shall have the value 'None'.

Configuration Requirements: The object (O1) to be tested shall have 1 non-NULL entry in its Priority_Array and the
Current_Command_Priority has a value other than NULL or 6.

Test Steps:
1. READ PRIO = Current_Command_Priority
2. CHECK(PRIO <> 6 and PRIO <> NULL)
3. VERIFY Value_Source = (is not 'None')
4. WRITE Present_Value = NULL, PRIORITY = PRIO
5. VERIFY Last_Command_Time ~= (the current local time)
6. IF (O1 has Minimum_On_Time or Minimum_Off_Time properties) THEN
 WAIT the larger of Minimum_Off_Time and Minimum_On_Time
7. VERIFY Current_Command_Priority = NULL
8. VERIFY Value_Source = 'None' -- the value is the choice 'none'

7.3.1.X42.Y4 Commandable Value Source Test

Purpose: To verify that the Value_Source, Value_Source_Array, and Last_Command_Time update correctly when
Present_Value is written in a commandable object.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. The Present_Value
is written. Last_Command_Time, Value_Source, and Value_Source_Array properties are checked to verify that they have been
updated appropriately. Value_Source is then written, and it is verified that Last_Command_Time property has not changed.

Configuration Requirements: The object being tested shall be commandable and support the Value Source mechanism. No
other internal processes shall be controlling the object.

Test Steps:
-- Verify that the value source properties are updated when Present_Value is commanded.
1. WRITE Present_Value = (V1: any valid value), PRIORITY = (PRIO: any value other than 6)
2. VERIFY Value_Source_Array = (SRC1: TD's device identifier or network address),
 ARRAY_INDEX = PRIO
3. VERIFY Value_Source = SRC1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 161

4. VERIFY Last_Command_Time ~= (the current local time)

-- Verify that Value_Source can be written and that Last_Command_Time does not update.

5. READ T1 = (O1), Last_Command_Time
6. WRITE Value_Source = (SRC2: any valid value), PRIORITY = PRIO
7. VERIFY Value_Source_Array = SRC2, ARRAY_INDEX = PRIO
8. IF (Current_Command_Priority == PRIO) THEN
 VERIFY Value_Source = SRC2
9. VERIFY Last_Command_Time = T1

7.3.1.X42.Y5 Life Safety Value_Source Property Test

Purpose: To verify that the Value_Source property indicates the source of the current Mode property in a life safety object.

Test Concept: Select a life safety object which supports the Value Source mechanism. Mode is written, and it is verified that
Value_Source is updated appropriately. Value_Source is then written to verify that the last writer can update it.

Test Steps:

1. WRITE Mode = V1
2. VERIFY Mode = V1
3. VERIFY Value_Source = (TD's device identifier or network address)
4. WRITE Value_Source = (any valid value, V2)
5. VERIFY Value_Source = V2

[Add new Clause 7.3.1.X498, p. 55]

7.3.1.X498 Audit_Level Property Tests

7.3.1.X498.1 Object Specific Configurable Audit_Level NONE Test

Purpose: Verify that the Audit_Level property, in an auditable object, controls the audit level for the object.

Test Concept: An object, O1, is selected which supports a configurable Audit_Level property. With O1 configured to report
notifications, Audit_Level is changed to NONE. An auditable action is performed on O1 and it is verified that no notification
is generated.

Audit_Level is then changed to AUDIT_CONFIG, and an auditable config action is performed on the object. It is verified that
a notification is sent. An auditable non-config action is performed on the object, and it is verified that no notification is sent.

Audit_Level is then changed to AUDIT_ALL, and an auditable action is performed on the object. It is verified that a notification
is sent.

Configuration Requirements: The IUT is configured to generate audit notifications. The selected object, O1, shall have
auditable configuration operations that can be applied to it. AR is the Audit Reporter object configured to report for O1.

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

Test Steps:

1. WRITE O1, Audit_Level = NONE
2. WRITE AR, Audit_Level = (AUDIT_CONFIG or AUDIT_ALL)
3. MAKE(perform an operation on O1 that would be reported by the AR if O1.Audit_Level were AUDIT_ALL)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

162 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

4. WAIT(AR.Maximum_Send_Delay + Notification Fail Time)
5. CHECK(that the IUT did not report an audit notification for the operation)

6. IF (O1 has auditable configuration operations, such as writable configuration properties) THEN {
 WRITE O1, Audit_Level = AUDIT_CONFIG
 WRITE AR, Audit_Level = NONE
 MAKE(perform a config operation on O1)
 IF the IUT is configured to generate unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 TRANSMIT BACnet-SimpleACK-PDU
 }
 MAKE(perform an auditable non-config operation on O1)
 WAIT AR.Maximum_Send_Delay + Notification Fail Time
 CHECK(that the IUT did not report an audit notification for the operation)
}

7. WRITE O1, Audit_Level = AUDIT_ALL
8. WRITE AR, Audit_Level = NONE
9. MAKE(perform an auditable operation on O1)
10. IF the IUT is configured to generate unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.1.X498.2 Audit Reporter Audit_Level Test

Purpose: Verify that the Audit_Reporter's Audit_Level property is used in objects without an Audit_Level, or when an object's
Audit_Level is DEFAULT.

Test Concept: An object, O1, is selected which supports a configurable Audit_Level property, or which does not have an
Audit_Level property. The Audit_Reporter for O1 is referred to as AR1. If O1 has an Audit_Level property, it is set to
DEFAULT.

With O1 configured to report notifications, AR1's Audit_Level is changed to NONE. An auditable action is performed on O1
and it is verified that no notification is generated.

AR1's Audit_Level is then changed to AUDIT_CONFIG, and an auditable config action is performed on O1. It is verified that
a notification is sent. An auditable non-config action is performed on O1, and it is verified that no notification is sent.

Audit_Level is then changed to AUDIT_ALL, and an auditable action is performed on O1. It is verified that a notification is
sent.

Configuration Requirements: The IUT is configured to generate audit notifications. The selected object, O1, should have
auditable configuration operations and auditable non-configuration operations that can be applied to it. AR is the Audit Reporter
object configured to report for O1.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 163

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

Test Steps:

1. IF O1 contains an Audit_Level property THEN
 WRITE O1, Audit_Level = DEFAULT
2. WRITE AR.Audit_Level = NONE
3. MAKE(perform an operation on O1 that would be reported by the AR if O1.Audit_Level were AUDIT_ALL)
4. WAIT AR.Maximum_Send_Delay + Notification Fail Time
5. CHECK(that the IUT did not report an audit notification for the operation)

6. WRITE AR.Audit_Level = AUDIT_CONFIG
7. IF O1 supports auditable config operations THEN {
 MAKE(perform a config operation on O1)
 IF the IUT is configured to generate unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 TRANSMIT BACnet-SimpleACK-PDU
 }
}
8. IF O1 supports auditable config operations THEN {
 MAKE(perform a non-config operation on O1)
 WAIT AR.Maximum_Send_Delay + Notification Fail Time
 CHECK(that the IUT did not report an audit notification for the operation)
}

9. WRITE AR.Audit_Level = AUDIT_ALL
10. IF O1 supports auditable config operations THEN {
 MAKE(perform a config operation on O1)
 IF the IUT is configured to generate unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 TRANSMIT BACnet-SimpleACK-PDU
 }
}
11. IF O1 supports auditable config operations THEN {
 MAKE(perform a non-config operation on O1)
 IF the IUT is configured to generate unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification of the operation performed)
 TRANSMIT BACnet-SimpleACK-PDU
 }
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

164 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.1.X498.3 Audit_Level Change Notification Test

Purpose: Verify that changes to Audit_Level property results in audit notifications.

Test Concept: An object, O1, is selected which supports a writable and/or configurable Audit_Level property. The Audit_Level
property is written to each valid audit level, and a notification of the change is checked for. The Audit_Level property is then
configured (not via BACnet writes) to each valid audit level, and a notification of the change is checked for.

Configuration Requirements: The IUT is configured to generate audit notifications, and O1's Audit_Level property is set to
NONE.

Test Steps:

1. IF Audit_Level is writable THEN {
 REPEAT AL = (AUDIT_CONFIG, AUDIT_ALL, DEFAULT, NONE) DO {
 IF O1 is an Audit Reporter and AL is DEFAULT THEN {
 -- don't test DEFAULT on Audit Report object
 } ELSE {
 WRITE O1, Audit = AL
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating change of
 Audit_Level)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating change of
 Audit_Level)
 TRANSMIT BACnet-SimpleACK-PDU
 }
 }
 }
}

2. IF Audit_Level is changeable without writing it via BACnet THEN {
 REPEAT AL = (AUDIT_CONFIG, AUDIT_ALL, DEFAULT, NONE) DO {
 IF O1 is an Audit Reporter and AL is DEFAULT THEN {
 -- don't test DEFAULT on Audit Report object
 } ELSE {
 MAKE(O1, Audit = AL without using BACnet services to write the property)
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating change of
 Audit_Level)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating change of
 Audit_Level)
 TRANSMIT BACnet-SimpleACK-PDU
 }
 }
 }
}

[Add new Clause 7.3.1.X499, p. 55]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 165

7.3.1.X499 Audit_Notification_Recipient Property Tests

7.3.1.X499.1 Audit_Notification_Recipient Test

Purpose: Verify that an Audit_Notification_Recipient accepts and correctly uses all forms of recipient addresses.

Test Concept: With an object configured to report notifications, the Device object's Audit_Notification_Recipient property is
set to a local broadcast. An action is performed on the IUT which should result in an audit notification, and it is verified that
the notification is locally broadcast. This is repeated for global broadcasts, and unicast recipients. Only the unicast form is
tested for devices which do not generate UnconfirmedAuditNotifications.

Configuration Requirements: The IUT is configured to report audit notifications. If the IUT supports sending unconfirmed
audit notifications, it shall be configured to do so. Audit_Notification_Recipient is configured to be the TD, and audit reporting
is enabled in the IUT.

Notes to Tester: Where the IUT is expected to send multiple audit notifications for an operation, the
notifications can be generated in any order.

Test Steps:

-- Local Broadcast Recipient
1. IF the IUT supports sending unconfirmed audit notifications THEN {
 WRITE Audit_Notification_Recipient = (local broadcast recipient)
 BEFORE Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 |
 (UnconfirmedAuditNotification-Request
 DESTINATION = GLOBAL BROADCAST,
 'Notifications' = (a notification for the change to
 Audit_Notification_Recipient)
)
 IF the first notification was not globally broadcast) THEN {
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = LOCAL BROADCAST,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 }
 MAKE(perform an operation on the IUT which will result in an audit notification, other than changing the
 Audit_Notification_Recipient property)
 BEFORE Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = LOCAL BROADCAST,
 'Notifications' = (a notification correctly indicating the operation performed)
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

166 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- Global Broadcast Recipient
2. IF the IUT supports sending unconfirmed audit notifications THEN {
 WRITE Audit_Notification_Recipient = (global broadcast recipient)
 BEFORE Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = LOCAL BROADCAST,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 |
 (UnconfirmedAuditNotification-Request
 DESTINATION = GLOBAL BROADCAST,
 'Notifications' = (a notification for the change to
 Audit_Notification_Recipient)
)
 IF (the first notification was not globally broadcast) THEN {
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = GLOBAL BROADCAST,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 }
 MAKE(perform an operation on the IUT which will result in an audit notification, other than changing the
 Audit_Notification_Recipient property)
 BEFORE Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = GLOBAL BROADCAST,
 'Notifications' = (a notification correctly indicating the operation performed)
}

-- Unicast Recipient
3. WRITE Audit_Notification_Recipient = (D1: a device other than the TD)
4. IF the IUT is configured to send unconfirmed notifications THEN {
 BEFORE (Maximum_Send_Delay plus maximum time to resolve TD)
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = TD,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 | (UnconfirmedAuditNotification-Request
 DESTINATION = GLOBAL BROADCAST,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
)
} ELSE {
 BEFORE (Maximum_Send_Delay plus maximum time to resolve TD)
 RECEIVE ConfirmedAuditNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 167

 DESTINATION = D1,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)
 TRANSMIT BACnet-SimpleACK-PDU,
 SOURCE = D1
}
5. IF (the first notification was not globally broadcast) THEN
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = TD,
 'Notifications' = (a notification for the change to Audit_Notification_Recipient)

6. MAKE(perform an operation on the IUT which will result in an audit notification, other than changing the
 Audit_Notification_Recipient property)
7. BEFORE Maximum_Send_Delay
 RECEIVE UnconfirmedAuditNotification-Request,
 DESTINATION = TD,
 'Notifications' = (a notification correctly indicating the operation performed)

[Add new Clause 7.3.1.X500, p. 55]

7.3.1.X500 Audit_Priority_Filter Property Tests

7.3.1.X500.1 Audit_Priority_Filter Target Audit Reporting Test

Purpose: Verify that Audit_Priority_Filter correctly filters the generation of audit notifications based on priority.

Test Concept: An auditable commandable object for which Audit_Priority_Filter filtering can be applied is configured to report
all write operations. The Audit_Priority_Filter is configured to restrict audit notifications to all but a single priority X. The
object is commanded at a priority other than X and it is verified that an audit notification is sent. The object is then commanded
at priority X and it is verified that no audit notification is sent.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1. If
the IUT does not support the Priority_Array property in any object for which audit reporting can be configured, or if the IUT
does not support a configurable Audit_Priority_Filter property, this test shall be skipped. AR shall be the Audit Reporter object
for O1.

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

Test Steps:
-- Test the object’s Audit_Priority_Filter
1. IF O1 supports a configurable Audit_Priority_Filter property THEN {
 WRITE O1, Audit_Priority_Filter = { all ones except priority X (bit X-1) }
 TRANSMIT WriteProperty-Request,
 'Invoke Id' = I,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,
 'Property Value' = (V: any valid value),
 'Priority' = (PRIO: any valid priority, but not X)
 BEFORE Internal Processing Fail Time
 RECEIVE BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

168 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 |
 (BACnet-Error-PDU,
 'Error Type' = (E: any error)
)
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({ -- there may be a second notification included for the write to
 -- Audit_Priority_Filter. If there is, the order of the
 -- notifications in the list is not relevant
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke ID of the write to Present_Value),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value size is
 larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({ -- there may be a second notification included for the write to
 -- Audit_Priority_Filter. If there is, the order of the
 -- notifications in the list is not relevant
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke ID of the write to Present_Value),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value size is
 larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
 }
 TRANSMIT WriteProperty-Request,
 'Invoke Id' = I,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 169

 'Property Value' = (V: any valid value),
 'Priority' = (PRIO: X)
 BEFORE Internal Processing Fail Time
 RECEIVE BACnet-SimpleACK-PDU
 |
 (BACnet-Error-PDU,
 'Error Type' = (E: any error)
)
 WAIT AR.Maximum_Send_Delay + Notification Fail Time
 CHECK(no audit notification sent)
}

-- Test the Audit Reporter object’s Audit_Priority_Filter
2. IF AR supports a configurable Audit_Priority_Filter property and O1 has no Audit_Priority_Filter or it can be configured to
None THEN {
 IF O1 has an Audit_Priority_Filter THEN
 WRITE O1, Audit_Priority_Filter = NONE
 WRITE AR, Audit_Priority_Filter = { all ones except priority X (bit X-1) }
 TRANSMIT WriteProperty-Request,
 'Invoke Id' = I,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,
 'Property Value' = (V: any valid value),
 'Priority' = (PRIO: any valid priority, but not X)
 BEFORE Internal Processing Fail Time
 RECEIVE BACnet-SimpleACK-PDU
 |
 (BACnet-Error-PDU,
 'Error Type' = (E: any error)
)
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({ -- there may be a second notification included for the

 -- write to Audit_Priority_Filter. If there is, the order
 -- of the notifications in the list is not relevant
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke ID of the write to Present_Value),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value
 size is larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

170 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Notifications' = ({ -- there may be a second notification included for the
 -- write to Audit_Priority_Filter. If there is, the order
 -- of the notifications in the list is not relevant
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke ID of the write to Present_Value),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value
 size is larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
 }
 TRANSMIT WriteProperty-Request,
 'Invoke Id' = I,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,
 'Property Value' = (V: any valid value),
 'Priority' = (PRIO: X)
 BEFORE Internal Processing Fail Time
 RECEIVE BACnet-SimpleACK-PDU
 |
 (BACnet-Error-PDU,
 'Error Type' = (E: any error)
)
 WAIT AR.Maximum_Send_Delay + Notification Fail Time
 CHECK(no audit notification sent)
}

[Add new Clause 7.3.1.X501, p. 55]

7.3.1.X501 Auditable_Operations Property Tests

7.3.1.X501.1 Non-configurable Auditable_Operations Property Test

Purpose: Verify that non-configurable Auditable_Operations properties are set to the required value.

Test Concept: Select an object, O1, which has a non-configurable Auditable_Operations property. Verify that the property is
set to the required value.

Test Steps:

1. READ AO = Audit_Operations
2. CHECK(Audit_Operations = (FALSE,TRUE,TRUE,TRUE,?,TRUE,?,?,?,?,?,FALSE,FALSE,?,?,?,...))

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 171

 -- flags READ, NOTIFICATION and SUBSCRIPTION are FALSE,
 -- flags WRITE, CREATE, DELETE, ACKNOWLEDGE-ALARM are TRUE, and
 -- all other flags can be any value

7.3.1.X501.2 Auditable_Operations Target Audit Reporting Test

Purpose: Verify that Auditable_Operations controls which operations are auditable.

Test Concept: The IUT is configured to report some operations and not others through the Auditable_Operations property.
Each of the standard auditable operations are performed against the IUT, and the filtering provided by Auditable_Operations
is verified to be correct.

Configuration Requirements: The IUT is configured to report all audit notifications with the exception that at least some
auditable operations are disabled via Auditable_Operations.

Test Steps:

1. REPEAT OP = (each of the standard auditable operations for which the IUT is configured to report
 except any operation which is unreasonably difficult to perform, such as
 AUDIITING_FAILURE) DO {
 MAKE(perform OP on the IUT)
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE (Audit Reporter for OP).Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = OP,
 -- source-comment absent
 target-comment = (any valid value, or absent unless OP is GENERAL),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if OP failed, otherwise absent)
 })
 } ELSE {
 BEFORE (Audit Reporter for OP).Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

172 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- source-object absent
 operation = OP,
 -- source-comment absent
 target-comment = (any valid value, or absent unless OP is GENERAL),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if OP failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
 }
}
2. REPEAT OP = (each of the standard auditable operations for which the IUT is configured to NOT report
 except any operation which is unreasonably difficult to perform, such as
 AUDIITING_FAILURE) DO {
 MAKE(perform OP on the the IUT)
 WAIT (Audit Reporter for OP).Maximum_Send_Delay + Notification Fail Time
 CHECK(no audit notification was received)
}

7.3.1.X501.3 Auditable_Operations Source Audit Reporting Test

Purpose: Verify that Auditable_Operations controls which operations performed by the IUT are auditable.

Test Concept: The IUT is configured to report some source operations and not others through the Auditable_Operations
property. Each of the standard auditable operations which the IUT can perform are performed by the IUT, and the filtering
provided by Auditable_Operations is verified to be correct.

Configuration Requirements: The IUT is configured to report all source audit notifications with the exception that at least some
auditable operations are disabled via Auditable_Operations.

Test Steps:
1. REPEAT OP = (each of the standard auditable operations the IUT is able to perform on another device and is
 configured to report except any operation which is unreasonably difficult to perform) DO {
 MAKE(the IUT perform OP on the TD)
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE (Audit Reporter for OP).Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 173

 initiated by an object),
 operation = OP,
 source-comment = (any valid value, or absent unless OP is
 GENERAL),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op if the op targeted a property, or
 absent. May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 } ELSE {
 BEFORE (Audit Reporter for OP).Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not
 initiated by an object),
 operation = OP,
 source-comment = (any valid value, or absent unless OP is
 GENERAL),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op if the op targeted a property, or
 absent. May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
 }

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

174 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

}

2. REPEAT OP = (each of the standard auditable operations the IUT is able to perform on another device and is
 configured to NOT report except any operation which is unreasonably difficult to perform) DO {
 MAKE(the IUT perform OP on the TD)
 WAIT AR.Maximum_Send_Delay + Notification Fail Time
 CHECK(no audit notifications were sent)
}

[Add new Clause 7.3.1.X503, p. 55]

7.3.1.X503 Maximum_Send_Delay Property Tests

7.3.1.X503.1 Maximum_Send_Delay Test

Purpose: Verify that Audit Reporter objects abide the Maximum_Send_Delay value.

Test Concept: An Audit Reporter object is selected which contains a Maximum_Send_Delay property. A sequence of N
auditable operations is performed on the IUT, and if the IUT is a client, the IUT is made to perform a sequence of M auditable
operations. The IUT is then monitored to ensure that the audit notifications are sent within the selected Maximum_Send_Delay.

N, the number of operations performed on the IUT shall be 2 or greater. M, the number of operations that the IUT will perform
shall be 0 if the IUT does not perform auditable operations, and 2 or greater otherwise.

The value that Maximum_Send_Delay is configured for shall be large enough to allow for all of the operations to be performed.

Test Steps:
1. WRITE AR1, Maximum_Send_Delay = (MSD: a value large enough to accomplish and report N+M auditable
 operations)
2. WRITE AR2, Maximum_Send_Delay = MSD
3. MAKE(perform N auditable operations on the IUT which would be reported through AR1)
4. MAKE(the IUT perform M auditable operations which would be reported through AR2)
5. WAIT Maximum_Send_Delay + (Notification Fail Time * M+N)
6. CHECK(that all expected operations are reported)

[Add new Clause 7.3.1.X504, p. 55]

7.3.1.X504 Monitored_Objects property Tests

7.3.1.X504.1 Monitored_Objects Test

Purpose: Verify that the correct Audit Reporter is used for an auditable object.

Test Concept: Each Audit Reporter, which contains a Monitored_Objects property, in the device is tested individually. The
selected Audit Reporter is enabled, and all others are disabled. An object that the enabled Audit Reporter reports for is selected.
An auditable operation is performed on the object, and it is verified that an audit notification is generated. An object that the
enabled Audit Reporter does not report for is selected. An auditable operation is performed on the object, and it is verified that
no audit notification is generated.

Configuration Requirements: The IUT is configured to send unconfirmed audit notifications. If the Monitored_Objects property
is not supported by any Audit Reporter objects in the IUT, this test shall be skipped. If the IUT only supports a single Audit
Reporter object for target object reporting, and its Monitored_Objects property is always set to all objects, this test shall be
skipped. Configure all Audit Reporters to report all operations and set Audit_Level to NONE for all Audit Reporter objects.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 175

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

Test Steps:

1. IF the Monitored_Objects property is writable in one or more of the AR objects THEN
 MAKE(reconfigure which AR is used by which objects)
2. REPEAT AR = (each Audit Reporter object) DO {
 O1 = (an object O1 which reports thru AR as determined by Monitored_Objects and AR precedence)
 O2 = (an object O2 which reports thru a different Audit Reporter, AR2, as determined by
 Monitored_Objects and AR precedence)
 WRITE AR.Audit_Level = AUDIT_ALL
 MAKE(perform an auditable operation on O1)
 IF the IUT is configured to send unconfirmed auto notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating the operation)
 } ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (a notification indicating the operation)
 TRANSMIT BACnet-SimpleACK-PDU
 }
 MAKE(perform an auditable operation on O2)
 WAIT AR2.Maximum_Send_Delay + Notification Fail Time
 CHECK(that the IUT did not report an audit notification for the operation)
 WRITE AR.Audit_Level = NONE
}

[Add new Clause 7.3.1.X505, p. 55]

7.3.1.X505 Send_Now Property Tests

7.3.1.X505.1 Send_Now Test

Purpose: Verify that writing True to Send_Now results in the sending of delayed audit notifications.

Test Concept: The IUT is configured to delay sending audit notifications. An Audit Reporter object, AR, is selected which
contains a Send_Now property. An auditable operation is performed on the IUT. Send_Now is then written and it is verified
that the audit notifications are sent.

Configuration Requirements: If the IUT cannot be made to delay sending notifications without heroic efforts, this test shall be
skipped.

Test Steps:

1. WRITE AR, Maximum_Send_Delay = (a value large enough to accomplish the test)
2. MAKE(perform whatever actions are required to make the IUT delay sending notifications)
3. WRITE AR, Send_Now = TRUE
4. IF the IUT is configured to send unconfirmed notifications THEN {
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (one or more notifications for operation applied to the IUT)
} ELSE {
 BEFORE Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (one or more notifications for operation applied to the IUT)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

176 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2 Object Specific Tests

7.3.2.4 Averaging Object Tests

[Change Clause 7.3.2.4.1, p. 57]

[Reviewer Note: Modified test as per clarification BTL-CR-0309.]

7.3.2.4.1 Reinitializing the Samples

Purpose: To verify that an Averaging object correctly resets the Attempted_Samples, Valid_Samples, Minimum_Value,
Average_Value, and Maximum_Value when Attempted_Samples, Object_Property_Reference, Window_Interval, or
Window_Samples are changed.

Test Concept: The IUT is configured with an Averaging object that is actively monitoring some property value. The sampling
is reinitialized by writing to the Attempted_Samples, Object_Property_Reference, Window_Interval, Window_Samples, and
Window_SamplesObject_Property_Reference in turn. After each reinitialization, the TD pauses and verifyies that new
sampling has begun.

Configuration Requirements: The IUT shall be configured with an Averaging object that is actively monitoring some property
value. The sampling interval shall be long enough to permit the TD to verify that the sample is properly reinitialized.

Test Steps:

1. VERIFY Minimum_Value = (a value x: -INF < x < INF),
2. VERIFY Average_Value = (a value ≠ NaN),
3. VERIFY Maximum_Value = (a value x: Minimum_Value ≤ x < INF),
4. VERIFY Attempted_Samples = (a value x > 0),
5. VERIFY Valid_Samples = (a value x > 0),
6. WRITE Attempted_Samples = 0,
7. VERIFY Attempted_Samples = 0,
8. VERIFY Minimum_Value = INF,
9. VERIFY Maximum_Value = -INF,
10. VERIFY Average_Value = NaN,
11. VERIFY Valid_Samples = 0,
121. WAIT (at least two sample times),
132. VERIFY Minimum_Value = (a value x: -INF < x < INF),
143. VERIFY Average_Value = (a value ≠ NaN),
154. VERIFY Maximum_Value = (a value x: Minimum_Value ≤ x < INF),
165. VERIFY Attempted_Samples = (a value x ≥ 2),
176. VERIFY Valid_Samples = (a value x ≥ 2),
187. WRITE Window_Interval = (any new value that will result in an appropriate sample time),
19. VERIFY Attempted_Samples = 0,
20. VERIFY Minimum_Value = INF,
21. VERIFY Maximum_Value = -INF,
22. VERIFY Average_Value = NaN,
23. VERIFY Valid_Samples = 0,
248. WAIT (at least two sample times),
259. VERIFY Minimum_Value = (a value x: -INF < x < INF),
2610. VERIFY Average_Value = (a value ≠ NaN),
2711. VERIFY Maximum_Value = (a value x: Minimum_Value ≤ x < INF),
2812. VERIFY Attempted_Samples = (a value x ≥ 2),
2913. VERIFY Valid_Samples = (a value x ≥ 2),
3014. WRITE Window_Samples = (any new value that will result in an appropriate sample time),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 177

31. VERIFY Attempted_Samples = 0,
32. VERIFY Minimum_Value = INF,
33. VERIFY Maximum_Value = -INF,
34. VERIFY Average_Value = NaN,
35. VERIFY Valid_Samples = 0,
3615. IF (Object_Property_Reference is writable) THEN {
 WAIT (at least two sample times),
 VERIFY Minimum_Value = (a value x: -INF < x < INF),
 VERIFY Average_Value = (a value ≠ NaN),
 VERIFY Maximum_Value = (a value x: Minimum_Value ≤ x < INF),
 VERIFY Attempted_Samples = (a value x ≥ 2),
 VERIFY Valid_Samples = (a value x ≥ 2),
 WRITE Object_Property_Reference = (any new value),
 IF (Samples_are_taken_immediately) THEN {
 VERIFY Attempted_Samples = 1,
 VERIFY Minimum_Value = Average_Value,,
 VERIFY Maximum_Value = Average_Value,
 VERIFY Valid_Samples = 1
 ELSE
 VERIFY Attempted_Samples = 0,
 VERIFY Minimum_Value = INF,
 VERIFY Maximum_Value = -INF,
 VERIFY Average_Value = NaN,
 VERIFY Valid_Samples = 0

[Change Clause 7.3.2.4.2, p. 58]

[Reviewer Note: Modified test as per clarification BTL-CR-0309.]

7.3.2.4.2 Managing the Sample Window

Purpose: To verify that an Averaging object correctly tracks the average, minimum, and maximum values attained in a sample.
This includes monitoring before and after the sampling window is full.

Test Concept: An Averaging object is configured to monitor a property that can be controlled manually by the testing agent or
by the TD. The TD initializes the sample and then monitors the Minimum_Value, Average_Value, Maximum_Value,
Attempted_Samples, and Valid_Samples properties after each sampling interval to verify that their values are properly tracking
the monitored value. This requires the ability to manipulate the values of the monitored property value and a slow enough
sampling interval to permit the analysis. This continues until after the sample window is full. If the IUT does not support
Averaging object configuration for this Test Concept, then this test shall be omitted.

Configuration Requirements: The IUT shall be configured with an Averaging object used to monitor a property that can be
controlled by the testing agent or by the TD. The sampling interval shall be configured to allow time to change the monitored
property value and to determine if each of the properties Minimum_Value, Average_Value, Maximum_Value,
Attempted_Samples, and Valid_Samples correctly changes after each sample interval.

Test Steps:

1. WRITE Attempted_Samples = 0,
2. VERIFY Attempted_Samples = 0,
3. VERIFY Minimum_Value = INF,
4. VERIFY Maximum_Value = -INF,
5. VERIFY Average_Value = NaN,
6. VERIFY Valid_Samples = 0,
2. READ StartingSample = Valid_Samples +1
73. REPEAT X = (1StartingSample to Window_Samples + 5) DO {
 WAIT (Window_Interval / Window_Samples)
 IF (X ≤ Window_Samples) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

178 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY Attempted_Samples = X
 ELSE
 VERIFY Attempted_Samples = Window_Samples,
 VERIFY Minimum_Value = (the minimum of the monitored values so far),
 VERIFY Maximum_Value = (the maximum of the monitored values so far),
 VERIFY Average_Value = (the average of the monitored values so far),
 IF (X ≤ Window_Samples) THEN
 VERIFY Valid_Samples = X
 ELSE
 VERIFY Valid_Samples = Window_Samples

[Change Clause 7.3.2.8, p. 62]

7.3.2.8 Calendar TestObject Tests

[Change Clause 7.3.2.8.1, p. 62]

[Reviewer Note: Modified test to allow for non-configurable Date_List properties.]

7.3.2.8.1 Single Date Rollover Test

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of an individual date. Either
execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be
supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single date. The IUT's clock is set to the date
that immediately precedes the one specified in Date_List and a time near the end of the day. The test verifies that the
Present_Value of the Calendar object is initially FALSE and that as the time rolls over to the next day the Present_Value
changes to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single
BACnetCalendarEntry in the form of a Date. If Date_List property cannot be configured with a BACnetCalendarEntry in the
form of a Date, then this test shall be skipped.

Test Steps:

1. (TRANSMIT TimeSynchronization-Request,
 'Time' = (the day preceding the one specified in Date_List,
 24:00:00 – Schedule Evaluation Fail Time - 1 minute)) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (the day preceding the one specified in Date_List,
 24:00:00 - Schedule Evaluation Fail Time - 1 minute converted to UTC)) |
 MAKE (the local time = 24:00:00 - Schedule Evaluation Fail Time - 1 minute)
2. WAIT Schedule Evaluation Fail Time
3. VERIFY Present_Value = FALSE
4. WAIT (Schedule Evaluation Fail Time + 2 minutes)
5. VERIFY Present_Value = TRUE

[Change Clause 7.3.2.8.2, p. 63]

[Reviewer Note: Modified test to allow for non-configurable Date_List properties.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 179

7.3.2.8.2 Date Range Test

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of a BACnetDateRange. Either
execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be
supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single BACnetDateRange. The IUT's clock is
set to a time and date that is outside of the date range. The Present_Value is read and verified to be FALSE. The clock is reset
to a value within the date range and the Present_Value is read again to verify that it has the value TRUE. If the IUT can be
configured with wildcard fields in the date range then it shall be tested with and without wildcards.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single
BACnetCalendarEntry in the form of a BACnetDateRange. If Date_List property cannot be configured with a
BACnetCalendarEntry in the form of a BACnetDateRange, then this test shall be skipped.

Test Steps:

1. (TRANSMIT TimeSynchronization-Request,
 'Time' = (any day and time outside of the specified date range selected by the tester)) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (any day and time outside of the specified date range selected by the tester)) |
 MAKE (the local time = any day and time outside of the specified date range selected by the tester)
2. WAIT Schedule Evaluation Fail Time
3. VERIFY Present_Value = FALSE
4. (TRANSMIT TimeSynchronization-Request,
 'Time' = (any day and time inside the specified date range selected by the tester)) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (any day and time inside the specified date range selected by the tester)) |
 MAKE (the local time = any day and time inside the specified date range selected by the tester)
5. WAIT Schedule Evaluation Fail Time
6. VERIFY Present_Value = TRUE

[Change Clause 7.3.2.8.3, p. 63]

[Reviewer Note: Modified test to allow for non-configurable Date_List properties.]

7.3.2.8.3 WeekNDay Test

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of a BACnetWeekNDay. Either
execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be
supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single BACnetWeekNDay. The IUT's clock is
set to a time and date, T1, that matches the BACnetWeekNDay mask. The Present_Value is read and verified to be TRUE. The
clock is reset to a value, T2, that matches the BACnetWeekNDay mask except for the month. The Present_Value is read and

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

180 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

verified to be FALSE. The clock is reset again to a value, T3, that matches the BACnetWeekNDay mask except for the week
of the month. The Present_Value is read and verified to be FALSE. The clock is reset again to a value, T4, that matches the
BACnetWeekNDay mask except for the day of the week. The Present_Value is read and verified to be FALSE. In between
each change, the clock is reset to T1 to force the Present_Value back to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single
BACnetCalendarEntry in the form of a BACnetWeekNDay. The BACnetWeekNDay shall be the 11th month, last seven days,
and Saturday. If Date_List property cannot be configured with a BACnetCalendarEntry in the form of a BACnetWeekNDay,
then this test shall be skipped.

Test Steps:

1. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T1) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T1))
 MAKE (the local time = T1)
2. WAIT Schedule Evaluation Fail Time
3. VERIFY Present_Value = TRUE
4. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T2) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T2)) |
 MAKE (the local time = T2)
5. WAIT Schedule Evaluation Fail Time
6. VERIFY Present_Value = FALSE
7. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T1)) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T1)) |
 MAKE (the local time = T1)
8. WAIT Schedule Evaluation Fail Time
9. VERIFY Present_Value = TRUE
10. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T3) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T3)) |
 MAKE (the local time = T3)
11. WAIT Schedule Evaluation Fail Time
12. VERIFY Present_Value = FALSE
13. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T1)) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T1)) |
 MAKE (the local time = T1)
14. WAIT Schedule Evaluation Fail Time
15. VERIFY Present_Value = TRUE
16. (TRANSMIT TimeSynchronization-Request,
 'Time' = (T4) |
 (TRANSMIT UTCTimeSynchronization-Request,
 'Time' = (T4)) |
 MAKE (the local time = T4)
17. WAIT Schedule Evaluation Fail Time
18. VERIFY Present_Value = FALSE

7.3.2.9 Command Object Tests

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 181

[Change Clause 7.3.2.9.3, p. 64]

[Reviewer Note: The purpose of the test is updated after removing the duplicate information. The Test Concept and
Configuration Requirements are updated with generic test parameters.]

7.3.2.9.3 External Writes Test

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.10.8.

Purpose: To verify that a Command object can write to external objects. If the IUT does not support writing to external objects
from a Command object this test shall be omitted.

Test Concept: The IUT is configured with a Command object having an action list X, that includes writing to an object O1 in
the TD. The TD invokes this action list by writing the appropriate value to the Command object. The TD verifies that the IUT
transmits the appropriate WriteProperty-Request.

Configuration Requirements: The IUT shall be configured with a Command object that has an Action property that contains
an action list, X, that includes a command to write to the Present_Value property P1 of (Analog Value, 0) object O1 with the
value V1 in the TD.

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the
range 1-16, excluding 6.

Test Steps:

1. WRITE Present_Value = X
2. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
3. VERIFY In_Process = TRUE
43. BEFORE External Command Fail Time
 RECEIVE WriteProperty-Request,
 'Object Identifier' = (Analog Value, 0) O1,
 'Property Identifier' = Present_Value P1,
 'Property Value' = (any Real value) V1
4. VERIFY In_Process = TRUETRANSMIT BACnet-SimpleACK-PDU
5. IF (Post_Delay is present)
 WAIT (Post_Delay)
6. VERIFY In_Process = FALSE

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the
range 1-16, excluding 6.

[Change Clause 7.3.2.9.7, p. 67]

[Reviewer Note: Changed step 2 to use WRITE. Fixed errata in step 3 to show correct comparison to Protocol_Revision.]

7.3.2.9.7 Write While In_Process is TRUE Test.

Purpose: To verify that an action list continues to completion if a second action list is commanded while In_Process is TRUE
and that the second action list is not executed.

Test Concept: The IUT is configured with two action lists that include a sequence of externally visible outputs with post delays
for each action. The TD triggers the first action list. The external outputs are observed in order to trigger the second action list
during the post delay of the first list. The TD triggers the second action list. The external outputs are observed to verify that
the second action list is not executed. If the IUT does not support Post Delay, then this test shall be omitted. If the IUT does
not support action list configuration, then this test shall be omitted.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

182 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The IUT shall be configured with a Command object having two distinct action lists, X and Y,
that include writing to a sequence of externally visible outputs. There shall be a post delay between writes to the externally
visible outputs that is long enough for the tester to observe the delay (This ensures In_Process remains TRUE long enough to
command the second action list).

Test Steps:

1. WRITE Present_Value = X
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = O,
 'Property Identifier' = Present_Value,
 'Property Value' = Y
2. WRITE Present_Value = Y
3. IF (Protocol_Revision exists and Protocol_Revision e>= 10) THEN
 RECEIVE BACnet-Error-PDU
 'Error Class' = OBJECT,
 'Error Code' = BUSY
 ELSE
 (RECEIVE (BACnet-Error PDU
 'Error Class' = OBJECT,
 'Error Code' = BUSY)
 |
 (BACnet-Error-PDU
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED | OTHER)
4. CHECK (that the externally visible actions of X took place)
5. CHECK (that the externally visible actions of Y did not take place)
6. VERIFY In_Process = FALSE,
7. VERIFY All_Writes_Successful = TRUE

[Change Clause 7.3.2.10, p. 70]

7.3.2.10 Device Object Tests
Most necessary tests for functionality of the Device object are covered by tests for the application service or special
functionality to which they correspond.These are the tests for the Device object. Other tests for functionality of the Device
object are covered by tests for the application service or special functionality to which they correspond.

[Change Clause 7.3.2.10.1, p. 70]

[Reviewer Note: IC135-2012-18 ruled that the increment shall not be in the Active_COV_Subscriptions property value if the
property is not numeric; present if a valid Increment was provided in the subscription; and optionally present otherwise.]

7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test

Purpose: This test case verifies that the IUT correctly updates the Active_COV_Subscriptions property when COV
subscriptions are created, cancelled and timed-out using SubscribeCOV.

Test Concept: INC1, INC2, and INC3 are each not present if the property is not numeric; present if a valid Increment was
provided in the subscription; and optionally present otherwise.

Configuration Requirements: In this test, the tester shall choose three standard objects, O1, O2, and O3, for which the device
supports SubscribeCOV. O1, O2, and O3 are not required to refer to different objects. The tester shall also choose three non-
zero unique process identifiers, P1, P2, and P3, and three non-zero lifetimes L1, L2, and L3. Lifetime L1 shall be long enough to
allow the initial part of the test to run through to step 14. Lifetimes L2 and L3 shall be long enough for the whole test to be
completed without expiring.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 183

The IUT shall start the test with no entries in its Active_COV_Subscriptions property.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = P1,
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L1
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = P1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (a value approximately equal to L1),
 'List of Values' = (values appropriate to the object type of the monitored object)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF P1 is numeric THEN
 VERIFY Active_COV_Subscriptions = {{ {TD, P1}, {O1, Present_Value }, TRUE, (a value less than L1),
 (INC1 : not present or a valid Increment if the property is REAL) }}
 ELSE
 VERIFY Active_COV_Subscriptions = {{ {TD, P1, { O1, Present_Value }, TRUE, (a value less than L1), (INC1: not
present)}}
6. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = P2,
 'Monitored Object Identifier' = O2,
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = L2
7. RECEIVE BACnet-SimpleACK-PDU
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = P2,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O2,
 'Time Remaining' = (a value approximately equal to L2),
 'List of Values' = (values appropriate to the object type of the monitored object)
9. VERIFY Active_COV_Subscriptions = {{ {TD, P1}, {O1, Present_Value}, TRUE, (a value less than L1),
 INC1(a valid Increment if the property is REAL) },
 { {TD, P2}, {O2, Present_Value}, FALSE, (a value less than L2),
 (INC2: not present if the property is not numeric; present
 if a valid Increment was provided in the subscription;
 optionally present otherwiseif the property is REAL) }}
10. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = P3,
 'Monitored Object Identifier' = O3,
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = L3
11. RECEIVE BACnet-SimpleACK-PDU
12. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = P3,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O3,
 'Time Remaining' = (a value approximately equal to L3),
 'List of Values' = (values appropriate to the object type of the monitored object)
13. IF P3 is numeric THEN
 VERIFY Active_COV_Subscriptions = {{{TD, P1}, {O1, Present_Value}, TRUE, (a value less than L1),
 INC1(a valid Increment if the property is REAL)},
 {{TD, P2}, {O2, Present_Value}, FALSE, (a value less than L2),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

184 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 INC2(a valid Increment if the property is REAL)},
 {{TD, P3}, {O3, Present_Value}, FALSE, (a value less than L3),
 INC3: : not present or (a valid Increment if the property is REAL)}}
 ELSE
 VERIFY Active_COV_Subscriptions = {{{TD, P1}, {O1, Present_Value}, TRUE, (a value less than
 L1), INC1 },
 {{TD, P2,}, {O2, Present_Value}, FALSE, (a value less than
 L2), INC2 },
 {{TD, P3}, {O3, Present_Value}, FALSE, (a value less Than
 L3), (INC3: not present)}}

14. WAIT L1 + the IUT's timer granularity
15. VERIFY Active_COV_Subscriptions = {{{TD, P 2 }, {O 2 , Present_Value}, FALSE, (a value less than L 2),
 INC2 (a valid Increment if the property is REAL)},
 {{TD, P 3 }, {O 3 , Present_Value}, FALSE, (a value less than L 3),
 INC3(a valid Increment if the property is REAL)}}
16. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = P3 ,
 'Monitored Object Identifier' = O3
17. RECEIVE BACnet-SimpleACK-PDU
18. VERIFY Active_COV_Subscriptions = {{{TD, P 2 }, {O 2 , Present_Value}, FALSE, (a value less than L 2),
 INC2(a valid Increment if the property is REAL) }}
19. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = P2 ,
 'Monitored Object Identifier' = O2
20. RECEIVE BACnet-SimpleACK-PDU
21. VERIFY Active_COV_Subscriptions = { }

[Change Clause 7.3.2.10.6, p. 73]

7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property of

an Object

Purpose: To verify that the Database_Revision property of the Device object increments after changing the Object_Identifier
property of an object. If the Object_Identifier property of an object cannot be changed, this test shall be omitted.

Test Concept: The Database_Revision property of the Device object is read. An object's nameObject_Identifier property is
changed. The Database_Revision property of the Device object is read again to verify that it incremented.

Configuration Requirements: none.

Test Steps:

1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the Device object),
 'Property Identifier' = Database_Revision
2. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the Device object),
 'Property Identifier' = Database_Revision,
 'Property Value' = (any value = initial value)
3. MAKE (the Object_Identifier property of an object change)
4. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the Device object),
 'Property Identifier' = Database_Revision
5. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the Device object),
 'Property Identifier' = Database_Revision,
 'Property Value' = (greater than initial value)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 185

[Add new Clause 7.3.2.10.X2, p. 74]

7.3.2.10.X2 Max_Segments_Accepted at least the minimum

Purpose: To verify that the IUT correctly implements the Max_Segments_Accepted property value when it does support
segmentation.

Configuration Requirements: If the IUT cannot be configured to support segmentation, then this test shall be skipped.

Test Steps:

1. IF Segmentation_Supported == SEGMENTED_TRANSMIT or Segmentation_Supported == SEGMENTED_NONE

THEN
 VERIFY Max_Segments_Accepted = 1
ELSE
 VERIFY (Max_Segments_Accepted > 1)

[Add new Clause 7.3.2.10.X, p. 74]

7.3.2.10.X Ensure UTC_Offset is Configurable

Purpose: This test verifies UTC_Offset is configurable and accepts from -1440 to +1440.

Test Concept: For each value in a set of valid values across the acceptable range for UTC_Offset, verify that the UTC_Offset
can be configured with the value.

Configuration Requirements: If the Protocol_Revision of the device is less than 18, this test shall be skipped.

Test Steps:

1. REPEAT UO = (-1440, -780, 0, +780, +1440, and 2 other values which are multiples of 15 minutes) DO {

 IF (UTC_Offset is writable) THEN
 WRITE UTC_Offset = UO
 ELSE
 MAKE UTC_Offset = UO

 VERIFY (Device Object) UTC_Offset = UO
}

[Add new Clause 7.3.2.10.X3, p. 74]

7.3.2.10.X3 Ensure Device Object_Name is Configurable

Purpose: This test verifies Device Object_Name value is configurable as per BACnet Clause 12.1.1.4.

Configuration Requirements: none.

Test Steps:

1. READ S = (Device, IUT), Object_Name
2. MAKE (Configure the device Object_Name to a value other than S)
3. VERIFY (Device, IUT), Object_Name <> S

[Add new Clause 7.3.2.10.X4, p. 74]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

186 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.10.X4 Ensure Device Object_Identifier is Configurable

Purpose: This test verifies Device Object_Identifier property value is configurable as per BACnet Clause 12.1.1.3.

Configuration Requirements: none.

Test Steps:
1. READ S = (Device, IUT), Object_Identifier
2. MAKE (Configure the device Object_Identifier to a value other than S)
3. VERIFY (Device, IUT), Object_Identifier <> S

7.3.2.13 Global Group Object Tests

[Add new Clause 7.3.2.13.X1, p. 77]

7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test

Purpose: This test verifies the interrelationship between the Present_Value, Out_Of_Service and Status_Flags properties of a
Global Group object.

Test Concept: Verify the Present_Value stops updating when Out_Of_Service is TRUE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property
containing a member M1 at index N1 that has a value that can be changed. W1 is the maximum time it takes for the Global
Group to receive an update from M1.

Test Steps:

1. MAKE (Out_Of_Service = TRUE)
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = {?, ?, FALSE, TRUE}
4. X1 = READ Present_Value, ARRAY INDEX = N1
5. MAKE (M1 value change)
6. WAIT (W1)
7. X2 = READ Present_Value, ARRAY INDEX = N1
8. VERIFY X1 = X2

[Add new Clause 7.3.2.13.X2, p. 77]

7.3.2.13.X2 Reliability MEMBER_FAULT Test

Purpose: This test case verifies the FAULT flag of the Member_Status_Flags is TRUE, and the Reliability property is equal to
MEMBER_FAULT when a member of the Group_Members property goes into FAULT.

Test Concept: Force a member of the Group_Members property to enter a Fault condition and verify the Member_Status_Flags
FAULT flag equals TRUE and Reliability equals MEMBER_FAULT.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property
containing a member M1 at index N1 that has a value that can be made to indicate a fault condition (see Notes To Tester). The
Out_Of_Service property of the Global Group object must remain FALSE throughout the test. W1 is the maximum time it
takes for the Global Group to receive an update from M1.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 187

Notes to Tester: Member_Status_Flags FAULT flag will remain TRUE and the Reliability property will change to
MEMBER_FAULT when a member of the Group_Members property goes into fault.

Test Steps:

1. MAKE (M1 Status_Flags = {?, TRUE, ?, ?})
2. WAIT (W1)
3. VERIFY Member_Status_Flags = {?, TRUE, ?, ?}
4. IF (Reliability is present) THEN
 VERIFY Reliability = MEMBER_FAULT

[Add new Clause 7.3.2.13.X3, p. 77]

7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test

Purpose: This test case verifies that the Member_Status_Flags FAULT flag will remain FALSE while the Reliability property
is COMMUNICATION_FAILURE.

Test Concept: Force a member of the Group_Members property to stop communicating and verify the Reliability property
equals COMMUNICATION_FAILURE and the Member_Status_Flags FAULT flag remains FALSE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing a
member M1 at index N1 that can be made to discontinue communications and also respond with an error such as
OBJECT/UNKNOWN_OBJECT. (See Notes To Tester). The Out_Of_Service property of the Global Group object must
remain FALSE throughout the test. W1 is the maximum time it takes for the Global Group to receive an update from M1.

Notes to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to communicate
its Status_Flags property. This can occur when the device goes offline or the object is deleted within the device.

Test Steps:

1. MAKE (M1 fail (communications or error))
2. WAIT (W1)
3. VERIFY Reliability = COMMUNICATION_FAILURE
4. IF (Reliability is present) THEN
 VERIFY Reliability = COMMUNICATION_FAILURE
5. VERIFY Member_Status_Flags = {?, FALSE, ?, ?}

[Add new Clause 7.3.2.13.X4, p. 77]

7.3.2.13.X4 Present_Value Tracking and Reliability Test

Purpose: This test verifies that the Global Group object continues to update its Present_Value independent of the state of the
Reliability property.

Test Concept: While the Reliability property is not NO_FAULT_DETECTED verify the Present_Value continues to update.

Configuration Requirements: The IUT shall be configured with a Global Group object with its Reliability not equal to
NO_FAULT_DETECTED and a Group_Members member M1 at index N1 that can be changed. W1 is the maximum time it
takes for the Global Group to receive an update from M1.

Notes to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to communicate
its Status_Flags property. This can occur when the device goes offline or the object is deleted within the device. Also, the
Reliability property will change to MEMBER_FAULT when a member of the Group_Members property goes into fault.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

188 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. VERIFY Reliability <> NO_FAULT_DETECTED
2. MAKE (M1 = X1)
3. WAIT (W1)
4. X2 = READ Present_Value, ARRAY INDEX = N1
5. VERIFY X1 = X2

[Add new Clause 7.3.2.13.X5, p. 77]

7.3.2.13.X5 Present_Value Tracking Test

Purpose: This test verifies that the Global Group object tracks the value of the monitored properties value and data type.

Test Concept: Make a member of the Group_Members property change value and verify the Present_Value updates to match
that value.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing a
member M1 at index N1 of the specified data type that can be changed. W1 is the maximum time it takes for the Global Group
to receive an update from M1.

Test Steps:

1. MAKE (M1 = X1)
2. WAIT (W1)
3. X2 = READ Present_Value, ARRAY INDEX = N1
4. VERIFY X1 = X2

[Add new Clause 7.3.2.13.X6, p. 77]

7.3.2.13.X6 COVU_Period and COVU_Recipients Zero Test

Purpose: To verify that object O1 does not initiate UnconfirmedCOVNotification service requests when COVU_Period is zero
or COVU_Recipients contains an empty list.

Test Concept: Configure O1 to produce unsubscribed UnconfirmedCOVNotifications, set COVU_Period to zero, and attempt
to produce unsubscribed UnconfirmedCOVNotifications. Repeat with COVU_Recipients containing an empty list.

Configuration Requirements: At the start of the test, O1 shall be configured with a non-zero COVU_Preiod and a non-empty
COV_Recipient property.

Test Steps:

1. MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)
2. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = (any valid address),
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = 0,
 'List of Values' = (any valid set of values)
3. WRITE (COVU_Period = 0)
4. MAKE (O1 a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)
5. WAIT Notification Fail Time times 2
6. CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)
7. WRITE (COVU_Period <> 0)
8. MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 189

9. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = (any valid address),
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = 0,
 'List of Values' = (any valid set of values)
10. WRITE (COVU_Recipients an empty list)
11. MAKE (O1 a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)
12. WAIT Notification Fail Time times 2
13. CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)

7.3.2.15 Life Safety Point Object Tests

[Add new Clause 7.3.2.15.X5, p. 78]

7.3.2.15.X5 Writable Tracking_Value
Purpose: This test case verifies that Tracking_Value is writable when Out_Of_Service is TRUE.

Test Concept: It verifies the interrelationship between the Tracking_Value, Status Flags, and Present_Value properties. If the
Out_Of_Service property of the object under test is not writable, and the value of the property cannot be changed by other
means, then this test shall be omitted. This test applies to Life Safety Zone and Life Safety point object.

The TD will select one instance of each appropriate object type and test it as described.

Test Steps:

1. MAKE (Out_Of_Service TRUE)
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, FALSE, ?, TRUE)
4. MAKE (Event_State = Normal)
5. VERIFY Event_State = Normal
6. WRITE Tracking_Value = (X: any value that corresponds to an Event_State of NORMAL)
7. VERIFY Tracking_Value = X
8. VERIFY Present_Value = X

[Add new Clause 7.3.2.15.X6, p. 78]

7.3.2.15.X6 Supports Writable Mode Property

Purpose: To verify that the Mode property takes one of the values found in the Accepted_Modes property.

Test Concept: It verifies the interrelationship between the Mode and Accepted_Modes properties. This test applies to Life
Safety Zone and Life Safety point object. The IUT will select one instance of each appropriate object type and test it as
described.

Test Steps:

1. READ AM = Accepted_Modes
2. TRANSMIT WriteProperty-Request
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Mode,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

190 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Property Value' = (X: Any valid value from list of AM)
3. RECEIVE BACnet-SimpleACK-PDU
4. VERIFY Mode = X
5. TRANSMIT WriteProperty-Request
 'Object Identifier' = (the object being tested),
 'Property Identifier'= Mode,
 'Property Value' = (X: Any invalid value, which is not present in AM)
6. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.3.2.15.X7, p. 78]

7.3.2.15.X7 Support Operation_Expected Property

Purpose: To verify that the Operation_Expected property takes on the value of ConfirmedEventNotification-Request.

Test Concept: It verifies the interrelationship between the Operation_Expected property and ConfirmedEventNotification-
Request. This test applies to Life Safety Zone and Life Safety point object. The IUT will select one instance of each appropriate
object type and test it as described.

Test Steps:

1. MAKE (the IUT send an ConfirmedEventNotification)
2. RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any Life-Safety object),
 'Time Stamp' = (the current local time),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = CHANGE-OF-LIFE-SAFETY,
 'Message Text' = (any character string),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE |FALSE,
 'From State' = NORMAL,
 'To State' = (any non-normal state appropriate to the event type),
 'Event Values' = (New State: (Any Valid State), New-Mode: (Any Valid Mode),
 Status-Flag: (TRUE, FALSE, ?, ?),
 Operation_Expected: (X: Any Valid operation))
3. VERIFY Operation_Expected = X (operation expected in the step 2)

[Add new Clause 7.3.2.15.X8, p. 78]

7.3.2.15.X8 Support Writable Member_Of Property

Purpose: To verify that the Member_Of property takes only supported values of the life safety objects within the IUT.

Test Concept: If the property is writable and is restricted to referencing objects within the containing device, an attempt to write
a reference to an object outside the containing device into this property shall cause a Result (-). If the property is not writable
and if the value of the property cannot be changed by other means, then this test shall be omitted. The IUT will select one
instance of each appropriate object type, O1, and test it as described.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 191

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (O1),
 'Property Identifier' = Member_Of
 'Property Value' = (X: any valid life safety zone object reference)
2. RECEIVE BACnet-SimpleACK-PDU,
3. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (O1),
 'Property Identifier' = Member_Of
4. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the object being tested),
 'Property Identifier' = Member_Of
 'Property Value' = X

[Add new Clause 7.3.2.15.X9, p. 78]

7.3.2.15.X9 Silenced Property Test

Purpose: This test verifies the behavior of Silenced property.

Test Concept: Verify the interrelationship between the Silenced property and any audible or visual indication that has been
silenced by the receipt of a LifeSafetyOperation service request or a local process. If the Silenced property of the object under
test is unchanging by means of a LifeSafetyOperation service requests because none of the silencing operations are supported,
then this test shall be omitted. This test applies to Life Safety Zone and Life Safety Point object.

Since the result of any specific LifeSafetyOperation is a local matter, the expected actions when an operation is applied to an
object is a local matter. In order to apply this test, the tester selects an initial Silenced state and a BACnetLifeSafetyOperation.
The tester then verifies that the expected Silienced state, as specified by the vendor, is the result of the life safety operation on
the object.

The tester will select one instance of each appropriate object type and test it as described.

Test Steps:

1. InitialSilencedState = READ Silenced
2. VERIFY Silenced = Other than InitialSilencedState
3. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid identifier),
 'Requesting Source' = (any valid character string),
 'Request' = (any supported LifeSafetyOperation request transmitted to silence the sounder/strobe),
 'Object Identifier' = (the selected object)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (Sounder/Strobe inactive)
6. ResultingSilencedState = READ Silenced
7. CHECK (the ResultingSilencedState is equal to the InitialSilencedState, modified by the LifeSafetyOperation request

transmitted)

[Change Clause 7.3.2.22, p. 96]

7.3.2.22 Program Object Tests

The Program object makes parameters of a custom program network visible. Since BACnet does not define the functionality
of the program there are no standard tests to verify this functionality. The Program object utilizes parameter control through
its writable Program_Change property.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

192 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Add new Clause 7.3.2.22.1, p. 96]

[Reviewer Note: No tests exist in Clause 7.3.2.22.]

7.3.2.22.1 Program_Change property test

Purpose: To verify writability of Program_Change property.

Test Concept: The Program_Change property is set to a value other than READY and then it and the Program_State property
are verified to update correctly.

Configuration Requirements: The Program_Change property of the program object being tested shows a value of READY.

Notes to Tester: In step 2, depending on the current Program_State, and the implementation, certain requested values for
Program_Change may be invalid and would return a Result(-) if an attempt were made to write them.

Test Steps:

1. VERIFY Program_Change = READY
2. WRITE Program_Change = (a value other than READY)
3. WAIT (for the processing to consume that value written to Program_Change)
4. VERIFY Program_Change = READY
5. VERIFY Program_State = the new state reflected, based upon value written to Program_Change in step 2.

7.3.2.23 Schedule Object Tests

[Change Clause 7.3.2.23.6, p. 106]

[Reviewer Note: Corrected the Configuration Requirements to allow the test to be executed on devices greater than or equal
to Protocol_Revision 4.]

7.3.2.23.6 Weekly_Schedule Restoration Test

Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27;
TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.4, 12.24.7, 12.24.9.

Purpose: To verify the restoration behavior in a Weekly_Schedule.

Test Concept: The IUT is configured with a Schedule object containing a Weekly_Schedule with a BACnetDailySchedule that
has multiple BACnetTimeValue entries that do not include the time 00:00. There shall be no Exception_Schedule that overrides
this Weekly_Schedule during the date and time used for this test. The local date and time are changed to a value between 00:00
and the first entry in the BACnetDailySchedule. Present_Value is read to verify that it contains the Schedule_Default value, or
Vlast for implementations with a Protocol_Revision less than 4. The IUT is reset and the Present_Value is checked again to
verify that it contains the Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4.

Configuration Requirements: The IUT shall be configured with a Schedule object that contains a Weekly_Schedule that has
more than one scheduled write operation for a particular day. None of the write operations shall be scheduled for time 00:00
and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D1 represents a time between
00:00 and the time of the first scheduled write operation in the BACnetDailySchedule. Vlast represents the value that is
scheduled to be written in the last BACnetTimeValue pair for the day. This test shall not be performed if the Protocol_Revision
property is present in the Device object and has a value of 4 or greater.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 193

1. (TRANSMIT TimeSynchronization-Request, 'Time' = D1) |
 (TRANSMIT UTCTimeSynchronization-Request 'Time' = D1) |
 MAKE (the local date and time = D1)
2. WAIT Schedule Evaluation Fail Time
3. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 VERIFY Present_Value = Schedule_Default
 ELSE
 VERIFY Present_Value = Vlast
4. IF (ReinitializeDevice execution is supported) THEN
 TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
 'Password' = (any valid password)
 RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
 ELSE
 MAKE (the IUT reinitialize)
5. CHECK (Did the IUT perform a WARMSTART reboot?)
6. WAIT Schedule Evaluation Fail Time
7. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 VERIFY Present_Value = Schedule_Default
 ELSE
 VERIFY Present_Value = Vlast

7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests7.3.

7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests

[Change Clause 7.3.2.23.10.3.6, p. 117]

[Reviewer Note: New functionality testing WeekNDay new WeekOfMonth entries added in 135-2012bg-4 for
Protocol_Revision 18.]

7.3.2.23.10.3.6 Revision 4 Calendar Entry WeekNDay LastSpecial Week Of Month Test
Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing
Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-
16. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object, S, with an Exception_Schedule
containing a BACnetCalendarEntry with a WeekNDay entry specifying the one of the special week of month values, WM
[6,7,8,9]last week of the month. The criteria for the dates used in the test are given in Table 7-16. The local date and time shall
be set such that the Present_Value property has a value other than V1.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

194 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Table 7-16. Criteria for Calendar Entry WeekNDay LastSpecial Week Of Month Test Dates and Values
Date Criteria Value
D1 1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,
2B. calendarEntry: WeekNDay specifies WeekOfMonth,
2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6WM,
2D. Date is in the last week of the monthWeekOfMonth specified by 2C,
2E. WeekNDay:Month matches the specified month,
2F. WeekNDay:dayOfWeek matches the specified day of the week,
2G. Time is on or after the time of the entry with V1, but before any other

entry in the Exception_Schedule, and
2H. BACnetSpecialEvent has a higher eventPriority than any coincident

BACnetSpecialEvent records.

V1

D2 1. Date occurs during Effective_Period,
2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,
2B. calendarEntry: WeekNDay specifies WeekOfMonth,
2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6WM, and
2D. Date is not in the last week of the monththe WeekOfMonth specified by
2C.

V2 different from V1

Test Steps:
1. VERIFY (S), Present_Value = any value other than V1
2. (TRANSMIT TimeSynchronization-Request, 'Time' = D1) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1) |
 MAKE (the local date and time = D1)
3. WAIT Schedule Evaluation Fail Time
4. VERIFY S, Present_Value = V1
5. (TRANSMIT TimeSynchronization-Request, 'Time' = D2) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2) |
 MAKE (the local date and time = D2)
6. WAIT Schedule Evaluation Fail Time
7. VERIFY S, Present_Value = V2

[Change Clause 7.3.2.23.10.3.7, p. 118]

[Reviewer Note: Added clarifying text to Table 7-16.1.]

7.3.2.23.10.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30,
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's DayOfWeek field in an Exception_Schedule enables the referencing
Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-
10. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing
a BACnetCalendarEntry with a WeekNDay entry specifying the day of the week. The criteria for the dates used in the test are
given in Table 7-10. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-16.1. Criteria for Calendar Entry WeekNDay Day of Week Test Dates and Values

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 195

Date Criteria Value
D1 1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,
2B. calendarEntry: WeekNDay specifies only DayOfWeek,
2C. Date falls on the specified day of the week, and
2D. Higher eventPriority than any coincident BACnetSpecialEvents.

V1

D2 1. Date occurs during Effective_Period,
2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,
2B. calendarEntry: WeekNDay specifies only DayOfWeek, and
2C. Date does not fall on the specified day of the week.

V2
(a value different from the
Present_Value expected at D2)

Test Steps:

1. VERIFY Present_Value = (any value other than V1)
2. (TRANSMIT TimeSynchronization-Request, 'Time' = D1) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1) |

MAKE (the local date and time = D1)
3. WAIT Schedule Evaluation Fail Time
4. VERIFY Present_Value = V1
5. (TRANSMIT TimeSynchronization-Request, 'Time' = D2) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2) |

MAKE (the local date and time = D2)
6. WAIT Schedule Evaluation Fail Time
7. VERIFY Present_Value = (any value other than V2)

[Change Clause 7.3.2.23.10.3.8, p. 119]

[Reviewer Note: Added 'Notes to Tester' for clarity.]

7.3.2.23.10.3.8 Revision 4 Event Priority Test

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both are
active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more
BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels should
be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority shall have
the earliest time-value pair (D1) with a non-NULL value, and the last time-value pair (DN) with a NULL value; the next higher
priority shall have a time-value pair D2 occurring after D1 with a different non-NULL value, and a time-value pair DN-1 with a
NULL value and occurring before DN; and so on. The result is that the time-value pairs shall be ordered chronologically thus:
D1, D2, D3, ..., DN-1, DN. An example of such a configuration testing five priority levels is shown in Table 7-11.

Table 7-11. Example of event and value prioritization
Event Time:

 Priority: D1 D2 D3 D4 D5 D6 D7 D8 D9
1 - - - - V5 NULL - - -
2 - - - V4 - - NULL - -
3 - - V3 - - - - NULL -
4 - V2 - - - - - - NULL
5 V1 - - - - - - - -

Present_Value: V1 V2 V3 V4 V5 V4 V3 V2 V1

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain the
time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

196 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the
range 1-16, excluding 6. The Priority parameter for WriteProperty-Request may be left out if the target property is a standard
property of a standard object for which commandability is not an option.

Test Steps:

1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO {
 (TRANSMIT TimeSynchronization-Request, 'Time' = D) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC) |
 MAKE (the local date and time = D)
 WAIT Schedule Evaluation Fail Time
 VERIFY Present_Value = (the value corresponding to the time D)
 }
2. REPEAT D = (the times in the configured time-value pairs with NULL values,
 except the final DN) DO {
 (TRANSMIT TimeSynchronization-Request, 'Time' = D) |
 (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC) |
 MAKE (the local date and time = D)
 WAIT Schedule Evaluation Fail Time
 VERIFY Present_Value = (the non-NULL value corresponding to the priority lower than that
 associated with D)
 }

7.3.2.23.11 Written Datatypes Tests

[Change Clause 7.3.2.23.11.1, p. 124]

[Reviewer Note: To ensure that datatype-specific testing is conducted even when there is no Schedule that can be made to
reference another property. The effect should be observed in the Present_Value property of the Schedule Object instead.]

7.3.2.23.11.1 Internally Written Datatypes Test, non-NULL values
BACnet Reference Clauses: 12.24, 12.24.10

Purpose: This test verifies that the Schedule object within the IUT writes to properties in the same device for the non-NULL
datatype being tested.

Test Concept: Two Date/Time, values, D1 and D2, are chosen by the TD based on the criteria in Table 7-17 such that D1 is
sufficiently different from, and later than, the current time to cause a Schedule evaluation when the time is changed to D1, and
such that setting the time to D2 (later than D1) from D1 will cause a Schedule evaluation that will cause it to write value V2.
These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object, S, may be configured
with such values.

Configuration Requirements: The IUT shall be configured with a Schedule object, S, such that the time periods defined in
Table 7-17 can be configured with uniquely scheduled values. The Schedule object shall be configured with a
List_Of_Object_Property_References, including at least one reference to a writable property within the device, if possible. Step
4 and step 8 would REPEAT zero times if the referenced property is empty or not present. If the IUT cannot be configured to
these requirements, then this test shall be omitted. Other pProperties in the Schedule object shall be consistent in both datatypes
and values in a manner permitting this test to be executed.

Table 7-17. Criteria for Test Date and Times
Date and Time: Value:
D1 V1
D2 V2 different from V1.

Notes to Tester: In the context of this test definition, writable means that the Schedule object is capable of modifying the
property. It does not necessarily indicate that the property is modifiable via BACnet services.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 197

Test Steps:

1. (TRANSMIT TimeSynchronization-Request,'Time' = D1)
 | (TRANSMIT UTCTimeSynchronization-Request, 'Time'=D1)
 | MAKE (the local date and time = D1)
2. WAIT (Schedule Evaluation Fail Time)
3. VERIFY S, Present_Value = V1
4. REPEAT P = (writable property in List_Of_Property_References)
 VERIFY P = V1
5. (TRANSMIT TimeSynchronization-Request, 'Time' = D2)
 | (TRANSMIT UTCTimeSynchronization-Request, 'Time'=D12)
 | MAKE (the local date and time = D2)
6. WAIT(Schedule Evaluation Fail Time)
7. VERIFY S, Present_Value = V2
8. REPEAT P = (writable property in List_Of_Property_References)
 VERIFY P = V2

Notes to Tester: In the context of this test definition, writable means that the Schedule object is capable of modifying the
property. It does not necessarily indicate that the property is modifiable via BACnet services.

7.3.2.24 Logging Object Tests

[Change Clause 7.3.2.24.3, p. 131]

[Reviewer Note: Errata change to correct the Test Concept to reference correct property.]

7.3.2.24.3 Stop_Time Test
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.25.7.

Purpose: To verify that logging is disabled at the time specified by Stop_Time.

Test Concept: The logging object is configured to acquire data by each means available to the implementation. The test is
begun at some time prior to the time specified in Stop_TimeStart_Time and collection of records is confirmed. Non-collection
of records after the time specified by Stop_Time is then confirmed.

Configuration Requirements: Stop_Time shall be configured with a date and time such that steps 1 through 9 will be concluded
before that time. Start_Time, if present shall be configured with date and time preceding the initiation of the test.
Stop_When_Full, if configurable, shall be set to FALSE.

Notes to Tester: For each MAKE (IUT collect another record), perform the following actions:

 IF (Event Log Object) THEN
 MAKE (Event Log Object collect another record)
 ELSE
 IF (COV subscription in use) THEN
 MAKE (monitored value change sufficient to generate another record)
 ELSE IF (interval or period logging is in use) THEN
 WAIT (Log_Interval)
 ELSE
 MAKE (Trend Log or Trend Log Multiple Object collect another record)

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

198 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. WRITE Enable = FALSE
2. WAIT Internal Processing Fail Time
3. WRITE Record_Count = 0
4. WRITE Enable = TRUE
5. READ X = Total_Record_Count
6. WAIT Internal Processing Fail Time
7. MAKE (IUT collect another record)
8. WAIT (Notification Fail Time + Internal Processing Fail Time)
9. VERIFY Total_Record_Count > X
10. WHILE (IUT clock is earlier than Stop_Time) DO {}
11. WAIT (Notification Fail Time + Internal Processing Fail Time)
12. READ X = Total_Record_Count
13. MAKE (IUT collect another record)
14. WAIT (Notification Fail Time + Internal Processing Fail Time)
15. VERIFY Total_Record_Count = X

Notes to Tester: For each MAKE (IUT collect another record), perform the following actions:

 IF (Event Log Object) THEN
 MAKE (Event Log Object collect another record)
 ELSE
 IF (COV subscription in use) THEN
 MAKE (monitored value change sufficient to generate another record)
 ELSE IF (interval or period logging is in use) THEN
 WAIT (Log_Interval)
 ELSE
 MAKE (Trend Log or Trend Log Multiple Object collect another record)

[Change Clause 7.3.2.24.4, p. 132]

[Reviewer Note: The Configuration Requirements are enhanced, and a Notes to Tester is added.]

7.3.2.24.4 Log_Interval Test
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that the logging period is controlled by Log_Interval.

Test Concept: The logging object is configured to acquire data by polling. Polling is done at two different intervals, defined
by Log_Interval, with about 10 records acquired at each rate. The timestamps of the records are inspected to verify the polling
rate.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the
test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the
test. Stop_When_Full, if configurable, shall be set to FALSE. Enable shall be set to TRUE. Logging_Type is not equal to
TRIGGERED. Non-zero values shall be chosen for Log_Interval in accordance with the range and resolution specified by the
manufacturer for this property.

Notes to Tester: The step 1 write of Logging_Interval to a non-zero value will make a change in Logging_Type from COV to
POLLED, if Logging_Type was initially COV.

Test Steps:

1. WRITE Log_Interval = (some non-zero value)
2. WRITE Record_Count = 0
3. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)
4. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 1)
5. WRITE Log_Interval = (a non-zero value different from the one written in step 1)
6. WRITE Record_Count = 0

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 199

7. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)
8. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 5)

7.3.2.24.6 Stop_When_Full Tests

[Change Clause 7.3.2.24.6.1, p. 134]

[Reviewer Note: This test was revised for negative response.]

7.3.2.24.6.1 Stop_When_Full TRUE Test
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that Stop_When_Full set to TRUE properly indicates that the logging object ceases collecting data when its
Log_Buffer acquires Buffer_Size data items.

Test Concept: The logging object is configured to acquire data by whatever means. Data is collected until more than
Buffer_Size records have been collected and Enable is verified to be FALSE. Attempt to write TRUE to Enable and verify that
the IUT does not accept it due to Log_Buffer being full.

Configuration Requirements: The IUT shall be configured with Object1 where Start_Time, if present, shall be configured with
a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and
time, in order that it occur after the end of the test. Stop_When_Full, if configurable, shall be set to TRUE. Enable shall be set
to FALSE.

Test Steps:

1. WRITE Record_Count = 0
2. WRITE Enable = TRUE
3. WHILE (Record_Count < Buffer_Size) DO {}
4. WAIT Internal Processing Fail Time
5. VERIFY Enable = FALSE
6. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,
'Property Identifier' = Enable,
'Property Value' = TRUE

7. RECEIVE BACnet-Error-PDU,
'Error Class' = OBJECT,
'Error Code' = LOG_BUFFER_FULL.

8. VERIFY Enable = FALSE

[Change Clause 7.3.2.24.13, p. 139]

[Reviewer Note: Modified test with a completely different, less prescriptive approach.]

7.3.2.24.13 Log-Status Test

Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.25.14

Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then the Enable property is changed and it is verified that the Record_Count property is
changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record_Count is also set to zero while
the Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

200 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Configuration: The logging object is configured to acquire data by whatever means available. Configure the logging such
that the entire test may be run without the trend buffer overflowing.

Notes to Tester: When the IUT's Protocol_Revision < 7, the length of BACnetLogStatus shall be 2; otherwise, it shall be 3.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. VERIFY Record_Count = 1
4. TRANSMIT ReadRange
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Index’ = 1,
 ‘Count’ = 1
5. RECEIVE ReadRange-Ack
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (True, True, False),
 ‘Item Count’ = 1
 ‘Item Data’ = ((a buffer purged record))
6. WRITE Enable = TRUE
7. WRITE Enable = FALSE
8. TRANSMIT ReadRange
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Index’ = 1,
 ‘Count’ = 2
9. RECEIVE ReadRangeAck
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (True, False, False),
 ‘Item Count’ = 2
 ‘Item Data’ = ((a buffer purged record), (a log-enable record))
10. TRANSMIT ReadRange
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Time’ = (2154-12-31, 23:59:59.99),
 ‘Count’ = -1
11. RECEIVE ReadRangeAck
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (False, True, False),
 ‘Item Count’ = 1
 ‘Item Data’ = ((a log-disable record))
1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. VERIFY (Log_Buffer contains 1 entries, and it is the buffer-purged event)
4. WRITE Enable = TRUE
5. WRITE Enable = FALSE
6. VERIFY (Record_Count => 3 and the first entry is the buffer-purged event, the second entry is
 the log-enable TRUE event and the last entry is the log-enable FALSE event)

Notes to Tester: When the IUT's Protocol_Revision < 7, the length of BACnetLogStatus shall be 2; otherwise, it shall be 3.

[Change Clause 7.3.2.24.14, p. 140]

[Reviewer Modified test with a completely different, less prescriptive approach.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 201

7.3.2.24.14 Time_Change Test

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the clock
changed by or indicating zero if unknown. This test shall be skipped if the device does not support the Local_Time property in
the device object or there is no way to change the time in the device.

Configuration Requirements: The log object is configured to acquire data by whatever means available. The Log_Buffer should
be cleared such that the Record_Count is 0. Configure the logging such that the entire test may be run without the trend buffer
overflowing.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. READ currentTime = (Device Object of device that contains the log object), Local_Time
4. WRITE Enable = TRUE
5. MAKE(the time change on the device by deltaTime where deltaTime >= 1 hour)
6. WRITE Enable = FALSE
7. READ N = Record_Count
8. REPEAT X = (N down through 1) DO {
 TRANSMIT ReadRange
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Index’ = X,
 ‘Count’ = 1
 RECEIVE ReadRangeAck
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (False, True, False),
 ‘Item Count’ = 1,
 ‘Item Data’ = ((a record. If the record is a time-change record, save the timestamp
 into TS and the time-change value into TC))
 }
9. CHECK (TC ~= deltaTime)
10. CHECK (TS ~= currentTime + deltaTime)
1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)
4. TRANSMIT ReadProperty-Request,
 ‘Object Identifier’ = (device that contains log object)
 ‘Property Identifier’ = Local_Time
5. RECEIVE ReadProperty-Ack,
 ‘Object Identifier’ = (device that contains log object)
 ‘Property Identifier’ = Local_Time
 ‘Property Value’ = (currentTime)
6. WRITE Enable = TRUE
7. MAKE (the time change on the device by a reasonable amount (deltaTime); change by one hour or
 more)
8. WRITE Enable = FALSE
9. VERIFY Record_Count => 4
10. CHECK (Log_Buffer contains a log-status entry of time-change)
11. VERIFY (time-change value ~= deltaTime)
12. VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

[Change Clause 7.3.2.24.15, p. 141]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

202 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Reviewer Note: Modified test with a completely different, less prescriptive approach. The Test Concept is simplified. The
Configuration Requirements are enhanced.]

7.3.2.24.15 COV-Sampling Verification Test

Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the
buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

Configuration Requirements: The IUT shall be configured such that the monitored object has a COV_Increment property that
is set to a value other than 0.0, the Client_COV_Increment is set to a value other than 0.0 or NULL, or the monitored property
is not of datatype REAL.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. WRITE Interval = 0
4. WRITE Enable = TRUE
5. WAIT (10 seconds)
6. MAKE (monitored property change its value)
7. WAIT (60 seconds)
8. MAKE (monitored property change its value)
9. WAIT (90 seconds)
10. MAKE (monitored property change its value)
11. WAIT (40 seconds)
12. MAKE (monitored property change its value)
13. WAIT Notification Fail Time
14. WRITE Enable = FALSE
15. READ N = RecordCount
16. REPEAT X = (1 through 4) {
 TRANSMIT ReadRange
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Index’ = N-5+X,
 ‘Count’ = 1
 RECEIVE ReadRangeAck
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (False, False, False),
 ‘Item Count’ = 1
 ‘Item Data’ = ((one data record storing the timestamp in TS[X]))
 }
17. CHECK(TS[2] - TS[1] ~= 60 seconds)
18. CHECK(TS[3] - TS[2] ~= 90 seconds)
19. CHECK(TS[4] - TS[3] ~= 40 seconds)

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured, or the
Client_COV_Increment shall be configured, or it is not monitoring a REAL property. The Logging_Type shall not have a value
of TRIGGERED.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Record_Count = 0
3. WRITE Log_Interval = 0
4. WRITE Enable = TRUE
5. MAKE (monitored property change its value)
6. WAIT (60 seconds)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 203

7. MAKE (monitored property change its value)
8. WAIT (90 seconds)
9. MAKE (monitored property change its value)
10. WAIT (40 seconds)
11. CHECK (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

[Change Clause 7.3.2.24.19, p. 144]

[Reviewer Note: Modified test to check Log_Interval shall be zero when Logging_Type property has either of the values COV
or TRIGGERED. Updated Configuration Requirements.]

7.3.2.24.19 Trigger Verification Test

Dependencies: ReadRange Service Execution, 9.21;

BACnet Reference Clause: 12.25.27, 12.30.12

Purpose: To verify logged samples are based on the triggered Logging_Type.

Test Concept: The log, O1 is configured to log based on TRIGGERED. Logging is enabled. After a period of time the buffer
is checked to verify the data in the buffer is based on triggered values.

Configuration Requirements: The IUT shall be configured such that the monitored object’s Logging_Type is set to
TRIGGERED.The object being tested shall be configured with Logging_Type set to TRIGGERED.

Test Steps:

1. VERIFY Logging_Type = TRIGGERED
2. VERIFY Log_Interval = 0
31. WRITE Enable = FALSE
42. WRITE Record_Count = 0 -- results in a buffer purged record
53. WRITE Enable = TRUE -- results in a logging enable record
64. WAIT (10 seconds)
75. WRITE Trigger = TRUE
86. WAIT (20 seconds)
97. WRITE Trigger = TRUE
108. WAIT (40 seconds)
119. WRITE Trigger = TRUE
1210. WAIT (30 seconds)
1311. WRITE Enable = FALSE -- results in a logging disabled record
12. VERIFY RecordCount = 6
14. READ N = Record_Count
1513. REPEAT X = (1 through 34)
 TRANSMIT ReadRange-Request
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Reference Index’ = N-4+X,
 ‘Count’ = 1
 RECEIVE ReadRangeAckReadRange-ACK
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (?False, ?False, False),
 ‘Item Count’ = 1,
 ‘Item Data’ = ((one data record storing the timestamp in TS[X]))
16. TRANSMIT ReadRange-Request
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

204 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 ‘Reference Index’ = N,
 ‘Count’ = 1
 RECEIVE ReadRange-ACKck
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = Log_Buffer,
 ‘Result Flags’ = (False, True, False),
 ‘Item Count’ = 1,
 ‘Item Data’ = (one data record storing the timestamp in TS[4])
14. CHECK(TS[3] - TS[2] ~= 10 seconds)
15. CHECK(TS[4] - TS[3] ~= 20 seconds)
16. CHECK(TS[5] - TS[4] ~= 40 seconds)
17. CHECK(TS[6] - TS[5] ~= 30 seconds)
17. CHECK(TS[2] - TS[1] ~= 20 seconds)
18. CHECK(TS[3] - TS[2] ~= 40 seconds)
19. CHECK(TS[4] - TS[3] ~= 30 seconds)

[Change and renumber Clause 9.21.1.12, p. 409]

[Reviewer Note: Moved modified test from the Application Service Execution Tests section to the Object Support Tests
section.]

9.21.1.12 7.3.2.24.X1 Status/Failure logging
Purpose: To verify that a failure is logged when an error is encountered in an attempt to read a data value from the monitored
object. If the error is conveyed by an error response from a remote device, verify that the Error Class and Error Code in the
response is logged.

Test Concept: Make the monitored object fail and respond with an error by setting the Configure Log_DeviceObjectProperty
of the logging object with an unknown object such that collection of records fails. to an invalid device or object. Wait until the
IUT attempts to read a sample for the Log_Buffer. Then check the Log_Buffer to verify that there is a failure entry that consists
of the ErrorClass and ErrorCode of the error. Repeat with Log_DeviceObjectProperty referencing an object in a device that
does not exist.

Configuration Requirements: Configure the logging object so that collection of records will fail (such as by referencing a non-
existent object).

Test Steps:

1. WRITE (Invalid object into the Log_DeviceObjectProperty of the log object)
1. MAKE (Log_DeviceObjectProperty reference a non-existent object in the local device or in an existing remote device)
2. WAIT (until IUT attempts to read a sample for the Log_Buffer)
3. VERIFY CHECK(Log_Buffer contains a failure entry of with an error class/error code of
OBJECT/UNKNOWN_OBJECTunknown object)
4. IF the IUT supports logging remote values THEN {
 MAKE (Log_DeviceObjectProperty reference an object in a non-existing device)
 WAIT (until IUT attempts to read a sample for the Log_Buffer)
 CHECK (Log_Buffer contains a failure entry with an error class/code
 COMMUNICATION/UNKNOWN_DEVICE)

[Add new Clause 7.3.2.24.X8, p. 144]

7.3.2.24.X8 Clock-Aligned Logging

Purpose: To verify that logged trend records have timestamps aligned to that interval, when Align_Intervals is TRUE and
Log_Interval is a factor of (divides without remainder) a day.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 205

Test Concept: For this test, select two evenly divisible factors. Write each to Log_Interval in the test. Trend records are logged
and checked that those are aligned to the Log_Interval. This is done twice to ensure that different interval frequency behavior
is verified. This test does not employ Log_Interval values which are not one of the evenly divisible factors.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the
test. Stop_Time, if present, shall be configured in order that it occurs after the end of the test. Stop_When_Full, if configurable,
shall be set to FALSE. Enable is initially FALSE. Interval_Offset is set to zero. Align_Intervals is set to TRUE. Triggering of
non periodic log records should not occur during this test. Logging_Mode is POLLED. X1 and X2 are each a value which the
IUT supports for which the standard mandates the alignment behavior.

Notes to Tester: The values for Log_Interval which require alignment are those for which the standard mandates the alignment
behavior, where 8,640,000 modulo Log_Interval is zero.

Test Steps:

1. CHECK (Log_Buffer contains 1 entry, and it is the buffer-purged event)
2. WRITE Log_Interval = X1
3. WRITE Enable = TRUE
4. MAKE (logging object collect at least 2 records)
5. WRITE Enable = FALSE
6. CHECK (Log_Buffer contains at least 5 entries, and at least two data records)
7. CHECK (that the timestamp of each data record, since the Log_Interval was written, is a multiple of X1)
8. WRITE Log_Interval = (X2, any value which requires alignment behavior, that was not already chosen)
9. WRITE Enable = TRUE
10. MAKE (logging object collect at least 2 more records)
11. WRITE Enable = FALSE
12. CHECK (Log_Buffer has collected two or more additional data records and two or more log-status records)
13. CHECK (that the timestamp are multiples of X2 for all data records collected, since the write with X2)

[Add new Clause 7.3.2.24.X9, p. 144]

7.3.2.24.X9 Logging Interval_Offset

Purpose: To verify that timestamps abide by the Interval_Offset.

Test Concept: Log_Interval is set to a value which the IUT supports which is a factor of (divides without remainder) a day and
which is greater than 3 seconds.

Interval_Offset is first set to a non-zero value less than Log_Interval. After logging some records, their timestamps are checked.
The logging is stopped. Interval_Offset is set to a value which the IUT supports greater than Log_Interval, logging is re-
enabled, and the timestamps again are checked.

Configuration Requirements: Align_Intervals is set to TRUE. The Log_DeviceObjectProperty property in a Trend Log or in a
Trend Log Multiple, is configured to the property or properties monitored. Start_Time, if present, shall be configured with a
date and time preceding the beginning of the test. Stop_Time, if present shall be configured in order that it occur after the end
of the test. Stop_When_Full, if configurable, shall be set to FALSE. Enable is initially FALSE. Align_Intervals is set to TRUE.
Triggering of non periodic log records should not occur during this test. If the Interval_Offset cannot be set to a value which
the IUT supports greater than Log_Interval, then steps 11 through the end of this test are skipped. Logging_Mode is POLLED.
An evenly divisible value is a value for which the standard mandates the alignment behavior.

Notes to tester: Interval_Offset in logging objects, and Log_Interval are each an Unsigned number of hundredths of seconds.
Excellent choices are 400, 500, 600, 1000, or 1200. When Interval_Offset is larger than Log_Interval, then Interval_Offset
modulo Log_Interval, is smaller than Log_Interval.

Test Steps:

1. WRITE Record_Count = 0
2. CHECK (Log_Buffer contains 1 entry, and it is the buffer-purged event)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

206 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. WRITE Log_Interval = (any evenly divisible value greater than 3 seconds)
4. WRITE Interval_Offset = (any value, between 2 seconds and Log_Interval - 1 seconds)
5. WRITE Enable = TRUE
6. MAKE (logging object collect at least 2 records)
7. WRITE Enable = FALSE
8. CHECK (Log_Buffer contains two or more data records and at least three log-status)
9. CHECK (the timestamp for the data records have a fixed offset, determined by Log_Interval and Interval_Offset)
10. WRITE Interval_Offset = (any value greater than Log_Interval)
11. WRITE Enable = TRUE
12. MAKE (logging object collect at least 2 records)
13. WRITE Enable = FALSE
14. CHECK (Log_Buffer has collected two or more additional data records and two or more log-status entries)
15. CHECK (the timestamp for data records collected since the Interval_Offset was last written, have Log_Interval between
records, at a fixed offset of Interval_Offset modulo Log_Interval)

[Add new Clause 7.3.2.24.X10, p. 144]

7.3.2.24.X10 Buffer_Size Write Test

Purpose: To verify the content of the log buffer after a write to the Buffer_Size property.

Test Concept: The logging object, O1, is configured to acquire data by whatever means. Logging is disabled and Buffer_Size
set to a different valid value, V1. The content of the Log_Buffer is read to confirm a single entry that is a buffer purged event.

Configuration Requirements: The logging object, O1, is configured to acquire data by whatever means. If a write to the
Buffer_Size does not delete all records in the log, this test shall be skipped.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Buffer_Size = V1
3. WAIT Internal Processing Fail Time
4. CHECK (Log_Buffer contains one entry, and it is a buffer-purged event)

7.3.2.25 Event Log Tests

[Change Clause 7.3.2.25.1, p. 144]

[Reviewer Note: Fixed the Result Flags value in step 12]

7.3.2.25.1 Internal Logging of Notifications

Purpose: To verify the IUT correctly collects and represents the Notifications which it initiates.

Test Concept: Make the IUT generate two event notification messages which the IUT logs. Use ReadRange to retrieve them
from an Event Log and compare the two representations.

Configuration Requirements: The tester shall choose two events which are configured to be sent to the TD and to be placed
into one of the IUT's Event Logs, LO1.

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which a BACnet-SimpleACK-PDU is sent.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 207

1. WRITE Enable = TRUE
2. MAKE (a condition exist that will cause the device to generate an event transition)
3. WAIT D1
4. RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (any valid object),
 'Time Stamp' = (T1, any valid timestamp),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = (any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (state S1, any valid state for this event type),
 'To State' = (state S2, any valid state for this event type that can follow S1),
 'Event Values' = (any values appropriate to the event type)
5. TRANSMIT BACnet-SimpleACK-PDU
6. MAKE (IUT generate an EventNotification)
7. WAIT D2
8. RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' (any valid object),
 'Time Stamp' = (T2, any valid timestamp),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = (any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (state S3, any valid state for this event type),
 'To State' = (state S4, any valid state for this event type that can follow S3),
 'Event Values' = (any values appropriate to the event type)
9. TRANSMIT BACnet-SimpleACK-PDU
10. READ RC = LO1, Record_Count
11. TRANSMIT ReadRange-Request,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Reference Index'= RC,
 'Count' = -2
12. RECEIVE ReadRange-ACK,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE?, ?, FALSETRUE},
 'Item Count' = 2,
 'Item Data' = (logged data that matches the information received in steps 3 and 6,
 except that Process_Identifier may be any value and is not required to match)
13. CHECK (T2 > T1, and that the notifications were logged in order)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which a BACnet-SimpleACK-PDU is sent.

[Change Clause 7.3.2.25.2, p. 144]

[Reviewer Note: Fixed Result Flags in step 8. Add delay after Step 1 and renumbered subsequent test steps.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

208 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.25.2 Remote Logging of Notifications

Purpose: To verify that the IUT correctly collects and represents the Notifications which it receives.

Test Concept: Make TD send multiple event notification messages. Use ReadRange to retrieve the events from an Event Log
or perhaps from multiple Event Logs in the IUT, and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs the event types which are sent. Stop_When_Full
in LO1 shall be FALSE or absent.

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the test shall skip the steps in which a BACnet-SimpleACK-PDU is expected.

Test Steps:

1. WRITE Enable = TRUE
2. WAIT Internal Processing Fail Time
32. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid object identifier),
 'Time Stamp' = (T1, any valid timestamp),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = (any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (state S1, any valid state for this event type),
 'To State' = (state S2, any valid state for this event type that can follow S1),
 'Event Values' = (any values appropriate to the event type)
43. RECEIVE BACnet-SimpleACK-PDU
54. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (any valid object identifier),
 'Time Stamp' = (T2, any valid timestamp),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = (any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (state S3, any valid state for this event type),
 'To State' = (state S4, any valid state for this event type that can follow S3),
 'Event Values' = (any values appropriate to the event type)
65. RECEIVE BACnet-SimpleACK-PDU
76. READ RC = LO1, Record_Count
87. TRANSMIT ReadRange-Request,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = RC,
 'Count' = -2
98. RECEIVE ReadRange-ACK,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE?, ?, FALSETRUE},
 'Item Count' = 2,
 'Item Data' = (logged data that matches the information received in steps 2 and 4,
 except that Process_Identifier can be any value and is not required to
 match)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 209

109. CHECK (that the events were logged in the order in which they were received)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the test shall skip the steps in which a BACnet-SimpleACK-PDU is expected.

[Change Clause 7.3.2.25.3, p. 145]

[Reviewer Note: Fixed the Result Flags in step 12. Moved step 2 to step 9. Removed unnecessary step 4.]

7.3.2.25.3 Internal Logging of ACK_NOTIFICATIONs

Purpose: To verify the IUT correctly collects and represents an ACK_NOTIFICATION which it initiates.

Test Concept: Make the IUT generate an ACK_NOTIFICATION message. Use ReadRange to retrieve that same event from
an Event Log and compare the two representations. If the IUT does not support logging of the ACK_NOTIFICATIONs which
it initiates, this test shall be skipped.

Configuration Requirements: O1 is an event initiating object in the IUT, which is configured to send event notifications to TD.
LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs.

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which BACnet-SimpleACK-PDUs are sent in response to ConfirmedEventNotifications.

Test Steps:

1. WRITE Enable = TRUE
2. READ RC = LO1, Record_Count
23. MAKE (the IUT generate a notification)
4. WAIT D1
35. RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (PI1, any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (T1, any valid timestamp),
 'Notification Class' = (N1, any valid notification class),
 'Priority' = (P1, any valid priority),
 'Event Type' = (ET1, any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (S1, any valid state for this event type),
 'To State' = (S2, any valid state for this event type),
 'Event Values' = (any values appropriate to the event type)
46. TRANSMIT BACnet-SimpleACK-PDU
57. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (any valid value),
 'Event Object Identifier' = O1,
 'Event State Acknowledged' = S2,
 'Time Stamp' = T1,
 'Time of Acknowledgment' = (the current time)
68. RECEIVE BACnet-SimpleACK-PDU
79. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = PI1,
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (T2, any valid timestamp > T1),
 'Notification Class' = N1,
 'Priority' = P1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

210 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Event Type' = ET1,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'From State' = S1
810. TRANSMIT BACnet-SimpleACK-PDU
9. READ RC = LO1, Record_Count
1011. TRANSMIT ReadRange-Request,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = RC,
 'Count' = -1
1112. RECEIVE ReadRange-ACK,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE?, ?, FALSETRUE},
 'Item Count' = 1,
 'Item Data' = (logged data that matches the information received in step 74,
 except that Process_Identifier can be any value and is not
 required to match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which BACnet-SimpleACK-PDUs are sent in response to ConfirmedEventNotifications.

[Change Clause 7.3.2.25.4, p. 148]

[Reviewer Note: Fixed Result Flags in step 6. Added delay after Step 1.]

7.3.2.25.4 Remote Logging of ACK_NOTIFICATIONs

Purpose: To verify that the IUT correctly collects and represents ACK_NOTIFICATIONs which it receives.

Test Concept: Send an ACK_NOTIFICATION to the IUT. Use ReadRange to retrieve that same event from an Event Log, and
compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs. Stop_When_Full in
LO1 shall be FALSE or absent.

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the test shall skip the step in which a BACnet-SimpleACK-PDU is expected.

Test Steps:

1. WRITE Enable = TRUE
2. WAIT Internal Processing Fail Time
32. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUTTD,
 'Event Object Identifier' = (any valid object identifier),
 'Time Stamp' = (T1, any valid timestamp),
 'Notification Class' = (any valid notification class),
 'Priority' = (any valid priority),
 'Event Type' = (any standard event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'From State' = (state S1, any valid state for this event type)
43. RECEIVE BACnet-SimpleACK-PDU
54. READ RC = LO1, Record_Count
65. TRANSMIT ReadRange-Request,
 'Object Identifier' = LO1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 211

 'Property Identifier' = Log_Buffer,
 'Reference Index' = RC,
 'Count' = -1
76. RECEIVE ReadRange-ACK,
 'Object Identifier' = LO1,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE?, ?, FALSETRUE},
 'Item Count' = 1,
 'Item Data' = (logged data that matches the information received in step 2,
 except that Process_Identifier can be any value and is not required to match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the test shall skip the step in which a BACnet-SimpleACK-PDU is expected.

7.3.2.30 Notification Forwarder Object Tests

[Change Clause 7.3.2.30.6, p. 158]

[Reviewer Note: Fixed Status_Flags expected values.]

7.3.2.30.6 Out_Of_Service Property Test

Purpose: This test case verifies that event forwarding is not done while Out_Of_Service is TRUE.

Test Concept: Set up both Recipient_List and Subscribed_Recipient recipient entries with no filters specified and then send
event notifications to the Notification Forwarder while the value of the Out_Of_Service property is TRUE.
Subscribed_Recipients are configured as part of base setup 2 for Notification Forwarder object tests. Verify that forwarding
of the event notifications is not performed.

If the Out_Of_Service property of the object under test is not writable, and if the value of the property cannot be changed by
other means, then this test shall be omitted.

Configuration Requirements: Base setup 2 for Notification Forwarder object tests with TR lifetime sufficient for this test.

Test Steps:

1. MAKE (Recipient_List = { (all), --Valid Days
 (all), --From Time, To Time
 DEST_OBJ_ID2, --Recipient D2
 DEST_PROCESS_ID, --Process Identifier
 FALSE, --Issue Confirmed Notifications
 {T, T, T} --Transitions
 }) --One list element
2. MAKE (Out_Of_Service = TRUE)
3. VERIFY Out_Of_Service = TRUE
4. VERIFY Status_Flags = (?FALSE, FALSE, ?FALSE, TRUE)
5. TRANSMIT SOURCE = DS, UnconfirmedEventNotification-Request,
 'Process Identifier' = SRC_PROCESS_ID,
 'Initiating Device Identifier' = SRC_NOTIF_DEV,
 'Event Object Identifier' = SRC_NOTIF_OBJ,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = SRC_NOTIF_CLS,
 'Priority' = (any valid priority),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = SRC_NOTIF_TYP,
 'AckRequired' = (any valid value), -- absent if 'Notify Type' is ACK_NOTIFICATION
 'From State' = (any valid From_State), -- absent if 'Notify Type' is ACK_NOTIFICATION

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

212 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'To State' = (any valid To_State),
 'Event Values' = (any valid event values) -- absent if 'Notify Type' is ACK_NOTIFICATION
6. WAIT Notification Fail Time
7. CHECK (the IUT did not transmit an event notification)
8. MAKE (Out_Of_Service = FALSE)
9. VERIFY Out_Of_Service = FALSE
10. VERIFY Status_Flags = (?FALSE, ?, ?FALSE, FALSE)
11. TRANSMIT SOURCE = DS, UnconfirmedEventNotification-Request,
 'Process Identifier' = SRC_PROCESS_ID,
 'Initiating Device Identifier' = SRC_NOTIF_DEV,
 'Event Object Identifier' = SRC_NOTIF_OBJ,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = SRC_NOTIF_CLS,
 'Priority' = (any valid priority),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = SRC_NOTIF_TYP,
 'AckRequired' = (any valid value), -- absent if 'Notify Type' is ACK_NOTIFICATION
 'From State' = (any valid From_State), -- absent if 'Notify Type' is ACK_NOTIFICATION
 'To State' = (any valid To_State),
 'Event Values' = (any valid event values) -- absent if 'Notify Type' is ACK_NOTIFICATION
12. BEFORE Notification Fail Time --The following can be in any order
 RECEIVE DESTINATION = D1, UnconfirmedEventNotification-Request
 RECEIVE DESTINATION = D2, UnconfirmedEventNotification-Request

[Add new Clause 7.3.2.X37, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Accumulator object type.]

7.3.2.X37 Accumulator Object Tests

7.3.2.X37.1 Present_Value Remains In-Range Test
Purpose: To verify the correct wrapping operation of the Accumulator Present_Value.

Test Concept: The IUT shall be configured with a Max_Pres_Value which is attainable, within reasonable testing time, after
Present_Value is preset to a value slightly less than that, then incremented. The Present_Value shall remain in range from one
to Max_Pres_Value, by wrapping back to 1 when it would exceed Max_Pres_Value.

Test Steps:

1. IF (Value_Set is writable) THEN
 WRITE Value_Set = (a value slightly less than Max_Pres_Value)
 ELSE
 MAKE (Present_Value equal a value slightly less than Max_Pres_Value)
2. MAKE (the Accumulator increase its Present_Value until it rolls over Max_Pres_Value)
3. CHECK (Present_Value < Max_Pres_Value)

7.3.2.X37.2 Prescale in Accumulator Test

Purpose: To verify the correct effect of Prescale on the increment of the Present_Value in Accumulator.

Test Concept: The IUT shall be configured with a Prescale whose effect when incrementing Present_Value is testable. Three
readings of the Present_Value are observed, then the math is checked to ensure that it increments at the rate expected given
Prescale.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 213

Configuration Requirements: If there is no Prescale property present in any Accumulator object, then this test shall be skipped.

Test Steps:

1. IF (Value_Set is writable) THEN
 WRITE Value_Set = (any valid value V1)
 ELSE
 MAKE (Present_Value equal any valid value V1)
2. MAKE (the Accumulator increase its Present_Value)
3. READ V2 = Present_Value)
4. READ V3 = Present_Value)
5. IF (the Accumulator is stopped) THEN
 CHECK (V3 = V2 = ((Prescale-multiplier) * pulse-count of signals generated by the measuring instrument) /
 (Prescale-moduloDivide) + V1)
 ELSE
 CHECK (V1 < V2 < V3)

7.3.2.X37.3 Logging_Record in Accumulator Test
Purpose: To verify the correct values represented in Logging_Record of Accumulator.

Test Concept: Two readings of the Logging_Object acquiring the Logging_Record are performed, Pvprior being the value from
the first, and Present_Value matching what is observed in the second Logging_Record. Then all fields are checked to ensure
these match the values expected.

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no
Logging_Record property present in any Accumulator object, then this test shall be skipped.

Test Steps:

1. MAKE (the Logging_Object acquire the Logging_Record)
2. Pvprior = present-value parameter in the Logging_Record
3. MAKE (the Logging_Object acquire another Logging_Record)
4. CHECK (Logging_Record list of values are:
 timestamp: the local date and time,
 present-value: Present_Value,
 accumulated-value: Present_Value - Pvprior,
 accumulated-status: NORMAL)

7.3.2.X37.4 Logging_Record in Accumulator RECOVERED Test

Purpose: To verify the correct values represented in Logging_Record of Accumulator after one or more writes to
Value_Before_Change or Value_Set.

Test Concept: The effect of the Logging_Object acquiring the Logging_Record is checked to ensure that after one or more
writes to Value_Before_Change or Value_Set, it matches the values expected.

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no
Logging_Record property present in any Accumulator object, or if neither Value_Before_Change nor Value_Set is writable in
an object which does have a Logging_Record property, then this test shall be skipped.

Test Steps:

1. MAKE (the Logging_Object acquire the Logging_Record)
2. Pvprior = present-value parameter in the Logging_Record
3. WRITE (either Value_Before_Change or Value_Set in the object that contains Logging_Record)
4. MAKE (the Logging_Object acquire another Logging_Record)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

214 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

5. CHECK (Logging_Record list of values are:
 timestamp: the local date and time,
 present-value: Present_Value,
 accumulated-value: (Present_Value - Value_Set) + (Value_Before_Change - Pvprior),
 accumulated-status: RECOVERED)

7.3.2.X37.5 Logging_Record in Accumulator STARTING Test
Purpose: To verify the correct values represented in Logging_Record of Accumulator when no data has been acquired since
startup by the object identified by Logging_Object.

Test Concept: The Logging_Record is observed when no data has been acquired by the object identified by Logging_Object,
to ensure that it matches the values expected.

Configuration Requirements: The IUT shall be in a state when no data has been acquired since startup by the object identified
by Logging_Object. If there is no Logging_Record property present in any Accumulator object, then this test shall be skipped.

Test Steps:

1. CHECK (Logging_Record list of values are:
 timestamp: unspecified,
 present-value: Present_Value,
 accumulated-value: 0,
 accumulated-status: STARTING)
2. MAKE (the Logging_Object acquire the Logging_Record)
3. CHECK (Logging_Record list of values are:
 timestamp: the local date and time,
 present-value: Present_Value,
 accumulated-value: same as present-value,
 accumulated-status: STARTING)

7.3.2.X37.6 Out_Of_Service Accumulator Test
Purpose: This test case verifies that Present_Value, Pulse_Rate, and the Reliability property are writable when Out_Of_Service
is TRUE.

Test Concept: Select one instance of each appropriate object type and test it as described. Verify the interrelationship between
the Out_Of_Service, Status_Flags, and Reliability properties. If the Out_Of_Service property of the object under test is not
writable, and the value of the property cannot be changed by other means, then this test shall be omitted. If the Reliability
property is not supported, then step 5 shall be omitted.

Test Steps:

1. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, ?, ?, TRUE)
4. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
 WRITE Present_Value = X
 VERIFY Present_Value = X
 }
5. IF (Reliability is present and writable) THEN
 REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
 NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags = (?, TRUE, ?, TRUE)
 WRITE Reliability = NO_FAULT_DETECTED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 215

 VERIFY Reliability = NO_FAULT_DETECTED
 VERIFY Status_Flags = (?, FALSE, ?, TRUE)
 }
6. IF (the object has a Pulse_Rate property) THEN {
 REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
 WRITE Pulse_Rate = X
 VERIFY Pulse_Rate = X
 }
 }
7. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service FALSE)
8. VERIFY Out_Of_Service = FALSE
9. VERIFY Status_Flags = (?, ?, ?, FALSE)

7.3.2.X37.7 Value_Set Writing Test
Purpose: Verifying that writes to the Value_Set are reflected atomically into the object's properties.

Test Concept: Writing the Value_Set shall be reflected atomically in the Value_Set and Present_Value properties, while the
old Present_Value is stored into the Value_Before_Change property, and the Value_Change_Time shall update.

Test Steps:

1. READ OldV = Present_Value
2. WRITE Value_Set = (NewV, any valid value)
3. VERIFY Value_Set = NewV
4. VERIFY Present_Value = NewV
5. VERIFY Value_Before_Change = OldV
6. VERIFY Value_Change_Time = (approximately the current local time)

7.3.2.X37.8 Value_Before_Change Writing Test
Purpose: To verify the correct atomic operations of writing the Accumulator Value_Before_Change.

Test Concept: Write the Value_Before_Change and verify that it is reflected atomically in the Value_Before_Change property,
while the old Present_Value is stored into the Value_Set property, and the Value_Change_Time shall update.

Test Steps:

1. READ OldV = Present_Value
2. WRITE Value_Before_Change = (NewV, any valid value)
3. VERIFY Value_Before_Change = NewV
4. VERIFY Value_Set = OldV
5. VERIFY Value_Change_Time = (approximately the current local time)

[Add new Clause 7.3.2.X38, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Pulse Converter object type.]

7.3.2.X38 Pulse Converter Object Tests

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

216 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X38.1 Adjust_Value Write Test
Purpose: To verify the correct write operation of a Pulse Converter's several properties, when writing the Adjust_Value.
Count_Before_Change reflects the prior Count before a write to the Adjust_Value property.

Test Configuration: Select a Pulse Converter object for which the pulse can be stopped so that Count remains unchanged during
the test.

Test Steps:

2. READ OldC = Count
3. WRITE Adjust_Value = (NewA, any valid value)
4. VERIFY Present_Value = Count * Scale_Factor5. VERIFY Count_Change_Time ~= (the current local time)
6. VERIFY Count_Before_Change = OldC

7.3.2.X38.2 Scale_Factor Test
Purpose: To verify the correct effect of Scale_Factor on the Present_Value in Pulse Converter.

Test Concept: The IUT shall be configured with a Scale_Factor whose influence on the behavior of Present_Value is
observable. After Present_Value is read, then the value derived from Count and Scale_Factor is compared to the expected
Present_Value.

Test Steps:

1. IF (Scale_Factor is writable) THEN
 WRITE Scale_Factor = (any valid value V1)
 ELSE
 MAKE (Scale_Factor equal any valid value V1)
2. VERIFY (Present_Value = conversion specified by Scale_Factor V1 coefficient times the Count property)

7.3.2.X38.3 Out_Of_Service Pulse Converter Test
Purpose: This test case verifies that Present_Value and the Reliability property are writable when Out_Of_Service is TRUE. It
also verifies the interrelationship between the Out_Of_Service, Status_Flags, and Reliability properties. If the PICS indicates
that the Out_Of_Service property of the object under test is not writable, and if the value of the property cannot be changed by
other means, then this test shall be omitted.

Test Concept: The IUT will select one instance of each appropriate object type and test it as described. If the Reliability property
is not supported, then step 5 shall be omitted.

Test Steps:

1. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, FALSE, ?, TRUE)
4. REPEAT X = (any values meeting the functional range requirements of 7.2.1) DO {
 WRITE Present_Value = X
 VERIFY Present_Value = X
 }
5. IF (Reliability is present and writable) THEN
 REPEAT X = (any values of the Reliability enumeration appropriate to the object type except
 NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags = (?, TRUE, ?, TRUE)
 WRITE Reliability = NO_FAULT_DETECTED
 VERIFY Reliability = NO_FAULT_DETECTED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 217

 VERIFY Status_Flags = (?, FALSE, ?, TRUE)
 }
6. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service FALSE)
7. VERIFY Out_Of_Service = FALSE
8. VERIFY Status_Flags = (?, ?, ?, FALSE)

7.3.2.X38.4 Update_Time Reflects Change to the Count and is Updated Atomically Test
Purpose: To verify the correct atomic operations of change to the Pulse Converter's several properties, for an inherent change
in Count.

Test Steps:

1. READ OldV = Present_Value
2. READ OldC = Count
3. READ OldU = Update_Time
4. READ OldT = Count_Change_Time
5. READ OldA = Adjust_Value
6. READ OldS = Scale_Factor
7. READ OldB = Count_Before_Change
8. WAIT (for a change in Count to any valid value, different from OldC so that it can be distinguished)
9. CHECK Present_Value is recalculated, increasing in proportion to the change in Count multiplied by OldS (or such that
Present_Value minus OldA is still the same fixed difference)
10. VERIFY Update_Time = (approximately the current local time, and different from OldU)
11. VERIFY Count_Change_Time = OldT

7.3.2.X38.5 Adjust_Value Out-of-Range WriteProperty Test
Purpose: To verify the correct atomic operations of change to the Pulse Converter Count property, when an attempt is made to
write Adjust_Value with a value that would cause an overflow or underflow condition in Count. The test is performed once
using WriteProperty and once using WritePropertyMultiple, if IUT supports both services.

Test Steps:

1. READ OldV = Present_Value
2. READ OldC = Count
3. READ OldU = Update_Time
4. READ OldT = Count_Change_Time
5. READ OldA = Adjust_Value
6. READ OldS = Scale_Factor
7. READ OldB = Count_Before_Change
8. TRANSMIT WriteProperty-Request
 'Property Identifier' = Adjust_Value
 'Property Value' = (NewA, a valid value that would cause an overflow or underflow condition in Count)
9. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY
 'Error Code' = VALUE_OUT_OF_RANGE
10. VERIFY Update_Time = OldU
11. VERIFY Adjust_Value = OldA
12. VERIFY Count_Before_Change = OldB

[Add new Clause 7.3.2.X40, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Channel object type.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

218 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X40 Channel Object Tests

7.3.2.X40.2 Last_Priority Test

Purpose: To verify that the initial value of Last_Priority is 16. To verify that a Channel object correctly retains the priority of
written values. To verify that a Last_Priority will have a default priority of 16 if the last attempt to write to the Present_Value
was done without specifying the priority.

Test Concept: First, confirm that the default value of Last_Priority is 16. Next, write a valid value to a Channel object using a
valid priority level other than 16 and then check the value of Last_Priority to make sure it shows the specified priority level.
Finally, write a valid value to a Channel object again but without specifying priority and then check the value of Last_Priority
to make sure that it now shows 16 again.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable Present_Value property which is either on local device or remote device.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. VERIFY Last_Priority = 16
3. WRITE Present_Value = (Any valid value), PRIORITY = (Y: Any valid value < 16)
4. WAIT (Channel Write Fail Time * LEN)
5. VERIFY Last_Priority = Y
6. WRITE Present_Value = (Any valid value)
7. WAIT (Channel Write Fail Time * LEN)
8. VERIFY Last_Priority = 16

7.3.2.X40.3 WriteGroup Service Support Test

Purpose: To verify that the Present_Value of the Channel object can be written by WriteGroup Service

Test Concept: The Channel object, O1, is written to via WriteGroup and it is verified that the Present_Value of the object is
updated correctly.

Test Steps:

1. READ X = O1, Present_Value
2. TRANSMIT WriteGroup-Request,

'Group Number' = (one of the Control_Group values configured in O1),
'Write Priority' = (any valid value),
'Change List' = (O1's channel number, no overriding priority, Y: a value different than X)

3. VERIFY Present_Value = Y

7.3.2.X40.4 Propagation Entirety Test

Purpose: To verify that the Channel object keeps propagating the value to each local/remote object property reference in its
List_Of_Object_Property_References after propagating the value fails for one or more target.

Test Concept: The Channel object, O1, is configured with at least 1 referenced target which the Channel object won’t send the
write to due to an invalid datatype coercion error. The Channel object's Present_Value is written, and the writes to remote
targets are checked. Once all writes complete, the Write_Status is verified to be FAILED and all targets the Channel object
sent the write to are verified to have accepted the written value.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 219

Configuration Requirements: Configure the Channel object's List_Of_Object_Property_References so that at least one of the
target references (contained in entry X of List_Of_Object_Property_References) will result in an invalid datatype coercion
when the value WrittenValue is written to the Channel object. The rest of the target reference(s) shall be selected such that they
will accept the written value as is without coercion. Refer to the Table 12-63 – Datatype Coercion Rules from ASHRAE 135
for the invalid datatypes.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ N1 = List_Of_Object_Property_References, ARRAY INDEX = X
3. WRITE Present_Value = WRITTEN_VALUE
4. WAIT (Channel Write Fail Time * LEN)
5. REPEAT REF = (each reference in O1.List_Of_Object_Property_References) {
 IF (REF is not contained in the IUT) THEN
 RECEIVE WriteProperty-Request
 'Object Identifier' = (Object Identifier of N1),
 'Property Identifier' = (Property Identifier of N1),
 'Property Value' = WrittenValue
 IF (REF <> N1) THEN
 TRANSMIT BACnet-SimpleACK-PDU
 }
6. VERIFY Write_Status = FAILED
7. REPEAT REF = (each reference in O1.List_Of_Object_Property_References) {
 IF (REF <> N1) THEN
 VERIFY REF = WRITTEN_VALUE
 }

7.3.2.X40.5 Write_Status Test

Purpose: To verify that the Write_Status of the Channel object is IDLE when it's List_Of_Object_Property_References is empty
and is IN_PROGRESS while the Channel object's Present_Value is being propagated, FAILED when propagation failed, and
SUCCESSFUL when propagation succeeds.

Test Concept: The Channel object’s List_Of_Object_Property_Refereces is read and verified to be empty. Then, the Channel
object’s Write_Status is verified to be IDLE. Next, any valid value is written to the Channel object’s Present_Value and
Write_Status is verified to be IDLE still. An object property reference, R1, that the IUT cannot reach is set into the
List_Of_Object_Reference and then any valid value is written to the Present_Value and the Write_Status is verified to be
IN_PROGRESS. After the IUT determines that the referenced device is offline, the Write_Status is verified to be FAILED.
Finally, any valid reference, R2, that will cause successful value propagation is set to the List_Of_Object_Property_References
and the test is repeated to verify that Write_Status becomes SUCCESSFUL.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0

-- IDLE test

2. READ L = List_Of_Object_Property_References
3. VERIFY L = (empty)
4. VERIFY Write_Status = IDLE
5. WRITE Present_Value = (any valid value)
6. VERIFY Write_Status = IDLE

-- IN_PROGRESS and FAIL test

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

220 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7. WRITE List_Of_Object_Property_References = (R1) -- write the whole array
8. WRITE Present_Value = (any valid value)
9. VERIFY Write_Status = IN_PROGRESS
10. WAIT (Channel Write Fail Time * LEN)
11. VERIFY Write_Status = FAILED

-- SUCCESSFUL test

12. WRITE List_Of_Object_Property_References = (R2) -- write the whole array
13. WRITE Present_Value = (any valid value)
14. WAIT (Channel Write Fail Time * LEN)
15. VERIFY Write_Status = SUCCESSFUL

7.3.2.X40.6 Allow_Group_Delay_Inhibit Test

Purpose: To verify that no Execution_Delay will be applied to any of the writes if Allow_Group_Delay_Inhibit is TRUE.

Test Concept: Setup List_Of_Object_Property_References to contain 2 valid entries PR1, PR2 and provide each with an
execution delay (ED1 and ED2). Set Allow_Group_Delay_Inhibit to TRUE so that no delays will occur between writes to
referenced properties. Write to the Channel object’s Present_Value and verify that no delay occurs between writes to the
referenced properties.
Set Allow_Group_Delay_Inhibit to FALSE so that delays will occur between writes to referenced properties. Write to the
Channel object’s Present_Value and verify that delays occur between writes to the referenced properties.

Configuration Requirements: PR1 and PR2 shall be references to writable properties and shall be the same datatype. ED1 and
ED2 shall be values which are large enough that the delay between writes is sufficient for the test. V1 and V2 shall be of the
expected datatype for PR1 and PR2 so that no coercion occur and shall be different values. This test shall be skipped if the
Channel object does not support at least 2 entries in the List_Of_Object_Property_References.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
-- Setup the Channel object
2. WRITE List_Of_Object_Property_References = (PR1, PR2)
3. WRITE Execution_Delay = (ED1, ED2)

-- Test that delays are inhibited
4. WRITE Allow_Group_Delay_Inhibit = TRUE
5. WRITE Present_Value = V1
6. WAIT (Channel Write Fail Time * LEN)
7. VERIFY PR1 = V1
8. VERIFY PR2 = V1
9. VERIFY Write_Status = SUCCESSFUL

-- Test that delays are not inhibited
10. WRITE Allow_Group_Delay_Inhibit = FALSE
11. WRITE Present_Value = V2
12. WAIT (Channel Write Fail Time * LEN)
13. VERIFY PR1= V1
14. VERIFY PR2 = V1
15. VERIFY Write_Status = IN_PROGRESS
16. WAIT (ED1)
17. VERIFY PR1 = V2
18. VERIFY PR2 = V1
19. VERIFY Write_Status = IN_PROGRESS
20. WAIT (ED2 – ED1)
21. VERIFY PR2 = V2
22. VERIFY Write_Status = SUCCESSFUL

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 221

7.3.2.X40.7 Numeric to BOOLEAN Coercion Rule Test

Purpose: To verify that the Channel object correctly propagates all numeric datatype values to a BOOLEAN target based on
Coercion Rule 1 – Numeric to BOOLEAN.

Test Concept: Write a value of 0 is to the Present_Value of the Channel object with a BOOLEAN target object property
reference, verify that a target object property has a value of FALSE, and that Write_Status of the Channel object shows
SUCCESSFUL. When any non-zero numeric value is written to the Present_Value of the same Channel object, verify that a
target object property has a value of TRUE, and a Write Status shows SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable BOOLEAN object property.

Test Steps:
1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ B = List_Of_Object_Property_References, ARRAY INDEX = X
3. WRITE Present_Value = 0
4. WAIT (Channel Write Fail Time * LEN)
5. VERIFY B = FALSE
6. VERIFY Write_Status = SUCCESSFUL
7. WRITE Present_Value = (Any non-zero numeric value)
8. WAIT (Channel Write Fail Time * LEN)
9. VERIFY B = TRUE
10. VERIFY Write_Status = SUCCESSFUL

7.3.2.X40.8 BOOLEAN to Numeric Coercion Rule Test

Purpose: To verify that the Channel object can correctly propagate BOOLEAN values to a numeric target object property
reference based on Coercion Rule 2 – BOOLEAN to Numeric defined in ASHRAE 135.

Test Concept: When a value of FALSE is written to the Present_Value of the Channel object with a numeric target object
property reference, verify that the target object property has a value of 0, and a Write_Status of the Channel object shows
SUCCESSFUL. When a value of TRUE is written to the present value of the same Channel object, verify that a target object
property has a value of 1, and a Write_Status shows SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable numeric object property on the IUT. The referenced property shall not be 0 at the start of the test.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ N = List_Of_Object_Property_References, ARRAY INDEX = X
3. VERIFY N <> 0 -- non-zero so that coercion is verified in the following write
4. WRITE Present_Value = FALSE
5. WAIT (Channel Write Fail Time * LEN)
6. VERIFY N = 0
7. VERIFY Write_Status = SUCCESSFUL
8. WRITE Present_Value = TRUE
9. WAIT (Channel Write Fail Time * LEN)
10. VERIFY N = 1
11. VERIFY Write_Status = SUCCESSFUL

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

222 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X40.9 Unsigned/INTEGER/REAL/Double to Numeric Coercion Rule Test

Purpose: To verify that the Channel object correctly propagates Unsigned, INTEGER, REAL or Double datatype values to a
numeric target object property reference.

Test Concept: Select a Channel object with a numeric target property, N. Select an Unsigned, INTEGER, REAL, or Double
value, V1, which is in the acceptable range for N, and which coerces to value V2 based on N’s datatype. Write V1 to the
Present_Value of the Channel object. Verify that the N changes to V2 and that Write_Status of the Channel object is
SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to the
selected numeric property N. Configure the Channel object with no execution delays.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. VERIFY List_Of_Object_Property_References = N, ARRAY INDEX = X
3. WRITE Present_Value = V1
4. WAIT (Channel Write Fail Time * LEN)
5. VERIFY N = V2
6. VERIFY Write_Status = SUCCESSFUL

7.3.2.X40.10 Invalid Datatype Coercion Test

Purpose: To check that the Channel object does not write to a target object property reference and the Write_Status indicates
FAILED when invalid datatype coercion occur.

Test Concept: When an invalid data type value is written to a Present_Value of the Channel object, verify that a target object
reference value does not change.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable object property of a specific data type on the IUT such that the Channel object will fail to propagate
InvalidDataTypeValue. Refer to the Table 12-63 - Datatype Coercion Rules from ASHRAE 135 for the invalid datatypes.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ N = List_Of_Object_Property_References, ARRAY INDEX = X
3. WRITE Present_Value = (InvalidDataTypeValue: Any invalid data type value)
4. WAIT (Channel Write Fail Time * LEN)
5. VERIFY N <> InvalidDataTypeValue
6. VERIFY Write_Status = FAILED

7.3.2.X40.11 No Coercion Test

Purpose: To check that the Channel object can successfully write to a target object property reference without any value
conversions and Write_Status indicates SUCCESSFUL when no coercion occurs.

Test Concept: When a valid data type value is written to a Present_Value of the Channel object using a value that require no
coercion, verify that a written value is directly mapped to a target object reference and a Write_Status of the Channel object
shows SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable object property of a specific data type on the IUT such that no coercion will occur. Refer to the Table 12-63 – Datatype
Coercion Rules from ASHRAE 135 for the data types that require no coercion.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 223

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ N = List_Of_Object_Property_References, ARRAY INDEX = X
3. WRITE Present_Value = (ValidDataTypeValue: Any value of a datatype that requires no coercion)
4. WAIT (Channel Write Fail Time * LEN)
5. VERIFY N = ValidDataTypeValue
6. VERIFY Write_Status = SUCCESSFUL

7.3.2.X40.12 Write Priority Test

Purpose: To check that the Channel object uses a priority level specified by a write service when the Channel object propagates
its Present_Value to (a) target object property reference(s). If no priority level is specified, check that 16 is used by default.

Test Concept: When a valid data type value is written to a Present_Value of the Channel object by a WriteProperty request and
a 'Priority' is provided in the write, the Channel object will use this same priority to command the referenced properties. When
another value is written to a Present_Value of the Channel object by a WriteProperty request with no 'Priority' specified, the
Channel object will use a priority 16 by default to command the referenced properties.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
writable object property of a specific data type on the IUT such that no coercion will occur. Refer to the Table 12-63 – Datatype
Coercion Rules from ASHRAE 135 for the data types that require no coercion. The referenced property must contain a
Priority_Array property.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
2. READ N = List_Of_Object_Property_References, ARRAY INDEX = X
3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (Object Identifier of the Channel object)
 'Property Identifier'= Present_Value
 'Property Value'= (V1: Any value of a datatype that requires no coercion)
 'Priority' = (P1: Any valid value but 16)
4. WAIT (Channel Write Fail Time * LEN)
5. RECEIVE BACnet-SimpleACK-PDU
6. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (Object Identifier of N)
 'Property Identifier = Priority_Array
 'Property Array Index' = P1
7. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (Object Identifier of N)
 'Property Identifier' = Priority_Array
 'Property Array Index' = P1
 'Property Value' = V1
8. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (Object Identifier of the Channel object)
 'Property Identifier'= Present_Value
 'Property Value'= (V2: Any value of a datatype that requires no coercion)
9. WAIT (Channel Write Fail Time * LEN)
10. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (Object Identifier of N)
 'Property Identifier = Priority_Array
 'Property Array Index' = 16
11. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (Object Identifier of N)
 'Property Identifier' = Priority_Array
 'Property Array Index' = 16
 'Property Value' = V2

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

224 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X40.13 Writing with a NULL Value Test

Purpose: To check that the Channel object ignores datatype errors when writing a NULL value to a non-commandable target.

Test Concept: This test is to check a special exception of Write_Status reporting SUCCESSFUL after
propagating a NULL value to both a commandable and non-commandable property. Writing a NULL value to a
commandable property will result in a property relinquishing a value to a Relinquish_Default value. However,
writing a NULL value to a non-commandable property will result in a property remaining a current value. If a
non-commandable target property is on a remote device, the IUT will receive either an ERROR
INVALID_DATATYPE or REJECT INVALID_PARAMETER_DATA_TYPE. The Write_Status after such events
should report SUCCESSFUL instead of FAILED.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
commandable property that accepts a NULL value, and configure entry Y of the List_Of_Object_Property_References to a
non-commandable property that rejects a NULL value with either ERROR INVALID_DATATYPE or REJECT
INVALID_PARAMETER_DATA_TYPE. For a commandable property, all prioritized commands have to be relinquished,
and any minimum on/off time has to be accounted for prior to the test. An initial value of a commandable property, N1, must
be different from a value of its Relinquish_Default. N1's Priority_Array has only one non-Null value in it and it is in the priority
array level that the Channel object is targeting.

Test Steps:

1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
-- Read an initial value of target properties
2. READ P1 = List_Of_Object_Property_References: ARRAY INDEX = X, which is a commandable property
3. READ P2 = List_Of_Object_Property_References: ARRAY INDEX = Y, which is a non-commandable property

-- Find expected values of the target properties after a NULL value is written to them
4. READ V1 = P1.Relinquish_Default
5. READ V2 = P2

-- Make the Channel object to propagate NULL value to targets
6. WRITE Present_Value = NULL
7. WAIT (Channel Write Fail Time * LEN)
8. IF (P2 is on external) THEN
 RECEIVE WritePropertyMultiple-Error
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE |
 RECEIVE BACnet-Reject-PDU
 'Reject Reason' = INVALID_PARAMETER_DATATYPE

--Check that P1 has Relinquish_Default value and P2 remains the same
9. VERIFY P1 = V1
10. VERIFY P2 = V2

 --Check that the Channel object ignores the datatype error and Write_Status is SUCCESSFUL
11. VERIFY Write_Status = SUCCESSFUL

[Add new Clause 7.3.2.X45, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Elevator Group object type.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 225

7.3.2.X45 Elevator Group Object Tests

7.3.2.X45.1 Machine_Room_ID property references a Positive Integer Value Object

Purpose: To verify that the Machine_Room_ID property of an Elevator Group object can only reference a Positive Integer
Value object or an object with instance number of 4194303.

Test Concept: The Machine_Room_ID property of an Elevator Group object, EG1, is read to verify that it contains an object
reference to a Positive Integer Value object, PIV, or an object with instance number of 4194303. If the property is writable,
an attempt is made to write an object reference, O1, that is not a Positive Integer Value object and has an instance number 0-
4194302 (inclusive) to verify that an error is returned.

Test Steps:

1. IF (Machine_Room_ID contains room identification number) THEN
 VERIFY (EG1), Machine_Room_ID = (PIV)

ELSE
 VERIFY (EG1), Machine_Room_ID = (any object type, 4194303)
2. IF (Machine_Room_ID is writeable) THEN
 Transmit WriteProperty-Request
 'Object Identifier'= EG1,
 'Property Identifier'= Machine_Room_ID,
 'Property Value'= O1
 Receive BACnet-Error-PDU
 'Error Class'= PROPERTY,
 'Error Code'= VALUE_OUT_OF_RANGE

7.3.2.X45.2 Linking of Lift and Escalator Objects under Group_Members property of the Elevator Group Object

Purpose: This test verifies that objects in the Group_Members property of Elevator Group objects contain a reference back to
the Elevator Group that has it listed as a member.

Test Concept: The Group_Members property of each Elevator Group object is read to identify member Lift and Escalator
objects. The Elevator_Group property is read from each member Lift object and Escalator object to verify it contains a
reference back to the appropriate Elevator Group object. The Elevator_Group property of the remaining Lift and Escalator
objects are read to verify that it contains an object identifier instance of 4194303.

Configuration Requirements: If the IUT supports a Group_Members property that can be made to contain a reference to one or
more Lift objects, than it shall be configured as such. If the IUT supports a Group_Members property that can be made to
contain a reference to one or more Escalator objects, it shall be configured as such.

Test Steps:

1. REPEAT EGO = (each Elevator Group object in the IUT) {
 READ L1 = (EGO, Group_Members)
 IF (L1 is not empty) THEN
 REPEAT O1 = (each Lift or Escalator object in L1) {
 READ EGP = (O1, Elevator_Group)
 VERIFY EGP = EGO
 }
 }
3. REPEAT O1 = (each remaining Lift or Escalator object in the IUT) {
 READ EGP = (O1, Elevator_Group)
 VERIFY EGP = (any object type, 4194303)
 }

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

226 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X45.3 Landing_Call_Control test

Purpose: To verify that writing to the Landing_Call_Control property updates the Landing_Call_Control and Landing_Calls
properties in the Elevator Group object and updates the Assigned_Landing_Calls property of a linked Lift object

Test Concept: The Landing_Call_Control property of an Elevator Group object (EG1) is written with a value that represents a
request to travel upwards from FN1. The Landing_Call_Control and Landing_Calls properties of EG1 and the
Assigned_Landing_Calls property of the linked Lift object (L1) are checked to verify they updated correctly. The
Landing_Call_Control property is written with a value that represents a request to travel downwards from FN2 and the
aforementioned properties are checked again. The optional 'floor-text' parameter is used in one of the WRITE steps to verify
the server will ignore this parameter when present. In the test steps, DF represents a valid destination floor.

Configuration Requirements: Lift object (L1) is contained in the Group_Members property of the Elevator Group object (EG1)
and has a door at array index Y on the same side of the landing call. FN1 and FN2 values should be sufficiently far away from
the current position of L1 to allow for reading of the property values. No other processes shall be generating landing calls
during this test.

Notes to Tester: If the Elevator Group contains more than 1 lift, the value written to Landing_Call_Control may get assigned
to any other lift in the group based on the lift algorithm.

Test Steps:

1. WRITE EG1, Landing_Call_Control = (FN1, UP | DF (DF > FN1), "test string")
2. VERIFY EG1, Landing_Call_Control = (FN1, UP | DF, floor-text (optional))
3. VERIFY EG1, Landing_Calls = (FN1, UP | DF, floor-text (optional))
4. IF (L1 contains the Assigned_Landing_Calls property)
 VERIFY L1, Assigned_Landing_Calls, ARRAY INDEX (Y) = (FN1, UP)
5. WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time)
6. VERIFY EG1, Landing_Calls = ()
7. IF (L1 contains the Assigned_Landing_Calls property)
 VERIFY L1, Assigned_Landing_Calls, ARRAY_INDEX (Y) = ()
8. WRITE EG1, Landing_Call_Control = (FN2, DOWN | DF (DF < FN2))
9. VERIFY EG1, Landing_Call_Control = (FN2, DOWN | DF, floor-text (optional))
10.VERIFY EG1, Landing_Calls = (FN2, DOWN | DF, floor-text (optional))
11.IF (L1 contains the Assigned_Landing_Calls property)
 VERIFY L1, Assigned_Landing_Calls = (FN1, DOWN)
12.WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time)
13.VERIFY EG1, Landing_Calls = ()
14. IF (L1 contains the Assigned_Landing_Calls property)
 VERIFY L1, Assigned_Landing_Calls, ARRAY_INDEX (Y) = ()

[Add new Clause 7.3.2.X46, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Lift object type.]

7.3.2.X46 Lift Object Tests

7.3.2.X46.1 Array Size of the Lift Object Properties Based on Car Door size.

Purpose: To verify that the size of the arrays for the Car_Door_Text, Assigned_Landing_Calls, Making_Car_Call,
Registered_Car_Call, Car_Door_Status, Car_Door_Command, and Landing_Door_Status properties are the same.

Test Concept: The array size for each of the above properties, if present, is read and the sizes are compared to verify they are
all equal.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 227

1. VERIFY (L1), Car_Door_Text = (Number of car doors present in the Lift), ARRAY INDEX = 0
2. VERIFY (L1), Assigned_Landing_Calls = (Number of car doors present in Lift), ARRAY INDEX = 0
3. VERIFY (L1), Making_Car_Call = (Number of car doors present in the Lift), ARRAY INDEX = 0
4. VERIFY (L1), Registered_Car_Call = (Number of car doors present in the Lift), ARRAY INDEX = 0
5. VERIFY (L1), Car_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX = 0
6. VERIFY (L1), Car_Door_Command = (Number of car doors present in the Lift), ARRAY INDEX = 0
7. VERIFY (L1), Landing_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX = 0
8. CHECK (Array index 0 of all these properties shall be same)

7.3.2.X46.2 Lift Properties Operational Test

Purpose: To verify that the property values in the Lift object update when it responds to a call.

Test Concept: The test starts with the Lift object, L1, in the lowest floor that it serves, LF, and property values are checked. A
request is made to move the lift to the highest floor that it serves, HF, and property values are checked while the lift is moving
and again when the lift arrives at HF. If the IUT does not contain the property specified in the test step, that step shall be
skipped. In the test steps, DSR is a specific array index corresponding to the car door servicing the request.

Configuration Requirements: At the start of the test, the lift corresponding to L1 is at LF, and there are no active calls for L1.
Throughout the test, L1 is in a normal operating state such that Car_Mode = NORMAL, Out_Of_Service = FALSE, and no
other processes shall be attempting to control L1.

Test Steps:

1. READ LF = Car_Position
2. READ DS1 = Car_Door_Status
3. VERIFY Floor_Text = (any value), ARRAY INDEX = LF
4. VERIFY Floor_Text = (any value), ARRAY INDEX = HF
5. REPEAT N = (each array element) DO {

VERIFY Assigned_Landing_Calls = {}, ARRAY INDEX = N
}

6. REPEAT N = (each array element) DO {
VERIFY Registered_Car_Calls = {}, ARRAY INDEX = N
}

7. VERIFY Car_Moving_Direction <> UP | DOWN
8. VERIFY Car_Mode = NORMAL
9. VERIFY Next_Stopping_Floor = LF
10. VERIFY Passenger_Alarm = FALSE
11. VERIFY Reliability = NO_FAULT_DETECTED
12. VERIFY Out_Of_Service = FALSE
13. VERIFY Car_Drive_Status = STATIONARY | UNKNOWN
14. REPEAT N = (each array element) DO {

VERIFY Landing_Door_Status = (a list containing an entry {LF, DS1[N]}), ARRAY INDEX = N
}

15. MAKE (A command that will cause L1 to travel to HF)

--Complete steps 16 – 19 before L1 reaches HF
16. IF (command was generated via Landing call) THEN

VERIFY Assigned_Landing_Calls = (HF, DOWN), ARRAY INDEX = DSR
 }
 ELSE --command was generated via Car call
 VERIFY Making_Car_Call = (HF), ARRAY INDEX = DSR
 VERIFY Registered_Car_Calls = (HF), ARRAY INDEX = DSR
 VERIFY Car_Assigned_Direction = (UP)
 }
17. VERIFY Car_Moving_Direction = UP
18. VERIFY Next_Stopping_Floor = HF
19. VERIFY Car_Drive_Status <> STATIONARY
20. WAIT (for L1 to reach HF) + Internal Processing Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

228 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

21. REPEAT N = (each array element) DO {
VERIFY Registerd_Car_Calls = {}, ARRAY INDEX = N
}

22. VERIFY Car_Position = HF
23. VERIFY Car_Moving_Direction <> UP | DOWN
24. VERIFY Next_Stopping_Floor = HF
25. READ DS2 = Car_Door_Status
26. REPEAT (N = each array element) DO{

VERIFY Landing_Door_Status = (a list containing an entry {LF, DS2[N]}), ARRAY INDEX = N
}

7.3.2.X46.3 Out_Of_Service, Status_Flags for Lift Object

Purpose: To verify the interrelationship between Out_Of_Service and Status_Flags and that properties dictated by the standard
to be writable when Out_Of_Service is TRUE are writable when Out_Of_Service is TRUE.

Test Concept: Out_Of_Service is set to TRUE and Status_Flags is checked to verify the Out_Of_Service flag is set. While
Out_Of_Service is TRUE, each of the properties (represented by LP), if present in the object, is read to obtain the current
property value, X, and written with a different property value, Y. The property value is read again to verify it changed to Y.

LP = (Assigned_Landing_Calls, Registered_Car_Call, Car_Position, Car_Moving_Direction, Car_Assigned_Direction,
Car_Door_Status, Car_Door_Zone, Car_Load, Next_Stopping_Floor, Passenger_Alarm, Energy_Meter, Car_Drive_Status,
Fault_Signals, Landing_Door_Status, Making_Car_Call, Car_Door_Command, and Car_Mode)

Test Steps:

1. WRITE Out_Of_Service = TRUE
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, ?, ?, TRUE)
4. REPEAT P = (each property in LP present in the object) DO{
 READ X = P
 WRITE P = Y
 WAIT Internal Processing Fail Time
 VERIFY (P =Y)
 }

7.3.2.X46.4 Energy_Meter_Ref Property Tests

Purpose: To verify linking of Energy_Meter property and Energy_Meter_Ref property.

Test Concept: If the Energy_Meter_Ref property of an object (O1) is present and initialized (contains an instance other than
4194303), then the Energy_Meter property, if present, shall have a value of 0.0. If Energy_Meter_Ref is present and is un-
initialized, then the value of Energy_Meter property shall have any valid value.

Test Steps:

1. IF (Energy_Meter_Ref is present and initialized with instance other than 4194303) THEN

VERIFY Energy_Meter = 0.0
 ELSE
 VERIFY Energy_Meter = (Any Valid Value)

[Add new Clause 7.3.2.X47, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Escalator object type.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 229

7.3.2.X47 Escalator Object Tests

7.3.2.X47.1 Out_Of_Service, Status_Flags for Escalator object

Purpose: To verify the interrelationship between Out_Of_Service and Status_Flags and that properties dictated by the standard
to be writable when Out_Of_Service is TRUE are writable when Out_Of_Service is TRUE.

Test Concept: Out_Of_Service is set to TRUE and Status_Flags is checked to verify the Out_Of_Service flag is set. While
Out_Of_Service is TRUE, each of the properties (represented by EP), if present in the object, is read to obtain the current
property value, X, and written with a different property value, Y. The property value is read again to verify it changed to Y.

EP = (Power_Mode, Operation_Direction, Escalator_Mode , Energy_Meter, Fault_Signals, and Passenger_Alarm)

Test Steps:

1. WRITE Out_Of_Service = TRUE
2. VERIFY Out_Of_Service = TRUE
3. VERIFY Status_Flags = (?, ?, ?, TRUE)
4. REPEAT P = (each property in LP present in the object) DO {
 READ X = P
 WRITE (P = Y)
 WAIT Internal Processing Fail Time
 VERIFY (P =Y)
 }

[Add new Clause 7.3.2.X53, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Load Control object type.]

7.3.2.X53 Load Control Object Tests
The Load Control object defines a standardized object whose properties represent the externally visible characteristics of a
mechanism for controlling load requirements. A BACnet device can use a Load Control object to allow external control over
the shedding of a load that it controls. The mechanisms by which the loads are shed are not visible to the BACnet client. The
Load Control Object utilizes parameter control through its writable Requested_Shed_Level, Start_Time, Shed_Duration,
Duty_Window, Enable, and Shed_Levels properties.

7.3.2.X53.1 Requested_Shed_Level property test with LEVEL choice

Purpose: To verify that the IUT can accept and execute a shed request with LEVEL choice.

Test Concept: The Requested_Shed_Level property of the Load Control object is set to a LEVEL choice and it is verified that
the Load Control object behaves as per the Load Control state machine.

Configuration Requirements: The IUT shall be configured so that Present_Value is equal to SHED_INACTIVE, at the start of
the test. Writing Start_Time and/or Shed_Duration with values such that current time is after ST+SD forces Present_Value to
become equal to SHED_INACTIVE.

Notes to Tester: The writing of Duty_Window can be skipped, for the tester to see that the VERIFY Duty_Window = DW
during a pending or active shed event, that property takes on PAV, the configured pre-agreed upon value.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

230 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. VERIFY Requested_Shed_Level = (DRSL : one of the default Requested_Shed_Level values for a previous shed request,
not necessarily the LEVEL default of 0)
2. VERIFY Expected_Shed_Level = DRSL
3. VERIFY Actual_Shed_Level = DRSL
4. VERIFY Present_Value = SHED_INACTIVE
5. VERIFY Shed_Duration = 0
6. VERIFY Start_Time = (the fully unspecified datetime value)
7. VERIFY Duty_Window = (PAV, the pre-agreed upon value)
8. WRITE Enable = TRUE
9. WRITE Shed_Duration = (SD, any value appropriate to the object)
10. WRITE Start_Time = (ST, any valid start time including values in the past, present or future, but limited to such that
current_time is before ST + SD)
11. WRITE Duty_Window = (DW, any value appropriate to the object)
12. WRITE Requested_Shed_Level = (a value appropriate to the object with a LEVEL choice, that is not equal to the default
value: 0)
13. IF (current time is before ST) THEN
 VERIFY Present_Value = (SHED_REQUEST_PENDING,
 SHED_COMPLIANT or
 SHED_NON_COMPLIANT)
 WAIT (until Start_Time)
14. VERIFY Present_Value = (SHED_COMPLIANT or SHED_NONCOMPLIANT)
15. IF (ST + DW < ST + SD and ST + DW is in the future) THEN
 WAIT (until ST+DW)
16. IF (current time is after ST+DW) THEN
 IF (Actual_Shed_Level does not comply with Requested_Shed_Value) THEN
 VERIFY Present_Value = SHED_NONCOMPLIANT
17. VERIFY Shed_Duration = SD
18. VERIFY Start_Time = ST
19. VERIFY Duty_Window = DW
20. VERIFY Expected_Shed_Level = (any value appropriate to the choice, that is not equal to the default value)
21. VERIFY Actual_Shed_Level = (any value appropriate to the choice, that is not equal to the default value)
-- the above VERIFY statements apply all through the time that there is a pending or active shed event
22. WAIT (until the shed request has completed, at ST+SD)
23. VERIFY Requested_Shed_Level = 0 -- the default LEVEL value
24. VERIFY Expected_Shed_Level = 0 -- the default LEVEL value
25. VERIFY Actual_Shed_Level = 0 -- the default LEVEL value
26. VERIFY Shed_Duration = 0
27. VERIFY Start_Time = (the fully unspecified datetime value)
28. VERIFY Duty_Window = PAV

7.3.2.X53.2 Shed_Levels property test

Purpose: To verify writability of Shed_Levels property and verify that when commanded with the LEVEL choice, the Load
Control object shall take a shedding action described by the corresponding element in the Shed_Level_Descriptions array.

Test Concept: The Shed_Levels property of the Load Control object being tested is written to BACnetARRAY of unsigned
integers representing the shed levels for the LEVEL choice of BACnetShedLevel that have meaning for this particular Load
Control object. Verify that is updating correctly. The array shall be ordered by increasing shed amount.

Test Steps:

1. READ N1 = Shed_Levels, ARRAY INDEX = 0
2. VERIFY (Shed_Level_Descriptions = N1, ARRAY INDEX = 0)
3. WRITE Shed_Levels = (any content that is different from the current value, but nonetheless still ordered by increasing
shed amount)
4. READ N2 = Shed_Levels, ARRAY INDEX = 0 -- obtaining the length of the new value
5. VERIFY (Shed_Level_Descriptions = N2, ARRAY INDEX = 0)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 231

7.3.2.X53.3 Load Control Status_Flags and Reliability Test

Purpose: To ensure Status_Flags reflects the Reliability property value.

Test Concept: Write to Reliability and verify the interrelationship between the Status_Flags and Reliability.

Configuration Requirements: The selected object is configured such that its Reliability is NO_FAULT_DETECTED before
execution of this test. If the Reliability property is not present or not writable, then this test shall be skipped.

Test Steps:

1. VERIFY Reliability = NO_FAULT_DETECTED
2. VERIFY Status_Flags = (?, FALSE, ?, FALSE)
3. REPEAT X = (all values of the Reliability enumeration appropriate to the object type except

NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags = (TRUE, TRUE, ?, FALSE)
 WRITE Reliability = NO_FAULT_DETECTED
 VERIFY Reliability = NO_FAULT_DETECTED
 VERIFY Status_Flags = (? FALSE, ?, FALSE)
 }

7.3.2.X53.4 Requested_Shed_Level property test with PERCENT choice

Purpose: To verify the performance of a shed request with PERCENT choice.

Test Concept: The Requested_Shed_Level property of the Load Control object is set to a PERCENT choice, and it is verified
that the series of required actions which that sets into operation occur correctly.

Test Steps: The test steps defined in test 7.3.2.X53.1 shall be followed except that the Requested_Shed_Level property of the
Load Control object is written to a PERCENT choice, and the default value for a shed request with PERCENT choice in
Requested_Shed_Level, Expected_Shed_Level, and Actual_Shed_Level properties is 100

7.3.2.X53.5 Requested_Shed_Level property test with AMOUNT choice

Purpose: To verify the performance of a shed request with AMOUNT choice.

Test Concept: The Requested_Shed_Level property of the Load Control object is set to an AMOUNT choice and it is verified
that the series of required actions which that sets into operation occur correctly.

Test Steps: The test steps defined in test 7.3.2.X53.1 shall be followed except that the Requested_Shed_Level property of the
Load Control object is written to an AMOUNT choice, and the default value for a shed request with AMOUNT choice in
Requested_Shed_Level, Expected_Shed_Level, and Actual_Shed_Level properties is 0.0

[Add new Clause 7.3.2.X54, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Lighting Output object type.]

7.3.2.X54 Lighting Output Object Tests

7.3.2.X54.21 Lighting Output Tracking Test

Purpose: To verify that the Tracking_Value property follows the Present_Value property.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

232 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: Write to the Present_Value of a Lighting Output object, O1, and verify that the Tracking_Value property follows
Present_Value once In-Progress returns to IDLE.

Configuration Requirements: The IUT shall be configured with a lighting output, O1, that can be observed during
the test. O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have a value of NULL
and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1 and
Out_Of_Service = FALSE.

Test Steps:

1. WRITE Present_Value = 100, PRIORITY = PTY1
2. VERIFY Present_Value = 100
3. WHILE (In_Progress <> IDLE) DO {
 }
4. VERIFY Tracking_Value = 100
5. WRITE Present_Value = 1, PRIORITY = PTY1
6. VERIFY Present_Value = 1
7. WHILE (In_Progress <> IDLE) DO {
 }
8. VERIFY Tracking_Value = 1
9. WRITE Present_Value = 0, PRIORITY = PTY1
10. VERIFY Present_Value = 0
11. WHILE (In_Progress <> IDLE) DO {
 }
12. VERIFY Tracking_Value = 0

7.3.2.X54.22 Lighting Output Present Value between 0.0 and 1.0 Test

Purpose: To verify that writing a value numerically greater than 0.0 but less than 1.0 to Present_Value shall result in
Present_Value taking on the value 1.0.

Test Concept: Select a value, V1, which is numerically greater than 0.0 and less than 1.0. Write V1 to Present_Value and verify
that Present_Value takes on the value 1.0.

Configuration Requirements: The Lighting Output object, O1, shall be configured such that all slots in the Priority_Array
numerically less than PTY1 have a value of NULL and no internal algorithms are issuing commands to O1 at a priority
numerically less than or equal to PTY1. Present_Value shall be different from 1.0.

Test Steps:

1. VERIFY Present_Value <> 1.0
2. WRITE Present_Value = a value numerically greater than 0.0 but less than 1.0
3. VERIFY Present_Value = 1.0

7.3.2.X54.31 Lighting Command Operation NONE Test
Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is
outside of the supported range.

Test Concept: The TD writes the Lighting Command Operation NONE to the IUT, and expects Error Class of PROPERTY
and an Error Code of VALUE_OUT_OF_RANGE

Test Steps:

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 233

2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = O1
 'Property Identifier' = Lighting_Command
 'Property Value' = NONE
3. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
4. VERIFY (Object1), Lighting_Command = (the value defined for this property in the EPICS)

7.3.2.X54.32 Lighting Command Operation FADE_TO Test

Purpose: To verify the correct operation of FADE_TO lighting command by observing the value of Present_Value, In_Progress
and Tracking_Value.

Test Concept: The TD writes to the Present_Value at each end of the range (i.e., 0% or 100%), and then writes to the Lighting
Command Operation with FADE_TO with a long enough fade-time to allow In_Progress and Tracking_Value to be observed
while set to FADE_ACTIVE. The Tracking_Value will be checked at the end of the fade to verify that it tracked the target
level. The IUT shall be tested for fade up (0% to 100%) and fade down (100% to 0%).

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
V1 > 1 and V2 < 100%

Test Steps:

-- Start with 0% Present_Value to test fade up
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a FADE_TO command (operation, target-level, priority, fade-time)
5. WRITE Lighting_Command = (FADE_TO, V1, PTY1, FT)
6. WAIT Internal Processing Fail Time
7. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
8. VERIFY Present_Value = V1

-- In a half way of fading up, check In_Progress and Tracking_Value
9. WAIT FT/2
10. VERIFY In_Progress = FADE_ACTIVE,
11. VERIFY Tracking_Value ~= V1 / 2
12. WAIT FT/2

-- When fading up is completed, check In_Progress and Tracking_Value
13. VERIFY In_Progress = IDLE
14. VERIFY Tracking_Value = V1

-- Now repeat the test with 100% Present_Value to test fade down
15. WRITE Present_Value = 100, ARRAY INDEX = PTY1
16. VERIFY Present_Value = 100
17. WAIT Internal Processing Fail Time
18. VERIFY Tracking_Value = 100

-- Write a FADE_TO command (operation, target-level, priority, fade-time)
19. WRITE Lighting_Command = (FADE_TO, V2, PTY1, FT)
20. WAIT Internal Processing Fail Time
21. VERIFY Priority_ Array = V2, ARRAY INDEX = PTY1
22. VERIFY Present_Value = V2

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

234 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- In a half way of fading down, check In_Progress and Tracking_Value
23. WAIT FT/2
24. VERIFY In_Progress = FADE_ACTIVE,
25. VERIFY Tracking_Value ~= V1 / 2
26. WAIT FT/2

-- When fading down is completed, check In_Progress and Tracking_Value
27. VERIFY In_Progress = IDLE
28. VERIFY Tracking_Value = V2

7.3.2.X54.33 Lighting Command Operation RAMP_TO Test

Purpose: To verify the correct operation of RAMP_TO lighting command by observing the value of Present_Value, In_Progress
and Tracking_Value.

Test Concept: The TD writes to Present_Value at each end of the range (i.e., 0% or 100%), and then writes to the Lighting
Command Operation with RAMP_TO with a slow enough ramp rate to allow In_Progress and Tracking_Value to be observed
while set to RAMP_ACTIVE. The Tracking_Value will be checked at the end of the ramp to verify that it tracked the target
level. The IUT shall be tested for ramp up (0% to 100%) and ramp down (100% to 0%).

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
V1 > 1 and V2 < 100%

Test Steps:

-- Start with 0% Present_Value to test ramp up
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a RAMP_TO command (operation, target-value, priority, ramp-rate)
5. WRITE Lighting_Command = (RAMP_TO, V1, PTY1, any valid rate)
6. WAIT Internal Processing Fail Time
7. VERIFY Priority_ Array = V1, ARRAY INDEX = PTY1
8. VERIFY Present_Value =V1

-- Check In_Progress while ramping up
9. VERIFY In_Progress = RAMP_ACTIVE

 -- Make sure that Tracking_Value increases with the ramp-rate
10. WHILE (In_Progress <> IDLE) DO {
11. VERIFY Tracking_Value > 0 < V1

 12. CHECK (Tracking_Value is increasing with the ramp-rate)}

-- When ramping up is completed, check In_Progress and Tracking_Value
13. VERIFY In_Progress = IDLE
14. VERIFY Tracking_Value = V1

-- Now repeat the test with 100% Present_Value to test ramp down
15. WRITE Present_Value = 100, ARRAY INDEX = PTY1

 16. VERIFY Present_Value = 100
 17. WAIT Internal Processing Fail Time

18. VERIFY Tracking_Value = 100

-- Write a RAMP_TO command (operation, target-value, priority, ramp-rate)

 19. WRITE Lighting_Command = (RAMP_TO, V2, PTY1, any valid rate)
20. WAIT Internal Processing Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 235

21. VERIFY Priority_ Array = V2, ARRAY INDEX = PTY1
22. VERIFY Present_Value = V2

-- Check In_Progress while ramping up
23. VERIFY In_Progress = RAMP_ACTIVE,

-- Make sure that Tracking_Value decreases with the ramp-rate
24. WHILE (In_Progress <> RAMP_ACTIVE) DO {
25. VERIFY Tracking_Value < 0
26. VERIFY Tracking_Value > V2
27. CHECK (Tracking_Value is decreasing with the ramp-rate)}

-- Check In_Progress and Tracking_Value
28. VERIFY In_Progress = IDLE
29. VERIFY Tracking_Value = V2

7.3.2.X54.34 Lighting Command Operation STEP_UP Test

Purpose: To verify the correct operation of STEP_UP lighting command by observing the value of Present_Value, In_Progress
and Tracking_Value.

Test Concept: The TD writes to Present_Value at 0%, and then writes to the Lighting Command Operation with STEP_UP and
any step increment. The Tracking_Value shall remain at 0% to ignore the operation. Next, the TD writes to Present_Value at
1%, and then writes to the Lighting Command Operation with STEP_UP and a step increment greater than 99%, the
Tracking_Value shall be 100%. The TD writes to Present_Value at 1%, and then writes to the Lighting Command Operation
with STEP_UP and a step increment less than 99%, the Tracking_Value shall be 1% plus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

Test Steps:

-- Start with 0% Present_Value
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a STEP_UP command (operation, priority, step-increment)
5. WRITE Lighting_Command = (STEP_UP, PTY1, any valid value)
6. WAIT Internal Processing Fail Time

-- Confirm that the command was ignored since Tracking_Value was 0
7. VERIFY Priority_ Array = 0, ARRAY INDEX = PTY1
8. VERIFY Present_Value = 0
9. VERIFY Tracking_Value = 0

-- Now test with Tracking_Value >0
10. WRITE Present_Value = 1, ARRAY INDEX = PTY1
11. VERIFY Present_Value = 1
12. WAIT Internal Processing Fail Time
13. VERIFY Tracking_Value = 1

-- Keep stepping up while continuously checking Priority_Array, Present_Value and Tracking_Value
14. REPEAT X = (1 through (100 - step-increment) by step-increment) DO{
 WRITE Lighting_Command = (STEP_UP, PTY1, any valid value)
 WAIT Internal Processing Fail Time
 VERIFY Priority_ Array = X + step-increment, ARRAY INDEX = PTY1
 VERIFY Present_Value = X + step-increment

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

236 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY Tracking_Value = X + step-increment
 }
-- Now step up one more time to confirm that the values will not exceed 100
15. WRITE Lighting_Command = (STEP_UP, PTY1, any valid value)
16. WAIT Internal Processing Fail Time
17. VERIFY Priority_ Array = 100, ARRAY INDEX = PTY1
18. VERIFY Present_Value =100
19. VERIFY Tracking_Value = 100

7.3.2.X54.35 Lighting Command Operation STEP_DOWN Test

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking_Value, that writes resulting in a
step below 1% are limited to 1%, and that this command is ignored if the Tracking_Value is 0.0%.

Test Concept: The TD writes to Present_Value at 0%, and then writes to the Lighting Command Operation with STEP_DOWN
and any step increment. The Tracking_Value shall remain at 0%. The TD writes to Present_Value at 100%, and then writes to
the Lighting Command Operation with STEP_DOWN and a step increment greater than 99%, the Tracking_Value shall be 1%.
The TD writes to Present_Value at 100%, and then writes to the Lighting Command Operation with STEP_DOWN and a step
increment less than 99%, the Tracking_Value shall be 100% minus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

Test Steps:

-- Start with 0% Present_Value
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a STEP_DOWN command (operation, priority, step-increment)
5. WRITE Lighting_Command = (STEP_ DOWN, PTY1, any valid value)
6. WAIT Internal Processing Fail Time

 -- Confirm that the command was ignored since Tracking_Value was 0
7. VERIFY Priority_ Array = 0, ARRAY INDEX = PTY1
8. VERIFY Present_Value = 0
9. VERIFY Tracking_Value = 0

 -- Now test with Tracking_Value = 100
10. WRITE Present_Value = 100, ARRAY INDEX = PTY1
11. VERIFY Present_Value = 100
12. WAIT Internal Processing Fail Time
13. VERIFY Tracking_Value =100

 -- Keep stepping down while continuously checking Priority_Array, Present_Value and Tracking_Value
14. REPEAT X = (100 through (1 + step-increment) by step-increment) DO{
 WRITE Lighting_Command = (STEP_ DOWN, PTY1, any valid value)
 WAIT Internal Processing Fail Time
 VERIFY Priority_ Array = X - step-increment, ARRAY INDEX = PTY1
 VERIFY Present_Value = X - step-increment
 VERIFY Tracking_Value = X - step-increment

}
 -- Now step down one more time to confirm that the values will not go down below 1

15. WRITE Lighting_Command = (STEP_ DOWN, PTY1, any valid value)
16. WAIT Internal Processing Fail Time
17. VERIFY Priority_ Array = 1, ARRAY INDEX = PTY1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 237

18. VERIFY Present_Value =1
19. VERIFY Tracking_Value = 1

7.3.2.X54.36 Lighting Command Operation STEP_ON Test

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking_Value, that this command will
set the Tracking_Value to 1% if the Tracking_Value is 0.0%, and that it otherwise adheres to STEP_UP.

Test Concept: The TD writes to Present_Value at 0%, and then writes to the Lighting Command Operation with STEP_UP and
any step increment. The Tracking_Value shall be 1%. The TD writes to Present_Value at 1%, and then writes to the Lighting
Command Operation with STEP_UP and a step increment greater than 99%, the Tracking_Value shall be 100%. The TD
writes to Present_Value at 1%, and then writes to the Lighting Command Operation with STEP_UP and a step increment less
than 99%, the Tracking_Value shall be 1% plus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

Test Steps:

-- Start with 0% Present_Value
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a STEP_ON command (operation, priority, step-increment)
5. WRITE Lighting_Command = (STEP_ON, PTY1, any valid values)
6. WAIT Internal Processing Fail Time

-- Confirm that the Present_Value and Tracking_Value became 1
7. VERIFY Priority_ Array = 1, ARRAY INDEX = PTY1
8. VERIFY Present_Value = 1
9. VERIFY Tracking_Value = 1

-- Keep stepping on while continuously checking Priority_Array, Present_Value and Tracking_Value
10. REPEAT X = (1 through (100 – step-increment)) DO {
 WRITE Lighting_Command = (STEP_ON, PTY1, any valid values)
 WAIT Internal Processing Fail Time
 VERIFY Priority_ Array = X + step-increment, ARRAY INDEX = PTY1
 VERIFY Present_Value = X + step-increment
 VERIFY Tracking_Value = X + step-increment
 }
-- Now step on one more time to confirm that the values will not exceed 100
11. WRITE Lighting_Command = (STEP_ON, PTY1, any valid values)
12. WAIT Internal Processing Fail Time
13. VERIFY Priority_ Array = 100, ARRAY INDEX = PTY1
14. VERIFY Present_Value =100
15. VERIFY Tracking_Value = 100

7.3.2.X54.37 Lighting Command Operation STEP_ OFF Test

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking_Value, that writes resulting in a
step below 1% are limited to 1%, and that this command is ignored if the Tracking_Value is 0.0%.

Test Concept: The TD writes to Present_Value at 0%, and then writes to the Lighting Command Operation with STEP_DOWN
and any step increment. The Tracking_Value shall remain at 0%. The TD writes to Present_Value at 100%, and then writes to
the Lighting Command Operation with STEP_DOWN and a step increment greater than 99%, the Tracking_Value shall be 1%.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

238 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

The TD writes to Present_Value at 100%, and then writes to the Lighting Command Operation with STEP_DOWN and a step
increment less than 99%, the Tracking_Value shall be 100% minus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

Test Steps:

-- Start with 0% Present_Value
1. WRITE Present_Value = 0, ARRAY INDEX = PTY1
2. VERIFY Present_Value = 0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking_Value = 0

-- Write a STEP_OFF command (operation, priority, step-increment)
5. WRITE Lighting_Command = (STEP_ OFF, PTY1, step-increment)
6. WAIT Internal Processing Fail Time

-- Confirm that the command was ignored since Tracking_Value was 0
7. VERIFY Priority_ Array = 0, ARRAY INDEX = PTY1
8. VERIFY Present_Value = 0
9. VERIFY Tracking_Value = 0

-- Now test with Tracking_Value = 100
10. WRITE Present_Value = 100, ARRAY INDEX = PTY1
11. VERIFY Present_Value = 100
12. WAIT Internal Processing Fail Time
13. VERIFY Tracking_Value =100

-- Keep stepping off while continuously checking Priority_Array, Present_Value and Tracking_Value
14. REPEAT X = (100 through (1 + step-increment)) DO {
 WRITE Lighting_Command = (STEP_ OFF, PTY1, step-increment)
 WAIT Internal Processing Fail Time
 VERIFY Priority_ Array = X - step-increment, ARRAY INDEX = PTY1
 VERIFY Present_Value = X - step-increment
 VERIFY Tracking_Value = X - step-increment
 }
-- Confirm that the Present_Value and Tracking_Value become 0 when STEP OFF command is executed while Tracking_Value
is 1

15. WRITE Lighting_Command = (STEP_ OFF, PTY1, step-increment)
16. WAIT Internal Processing Fail Time
17. VERIFY Priority_ Array = 0, ARRAY INDEX = PTY1
18. VERIFY Present_Value = 0
19. VERIFY Tracking_Value = 0

7.3.2.X54.41 Transition None Test

Purpose: To verify that the Tracking_Value property immediately follows the Present_Value property if Transition is NONE.

Test Concept: Setup a Lighting Output object, O1, to use its complete supported value range. Set Present_Value to the highest
supported value, and then to the lowest supported value, verifying that there is no delay in the transitions.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
If present, Min_Actual_Value shall be set to 1, and Max_Actual_Value shall be set to 100. Transition shall be set to NONE.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 239

1. VERIFY Transition = NONE
2. VERIFY In_Progress = IDLE
3. WRITE Present_Value = 100, ARRAY INDEX = PTY1
4. VERIFY In_Progress = IDLE
5. VERIFY Tracking_Value = 100
6. WRITE Present_Value = 1, ARRAY INDEX = PTY1
7. VERIFY In_Progress = IDLE
8. VERIFY Tracking_Value = 1

7.3.2.X54.42 Transition Test

Purpose: To verify that the Lighting Output object transitions using the configured function and transitions at the configured
speed when Transition is set to either FADE or RAMP.

Test Concept: Setup a Lighting Output object, O1, to use fading or ramping as the default transition method. Present_Value is
changed to V1 which is larger than the initial Present_Value, V0, so that the output will fade or ramp up. Halfway through the
process, verify that Tracking_Value is approximately equal to the value halfway between V0 and V1. The physical output shall
also be verified that it is fading or ramping from V0 to V1. When the process completes, verify that Tracking_Value reached
V1. Repeat the process fading or ramping down from V1 to V2.

Configuration Requirements: O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
The Transition property is set to FADE or RAMP, Present_Value is V0 and In_Progress is IDLE.

To test FADE functionality, T is FADE, A is FADE_ACTIVE, W1 and W2 are (Default_Fade_Time / 2), and
Default_Fade_Time is sufficiently large so as to allow the intermediate progress checks.

To Test RAMP functionality, T is RAMP, A is RAMP_ACTIVE, W1 is (((V1 – V0) / Default_Ramp_Rate) / 2), W2 is (((V1
– V2) / Default_Ramp_Rate) / 2), and Default_Ramp_Rate is sufficiently small so as to allow the intermediate progress checks.

Test Steps:

1. VERIFY Transition = T
2. VERIFY In_Progress = IDLE
3. V0 = READ Present_Value
4. WRITE Present_Value = V1, ARRAY INDEX = PTY1
5. VERIFY Present_Value = V1
6. WAIT W1
7. VERIFY Tracking_Value ~= (V1 + V0) / 2
8. VERIFY In_Progress = A
9. CHECK (the physical output is fading from V0 to V1)
10. WAIT W1
11. VERIFY In_Progress = IDLE
12. VERIFY Tracking_Value = V1
13. WRITE Present_Value = V2, ARRAY INDEX = PTY1
14. VERIFY Present_Value = V2
15. WAIT W2
16. VERIFY Tracking_Value ~= (V2 + V1) / 2
17. VERIFY In_Progress = A
18. CHECK (the physical output is fading V1 to V2)
19. WAIT W2
20. VERIFY In_Progress = IDLE
21. VERIFY Tracking_Value = V2

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

240 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X54.51 Feedback_Value Clamping Test

Purpose: To verify that the Feedback_Value remains in the normalized range when the physical lighting output is outside the
normalized range.

Test Concept: Set the normalized range to be the largest range supported by the device. Make the physical output be above the
normalized range by setting it to the maximum supported value and then shrinking the normalized range. The Feedback_Value
is immediately tested to verify that it takes on the value 100.

Reset the normalized range. Make the physical output be below the normalized range by setting it to the minimum supported
value and then shrinking the normalized range. The Feedback_Value is immediately tested to verify that it takes on the value
1.

Configuration Requirements: The Lighting Output object, O1, shall be configured to transition slowly when Present_Value
changes, such as by ramping, fading or stepping, if possible.

O1 shall be configured such that all slots in the Priority_Array numerically less than PTY1 have a value of NULL and no
internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

Test Steps:

-- Verify Feedback_Value when output is above Max_Actual_Value
1. WRITE Max_Actual_Value = 100
2. WRITE Min_Actual_Value = 1
3. WRITE Present_Value = 100, PRIORITY = PTY1
4. WHILE In_Progress <> IDLE {}
5. WRITE Max_Actual_Value = (Lowest supported Max_Actual_Value)
6. VERIFY Feedback_Value = 100

-- Verify Feedback_Value when output is below Min_Actual_Value
7. WRITE Max_Actual_Value = 100
8. WRITE Min_Actual_Value = 1
9. WRITE Present_Value = 1, PRIORITY = PTY1
10. WHILE In_Progress <> IDLE {}
11. WRITE Min_Actual_Value = (Highest supported Min_Actual_Value)
12. VERIFY Feedback_Value = 1

7.3.2.X54.61 Min_Actual_Value and Max_Actual_Value Test

Purpose: To verify that Min_Actual_Value remains less than Max_Actual_Value and within the allowable range
when either is written to a value that would violate these conditions.

Test Concept: Write a value to Min_Actual_Value which is larger than Max_Actual_Value. Verify that Max_Actual_Value
became equal to Min_Actual_Value. Next, write a value to Max_Actual_Value which is less than Min_Actual_Value. Verify
that Min_Actual_Value became equal to Max_Actual_Value.

Verify that neither Min_Actual_Value nor Max_Actual_Value will accept a value outside the range 1.0 to 100.0.

Configuration Requirements: The IUT shall be configured with a lighting output, O1. Min_Actual_Value shall be
set to a value less than Max_Actual_Value, and Max_Actual_Value shall be within the allowable range for
Min_Actual_Value and not equal to Min_Actual_Value’s maximum supported value. If the IUT cannot be
configured to meet these requirements, then this test shall be skipped.

Test Steps:

1. V1 = READ Max_Actual_Value

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 241

2. WRITE Min_Actual_Value = V2, a value greater than V1
3. VERIFY Max_Actual_Value = V2
4. WRITE Max_Actual_Value = V3, a value less than V2
5. VERIFY Min_Actual_Value = V3
6. TRANSMIT WritePropertyRequest
 'Object Identifier' = O1,
 'Property Identifier' = Min_Actual_Value,
 'Property Value' = (any value outside the range 1.0 to 100.0)
7. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
8. TRANSMIT WritePropertyRequest
 'Object Identifier' = O1,
 'Property Identifier' = Max_Actual_Value,
 'Property Value' = (any value outside the range 1.0 to 100.0)
9. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X54.62 Min_Actual_Value and Max_Actual_Value Scaling Test

Purpose: To verify that the physical output level changes to the expected scaled value as Present_Value changes.

Test Concept: Set Min_Actual_Value to a value other than the lowest supported minimum value, and set Max_Actual_Value
to a value other than the highest support value but larger than Min_Actual_Value.

Then write 1.0 to Present_Value and measure the physical output. Repeat the procedure to measure the physical output after
writing 100.0 to Present_Value. After obtaining these upper and lower bound values, write a value between 1.0 and 100.0,
measure the physical output, and confirm that the measured value is approximately the same as the expected scaled value.

Configuration Requirements: The IUT shall be configured with a lighting output, O1 that can be observed during the test. O1
shall be configured such that all slots in the Priority_Array numerically less than PTY1 have a value of NULL and no internal
algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1 and Out_Of_Service = FALSE.

Test Steps:

1. WRITE Min_Actual_Value = (a supported value that is not the lowest supported value)
2. WRITE Max_Actual_Value = (a supported value which is not the highest support value)
3. WRITE Present_Value = 1.0, ARRAY INDEX = PTY1
4. CHECK(the value of the physical output is Min_Actual_Value)
5. WRITE Present_Value = 100.0, ARRAY INDEX = PTY1
6. CHECK(the value of the physical output is Max_Actual_Value)
7. WRITE Present_Value = (V1, a value between 1.0 and 100.0 exclusive), ARRAY INDEX = PTY1
8. MAKE(measure the value of the physical output and record in MV)
9. CHECK (MV ~= Min_Actual_Value + (V1 / 100) * (Max_Actual_Value – Min_Actual_Value))

[Add new Clause 7.3.2.X55, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Access Door object type.]

7.3.2.X55 Access Door Object Tests

7.3.2.X55.1 Commandable Present_Value Test

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

242 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Purpose: To verify that writing to the Present_Value will cause a corresponding change to the physical output.

Test Concept: The IUT shall be configured with a door control output that can be observed during the test. The Present_Value
property is written with each of the following values: UNLOCK, LOCK, PULSE_UNLOCK,
EXTENDED_PULSE_UNLOCK, and the Access Door object is monitored to ensure that the door locks and unlocks
appropriately.

Configuration Requirements: The Relinquish_Default shall have the value LOCK. All writes are at a priority higher than any
internal algorithms writing to this property. Out_Of_Service shall be set to FALSE. Prior to the test the Present_Value shall
have the value LOCK and the IUT is in a state that would cause the door to be locked.

Test Steps:

-- Test UNLOCK value
1. WRITE Present_Value = UNLOCK
2. WAIT (Internal Processing Fail Time)
3. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = UNLOCKED
4. CHECK (that the door control output is in a state that would cause the door to be unlocked)

-- Test LOCK value
5. WRITE Present_Value = LOCK
6. WAIT (Internal Processing Fail Time)
7. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = LOCKED
8. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test PULSE_UNLOCK value
9. WRITE Present_Value = PULSE_UNLOCK
10. WAIT (Internal Processing Fail Time + Door_Unlock_Delay_Time if present)
11. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = UNLOCKED
12. CHECK (that the IUT is in a state that would cause the door to be unlocked)
13. WAIT (Door_Pulse_Time)
14. VERIFY Present_Value = LOCK
15. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = LOCKED
16. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test EXTENDED_PULSE_UNLOCK value
17. WRITE Present_Value = EXTENDED_PULSE_UNLOCK
18. WAIT (Internal Processing Fail Time + Door_Unlock_Delay_Time if present)

7.3.2.X55.2 Door_Status, Lock_Status and Door_Alarm_State Tests
Purpose: This test case verifies that Door_Status, Lock_Status, and Door_Alarm_State properties are writable when
Out_Of_Service is TRUE.

Test Concept: Set Out_Of_Service to TRUE and then make sure one at a time that Door_Status, Lock_Status, and
Door_Alarm_State, if present, are writable.

Configuration Requirements: If the Out_Of_Service property of this object is not writable, and if the Out_Of_Service property
cannot be changed by other means, then this test shall be omitted. All writes to the Present_Value shall be performed at a
priority higher (numerically smaller) than any internal algorithms writing to this property. For testing Door_Alarm_State, test
only values listed in either the Alarm_Values or Fault_Values.

Test Steps:

1. MAKE (Out_Of_Service TRUE)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 243

2. VERIFY Status_Flags = (?,?,?,TRUE)
3. IF (Door_Status is present) THEN
 REPEAT X = (all values of the Door_Status enumeration values supported by the property)
 DO {
 WRITE Door_Status = X
 VERIFY Door_Status = X
 }
4. IF (Lock_Status is present) THEN
 REPEAT X = (all values of the Lock_Status enumeration values supported by the property)
 DO {
 WRITE Lock_Status = X
 VERIFY Lock_Status = X
 }
5. IF (Door_Alarm_State is present) THEN
 REPEAT X = (all values of the Door_Alarm_State enumeration values supported by the property)
 DO {
 WRITE Door_Alarm_State = X
 VERIFY Door_Alarm_State = X
 }

7.3.2.X55.3 Door_Status with Physical Door Status Tests
Purpose: To verify that the Door_Status property reflects the state of the physical door (CLOSED, OPENED, UNUSED, and
DOOR_FAULT if the object supports detecting door faults).

Test Concept: The IUT is configured to monitor the state of a physical door. The physical door may be represented by a BACnet
input object or through some proprietary method.

Configuration Requirements: The IUT shall be configured such that it can determine the state of a door. The Access_Door
object associated with this physical door shall be configured with Out_Of_Service = FALSE.

Test Steps:

1. MAKE (set physical door to the closed state)
2. VERIFY Door_Status = CLOSED
3. MAKE (set physical door to the opened state)
4. VERIFY Door_Status = OPENED
5. IF (the object supports detecting door faults) THEN
 MAKE (set the physical door to a state that would cause the Door_Status to take on a value of
 DOOR_FAULT)
 VERIFY Door_Status = DOOR_FAULT
6. IF (possible to remove a door status input associated with the door) THEN
 MAKE (remove a door status input associated with the door)
7. VERIFY Door_Status = UNUSED | UNKNOWN

7.3.2.X55.4 Lock_Status Tests
Purpose: To verify that the Lock_Status property reflects the state of the physical lock. (LOCKED, UNLOCKED, and LOCK
_FAULT if the object supports detecting lock faults).

Test Concept: The IUT monitors the state of a physical lock. The state of the physical lock may be represented by a BACnet
input object or through some proprietary method.

Configuration Requirements: The IUT shall be configured such that it can monitor the state of the physical lock. The
Access_Door object associated with this physical door shall be configured with Out_Of_Service = FALSE. The physical lock
shall be manipulated other than through the Access Door object.

Notes to tester: The physical lock shall be manipulated other than through the Access Door object.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

244 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. MAKE (set the physical lock to a state that would cause the Lock_Status to take on a value of
 LOCKED)
2. VERIFY Lock_Status = LOCKED
3. MAKE (set the physical lock to a state that would cause the Lock_Status to take on a value of
 UNLOCKED)
4. VERIFY Lock_Status = UNLOCKED
5. IF (the object and the lock support detecting lock faults) THEN
 MAKE (set the physical lock to a state that would cause the Lock_Status to take on a value of
 LOCK_FAULT)
 VERIFY Lock_Status = LOCK_FAULT

7.3.2.X55.5 Secured_Status Tests
Purpose: To verify that the Secured_Status property reflects the state of the physical lock, the physical door, and the state of
the Access Door object.

Test Concept: Start the test by creating a condition where the Secured_Status = SECURED. Then create various conditions one
at a time to verify that the Secured_Status becomes UNSECURED when it should.

Configuration Requirements: All writes to the Present_Value shall be performed at a priority higher than any internal algorithms
writing to this property. If this object supports intrinsic reporting, then the Alarm_Values property shall be empty. If this object
supports the Masked_Alarm_Values property, then it shall be empty. Out_Of_Service is FALSE.

Test Steps:

-- Create a condition where the Secured_Status becomes SECURED
1. WRITE Present_Value = LOCK
2. WAIT (Internal Processing Fail Time)
3. VERIFY Status_Flags = (FALSE ?,?, ?)
4. IF (Lock_Status property is present) THEN
 MAKE (Lock_Status = LOCKED or UNUSED)
5. MAKE (Door_Status = CLOSED or UNUSED)

-- Verify that the Secured_Status is SECURED when it should
6. VERIFY Secured_Status = SECURED

-- Verify that Secured_Status is UNSECURED when Present_Value is anything other than LOCKED
7. REPEAT X = (UNLOCK, PULSE_UNLOCK, EXTENDED_PULSE_UNLOCK) DO {
 WRITE Present_Value = X
 WAIT (Internal Processing Fail Time)
 VERIFY Secured_Status = UNSECURED
 }
-- Recreate a condition where the Secured_Status becomes SECURED again
8. WRITE Present_Value = LOCK
9. WAIT (Internal Processing Fail Time)
10. VERIFY Secured_Status = SECURED

-- Verify that Secured_Status is UNSECURED when Masked_Alarm_Value, if exist, is NOT empty
11. IF (Masked_Alarm_Values is present) THEN
 MAKE (Masked_Alarm_Values = (any valid BACnetDoorAlarmState enumeration))
 WAIT(Internal Processing Fail Time)
 VERIFY Secured_Status = UNSECURED

-- Recreate a condition where the Secured_Status becomes SECURED again
 MAKE (Masked_Alarm_Values = {})
 WAIT (Internal Processing Fail Time)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 245

VERIFYSecured_Status = SECURED

-- Verify that Secured_Status is UNSECURED when Lock_Status, if present, is anything other than LOCKED or UNUSED
12. IF (Lock_Status property is present) THEN
 REPEAT X = (UNLOCKED. UNKNOWN, LOCK_FAULT) DO {
 MAKE (Lock_Status = X)
 WAIT (Internal Processing Fail Time)
 VERIFY Secured_Status = UNSECURED
 }
 REPEAT X = (LOCKED, UNUSED) DO {
 MAKE (Lock_Status = X)
 VERIFY Secured_Status = SECURED
 }

-- Verify that Secured_Status is UNSECURED when Door_Status, is anything other than CLOSED or UNUSED
13. REPEAT X = (OPEN, UNKNOWN, DOOR_FAULT) DO {
 MAKE (Door_Status = X)
 WAIT (Internal Processing Fail Time)
 VERIFY Secured_Status = UNSECURED
 }
 REPEAT X = (CLOSED, UNUSED) DO {
 MAKE (Door_Status = X)
 WAIT (Internal Processing Fail Time)
 VERIFY Secured_Status = SECURED
 }

-- Verify that Secured_Status is UNSECURED when In_Alarm bit of Status_Flag is True
14. IF (Alarming is supported) THEN
 IF (Alarm_Values is writable) THEN
 WRITE Alarm_Values = { AV: any valid value}
 MAKE (trigger an alarm by using a physical door/lock to create the door alarm state AV)
 WAIT (Internal Processing Fail Time + Time_Delay)
 VERIFY Status_Flags = (TRUE, FALSE, ?, ?)
 VERIFY Secured_Status = UNSECURED

7.3.2.X55.6 Door_Unlock_Delay_Time Test
Purpose: To verify that when the Door_Unlock_Delay_Time property has a non-zero value, the output is delayed in unlocking
when a PULSE_UNLOCK or EXTENDED_PULSE_UNLOCK is written to the Present_Value and not when UNLOCK is
written.

Test Concept: When unlocking the door by writing PULSE_UNLOCK to the Present_Value of the Access Door object, it is
verified that the door is still locked for the specified Door_Pulse_Time, then the door is unlocked. The same test is done for
EXTENDED_PULSE_UNLOCK, but this time, it is verified that the door is still locked for the specified
Door_Extended_Pulse_Time then the door is unlocked.

Configuration Requirements: The IUT shall be configured with a door control output that can be observed during the test. The
Relinquish_Default shall have the value LOCK. All writes to the Present_Value shall be performed at a priority higher than
any internal algorithms writing to this property. Door_Unlock_Delay_Time shall be set to a non-zero value which is sufficient
to observe the delay and check the status of the lock. Out_Of_Service shall be set to FALSE. Prior to the test the Present_Value
shall have the value LOCK and the IUT is in a state that would cause the door to be locked.

Test Steps:

-- Test PULSE_UNLOCK
1. WRITE Present_Value = PULSE_UNLOCK
2. WAIT (Internal Processing Fail Time)
3. BEFORE Door_Unlock_Delay_Time
 IF (Lock_Status is present) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

246 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY Lock_Status = LOCKED
 CHECK (that the door control output is in a state that would cause the door to be locked)

4. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = UNLOCKED
5. CHECK (that the door control output is in a state that would cause the door to be unlocked)
6. WAIT (Door_Pulse_Time)
7. VERIFY Present_Value = LOCK
8. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = LOCKED
9. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test EXTENDED_PULSE_UNLOCK
10. WRITE Present_Value = EXTENDED_PULSE_UNLOCK
11. WAIT (Internal Processing Fail Time)
12. BEFORE Door_Unlock_Delay_Time
 IF (Lock_Status is present) THEN
 VERIFY Lock_Status = LOCKED
 CHECK (that the door control output is in a state that would cause the door to be locked)

13. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = UNLOCKED
14. CHECK (that the door control output is in a state that would cause the door to be unlocked)
15. WAIT (Door_Extended_Pulse_Time)
16. VERIFY Present_Value = LOCK
17. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = LOCKED
18. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test UNLOCK
19. WRITE Present_Value = UNLOCK
20. WAIT (Internal Processing Fail Time)
21. IF (Lock_Status is present) THEN
 VERIFY Lock_Status = UNLOCKED
22. CHECK (that the door control output is in a state that would cause the door to be locked)

7.3.2.X55.7 Masked_Alarm_Values Tests
Purpose: To verify that the Masked_Alarm_Values prevents an intrinsic alarm from occurring.

Test Concept: The Access Door is verified to be in an Out_Of_Service state and is not in an alarm state. Then a non-NORMAL
enumeration value of BACnetDoorAlarmState X is written to the Door_Alarm_State, and the Access Door object transitions
to an alarm state. X is written to the Masked_Alarm_Value, and Door_Alarm_State is checked to verify it returned to
NORMAL. The sequence is repeated for all non-NORMAL enumeration values of BACnetDoorAlarmState.

Configuration Requirements: The Masked_Alarm_Values list shall be empty at the start of this test. Out_Of_Service shall be
set to TRUE to allow writing to the Door_Alarm_State property. If Out_Of_Service is not writeable and cannot be set to TRUE
by any other means, this test shall be skipped. The enumeration BACnetDoorAlarmState value X to be used in the test has to
be present in either the Alarm_Values or Fault_Values property.

Test Steps:

1. VERIFY Status_Flags = (FALSE ?, ?, TRUE)
2. VERIFY Door_Alarm_State = NORMAL
3. REPEAT X = (all valid values of the enumeration BACnetDoorAlarmState except NORMAL)
 DO {
 WRITE Door_Alarm_State = X
 WAIT (Internal Processing Fail Time)
 VERIFY Status_Flags = (TRUE ?, ?, TRUE)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 247

 WRITE Masked_Alarm_Values= { X }
 WAIT (Internal Processing Fail Time)
 VERIFY Door_Alarm_State = NORMAL
 VERIFY Status_Flags = (FALSE ?, ?, TRUE)
 WRITE Masked_Alarm_Values= { }
 WAIT (Internal Processing Fail Time)
 }

7.3.2.X55.8 Door_Open_Too_Long Test
Purpose: To verify that the DOOR_OPEN_TOO_LONG condition is generated when the Access Door object is commanded
to the LOCK state, but the physical door remains open beyond Door_Open_Too_Long_Time.

Test Concept: Setup the Access Door object to trigger alarm on DOOR_OPEN_TOO_LONG state using Alarm_Values and
Masked_Alarm_Values. Next, set the physical door to the closed state to confirm that the Access Door object is in NORMAL
state. Then, unlock the physical door and set the physical door to the open state. Finally, command the Access Door object to
LOCK and verify that the Door_Alarm_State changes to DOOR_OPEN_TOO_LONG after the specified Time_Delay.

Configuration Requirements: This test shall be skipped if the IUT does not support intrinsic alarming. The IUT shall be
configured such that it can determine and change the open/closed state of a door. All writes to the Present_Value are at a priority
higher than any internal algorithms writing to this property. The Door_Alarm_State shall have the value NORMAL at the start
of the test. The Access Door object is configured with DOOR_OPEN_TOO_LONG in the Alarm_Values property and
excluded from Masked_Alarm_Values property if present.

Test Steps:

1. MAKE (set the physical door to the closed state)
2. VERIFY Door_Alarm_State = NORMAL
3. WRITE Present_Value = UNLOCK
4. MAKE (set the physical door to the open state)
5. WRITE Present_Value = LOCK
6. WAIT (Internal Processing Fail Time)
7. WHILE (Door_Open_Too_Long_Time has not expired) DO {
 VERIFY Door_Alarm_State = NORMAL
 }
 WAIT (Time_Delay)
8. VERIFY Door_Alarm_State = DOOR_OPEN_TOO_LONG

[Add new Clause 7.3.2.X56, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Access Point object type.]

7.3.2.X56 Access Point Object Tests
The Access Point object type represents the external interface of the access control decision engine for a specific door. A
credential is entered, the access rights of the credential are determined, and the access decision is determined based on the
access rights. Testing this authentication and authorization functionality requires the support of other standard BACnet access
control object types. The required and optional object types are shown in figure X1.

The access decision begins with a credential value being sent to the Access Point object for evaluation. Typically, the credential
value is read at a Credential Data Input object which extracts the raw credential data from the physical reader, formats the data
and then sends it to the corresponding Access Point object. If the Credential Data Input object type is not supported, then the
vendor must provide an alternate method for the credential to be received by the Access Point.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

248 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

When a credential value is received by the Access Point object it searches through the Access Credential objects to find the
one with a matching credential value. For each credential value being tested a corresponding Access Credential must exist
within the IUT. The only exception to this is when testing for an unknown credential
(DENIED_UNKNOWN_CREDENTIAL).

To determine if access is granted or denied for a specific credential each Access Credential object must reference an Access
Rights object which defines the appropriate access rights corresponding to the specific test being executed.

Some of the allowed and denied access tests require the Access Zone object. In this case an Access Point must be configured
to be an entry access point to the access zone. These tests require that the Access Rights objects reference the Access Zone
rather than the Access Point.

When the access decision is determined, the IUT shall provide a method to indicate the result. Typically, the decision is exposed
through the Access Door object. When access is granted, the door is pulsed unlocked and when denied, the door remains locked.
If the Access Door object is not used, then another method of showing the result shall be configured.

Unless specified otherwise in the specific test, the access point object (AP1) in the following tests shall have the following
configuration:

a) Authorization_Mode shall have the value AUTHORIZE.
b) Out_Of_Service shall be FALSE.
c) Lockout shall be FALSE.
d) Muster_Point shall be FALSE.
e) Authentication_Status shall be READY.

Credential Reader
(optional)

Access Door (optional)

Access
Point

Valid Access

Access
Credential

Valid access

Access
Rights

optional

optional

optional

Credential
Data input

optional

Access Door

Invalid access

Access
Credential

Invalid access

Access
Rights

Invalid access

Access
Rights

Invalid access

Access
Credential

...

Access
Zone Valid access

Access
Rights

Valid Access

Access
Credential

Invalid access

Access
Rights

Invalid access

Access
Credential

Invalid access

Access
Rights

Invalid access

Access
Credential

...

NOTE: Line direction specifies the
“is referenced by” relationship

between the two objects.

Figure X1: Objects and relationships used for testing Access Point objects

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 249

7.3.2.X56.1 Authentication_Status and Access_Event Test

Purpose: This test case verifies the authentication and authorization process are disabled when Out_Of_Service of the Access
Point object is TRUE. It also verifies the interrelationship between the Out_Of_Service, Authentication_Status,Access_Event,
and Access_Event_Time properties.

Test Concept: Write TRUE to the Out_Of_Service property and verify that the authorization and authentication functions are
disabled. Write FALSE to the Out_Of_Service property and verify that they are enabled.

Configuration Requirements: See 7.3.2.X56

Test Steps:

1. VERIFY Authentication_Status = READY
2. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
3. VERIFY Authentication_Status = DISABLED
4. VERIFY Access_Event = OUT_OF_SERVICE
5. VERIFY Access_Event_Time = (the time Out_Of_Service was set to TRUE)
6. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service FALSE)
7. VERIFY Authentication_Status = READY
8. VERIFY Access_Event = OUT_OF_SERVICE_RELINQUISHED
9. VERIFY Access_Event_Time = (the time Out_Of_Service was set to FALSE)

7.3.2.X56.2 Allowed Access Test

Purpose: To verify that a valid credential that is allowed access to this access point at this time is granted access.

Test Concept: A valid credential, that has access to the access point being tested at the current time, is presented at the access
point. It is then verified that access is allowed, and the appropriate access event is generated.

Configuration Requirements: See 7.3.2.X56. This test requires the following additional configuration: An active credential
with valid access rights for the access point shall be represented by Access Credential object C1.

Test Steps:

1. READ EventTag = Access_Event_Tag
2. MAKE (present a valid credential at credential reader for this access point)
3. VERIFY Access_Event = GRANTED
4. VERIFY Access_Event_Time = (the time that the credential was presented)
5. VERIFY Access_Event_Credential = C1
6. VERIFY Access_Event_Tag = EventTag + 1

7.3.2.X56.3 Denied Access Test

Purpose: To verify that a credential that is not allowed access to this access point at this time is denied access. There are a
number of reasons why a credential may be denied access and this test tests the situations which must be supported by the
access point.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

250 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: To test that a credential, which is not allowed access to this access point, is presented at the access point with
the result that access is allowed and the appropriate access event is generated.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) The vendor shall provide a set of credentials which correspond to Access Credential objects configured such that
access to the access point shall denied for the following reasons:

a. DENIED_POINT_NO_ACCESS_RIGHTS = C1
b. DENIED_NO_ACCESS_RIGHTS = C2
c. DENIED_ZONE_NO_ACCESS_RIGHTS = C3
d. DENIED_CREDENTIAL_NOT_YET_ACTIVE = C4
e. DENIED_CREDENTIAL_EXPIRED = C5
f. DENIED_CREDENTIAL_MANUAL_DISABLE = C6
g. DENIED_INCORRECT_AUTHENTICATION_FACTOR = C7
h. DENIED_OUT_OF_TIME_RANGE = C8
i. DENIED_THREAT_LEVEL = C9
j. DENIED_PASSBACK = C10
k. DENIED_UNEXPECTED_LOCATION_USAGE = C11
l. DENIED_MAX_ATTEMPTS = C12
m. DENIED_AUTHENTICATION_FACTOR_LOST = C13
n. DENIED_AUTHENTICATION_FACTOR_STOLEN= C14
o. DENIED_AUTHENTICATION_FACTOR_DAMAGED = C15
p. DENIED_AUTHENTICATION_FACTOR_DESTROYED = C16
q. DENIED_AUTHENTICATION_FACTOR_DISABLED = C17
r. DENIED_AUTHENTICATION_FACTOR_ERROR = C18
s. DENIED_CREDENTIAL_UNASSIGNED = C19
t. DENIED_CREDENTIAL_NOT_PROVISONED = C20
u. DENIED_CREDENTIAL_LOCKOUT = C21
v. DENIED_CREDENTIAL_MAX_DAYS = C22
w. DENIED_CREDENTIAL_MAX_USES = C23
x. DENIED_CREDENTIAL_DISABLED = C24
y. DENIED_LOCKOUT = C25

Notes to Tester: If the IUT does not support any of the above denial reasons, then the corresponding credentials are not required
to be supplied.

Test Steps:

1. REPEAT C = (C1…C25) DO {
 READ EventTag = Access_Event_Tag
 MAKE (present the credential corresponding to C at the credential reader for this access point)
 VERIFY Access_Event = (denied reason corresponding to credential C)
 VERIFY Access_Event_Time = (the time that credential C was presented)
 VERIFY Access_Event_Credential = C
 VERIFY Access_Event_Tag = EventTag + 1
 }

-- verify unknown credential event

2. READ EventTag = Access_Event_Tag
3. MAKE (present a credential which does not correspond to any configured Access Credential object at the

credential reader for this access point)
4. VERIFY Access_Event = DENIED_UNKNOWN_CREDENTIAL
5. VERIFY Access_Event_Time = (the time that the credential was presented)
6. VERIFY (Access_Event_Credential = (4194303, ?, 4194303)
7. VERIFY Access_Event_Tag = EventTag + 1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 251

7.3.2.X56.4 Authorization Mode Test

Purpose: To verify each authorization mode supported by this IUT.

Test Concept:
For each authorization mode supported by the IUT, a valid credential is presented at the access point to verify that the
appropriate action is taken.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) An active credential with valid access rights for the access point shall be represented by Access
Credential object C1.

b) An active credential with no valid access rights shall be represented by Access Credential object C2.

Note: If the VERIFICATION_REQUIRED or AUTHORIZATION_DELAYED mode is supported, the vendor must provide
a mechanism for external verification to be performed.

Test Steps:

-- verify GRANT_ACTIVE mode

1. IF (GRANT_ACTIVE is supported) THEN
 READ EventTag = Access_Event_Tag
 WRITE Authorization_Mode = GRANT_ACTIVE
 MAKE (present credential C2 at credential reader for this access point)
 VERIFY Access_Event = GRANTED
 VERIFY Access_Event_Time = (the time that credential C2 was presented)
 VERIFY Access_Event_Credential = C2
 VERIFY Access_Event_Tag = EventTag + 1

-- verify DENY_ALL mode

2. IF (DENY_ALL is supported) THEN
 READ EventTag = Access_Event_Tag
 WRITE Authorization_Mode = DENY_ALL
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = DENIED_DENY_ALL
 VERIFY Access_Event_Time = (the time that credential C1 was presented)
 VERIFY Access_Event_Credential = C1
 VERIFY Access_Event_Tag = EventTag + 1

-- verify VERIFICATION_REQUIRED mode (verification authorized)

3. IF (VERIFICATION_REQUIRED is supported) THEN
 READ EventTag = Access_Event_Tag
 WRITE Authorization_Mode = VERIFICATION_REQUIRED
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = VERIFICATION_REQUIRED
 VERIFY Access_Event_Time = (the time that credential C1 was presented most recently)
 VERIFY Access_Event_Credential = C1
 VERIFY Authentication_Status = WAITING_FOR_VERIFICATION
 MAKE (external verification process grants access)
 VERIFY Access_Event = GRANTED
 VERIFY Access_Event_Time = (the time that verification process granted access)
 VERIFY Access_Event_Credential = C1
 VERIFY Access_Event_Tag = EventTag + 1

-- verify VERIFICATION_REQUIRED mode (verification denied)
 READ EventTag = Access_Event_Tag
 WRITE Authorization_Mode = VERIFICATION_REQUIRED
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = VERIFICATION_REQUIRED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

252 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY Access_Event_Time = (the time that credential C1 was presented)
 VERIFY Access_Event_Credential = C1
 VERIFY Authentication_Status = WAITING_FOR_VERIFICATION
 MAKE (external verification process denies access)
 VERIFY Access_Event = DENIED_VERIFICATION_FAILED
 VERIFY Access_Event_Time = (the time that verification process denied access)
 VERIFY Access_Event_Credential = C1
 VERIFY Access_Event_Tag + 1

-- verify VERIFICATION_REQUIRED mode (verification timeout)
 READ EventTag = Access_Event_Tag
 WRITE Authorization_Mode = VERIFICATION_REQUIRED
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = VERIFICATION_REQUIRED
 VERIFY Access_Event_Time = (the time that credential C1 was presented)
 VERIFY Access_Event_Credential = C1
 VERIFY Authentication_Status = WAITING_FOR_VERIFICATION
 MAKE (external verification process does not respond within verification time)
 WAIT Verification_Time
 VERIFY Access_Event = DENIED_VERIFICATION_TIMEOUT
 VERIFY Access_Event_Time = (the time that verification process timed out)
 VERIFY Access_Event_Credential = C1
 VERIFY Access_Event_Tag = EventTag + 1

-- verify AUTHORIZATION_DELAYED mode (access granted)

4. IF (AUTHORIZATION_DELAYED is supported) THEN
 WRITE Authorization_Mode = AUTHORIZATION_DELAYED
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = AUTHORIZATION_DELAYED
 VERIFY Access_Event_Time = (the time that credential C1 was presented)
 VERIFY Access_Event_Credential = C1
 MAKE (external verification process does not respond within verification time)
 WAIT Verification_Time
 VERIFY Access_Event = GRANTED
 VERIFY Access_Event_Time = (the time that verification process timed out)
 VERIFY Access_Event_Credential = C1

-- verify AUTHORIZATION_DELAYED mode (access denied)
 WRITE Authorization_Mode = AUTHORIZATION_DELAYED
 READ EventTag = Access_Event_Tag
 MAKE (present credential C1 at credential reader for this access point)
 VERIFY Access_Event = AUTHORIZATION_DELAYED
 VERIFY Access_Event_Time = (the time that credential C1 was presented)
 VERIFY Access_Event_Credential = C1
 MAKE (external verification process denies access)
 VERIFY Access_Event = DENIED_VERIFICATION_FAILED
 VERIFY Access_Event_Time = (the time that verification process denied access)
 VERIFY Access_Event_Credential = C1
 VERIFY Access_Event_Tag = EventTag + 1

-- verify NONE mode

5. IF (NONE is supported) THEN
 WRITE Authorization_Mode = NONE
 WAIT Internal Processing Fail Time
 VERIFY Authentication_Status = DISABLED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 253

7.3.2.X56.5 Access Rights Exemptions Test

Purpose: To verify the access rights exemption functionality.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) An active credential with no access rights shall be represented by Access Credential object C1.
b) The Authorization_Exemption list of C1 shall be empty.

Test Steps:

-- verify access is denied for the credential
1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY Access_Event = DENIED_NO_ACCESS_RIGHTS
3. VERIFY Access_Event_Time = (the time that the credential was presented)
4. VERIFY Access_Event_Credential = C1

-- verify access is granted for the credential when the master exemption set to TRUE
5. MAKE C1, Authorization_Exemption = (ACCESS_RIGHTS)
6. MAKE (present credential C1 at credential reader for access point AP1)
7. VERIFY Access_Event = GRANTED
8. VERIFY Access_Event_Time = (the time that the credential was presented)
9. VERIFY Access_Event_Credential = C1

7.3.2.X56.6 Change Authentication Policy Test

Purpose: To verify that the Active_Authentication_Policy property of the Access Point object accepts valid authentication
policy values and does not accept invalid ones. It also verifies that an error response is returned if the authentication policy is
changed to a non-existent policy number.

Test Concept: The Active_Authentication_Policy is written with values of 1 to X, where X is the number of valid authentication
policies to verify that the value is accepted. Then, it is written with a value larger than X to verify that the value is rejected with
a VALUE_OUT_OF_RANGE error. Finally, it is written with a value of 0 to verify that the value is also rejected with the
same error.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) The IUT shall be configured with at least one active authentication policy.
b) All authentication policies shall be valid policies.

Test Steps:

-- verify that the active authentication policy can set to all valid policies
1. READ Count = Number_Of_Authentication_Policies
2. REPEAT X = (1 to Count) DO {
 WRITE Active_Authentication_Policy = X
 VERIFY Active_Authentication_ Policy = X
 }

-- verify that writing an invalid authentication policy to active authentication policy results in a reject
3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Access_Point object,
 'Property Identifier' = Active_Authentication_Policy,
 'Property Value' = (any value larger than Count)
4 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

254 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- verify that writing 0 to the authentication policy results in a reject
5 TRANSMIT WriteProperty-Request,
 'Object Identifier' = Access_Point object,
 'Property Identifier' = Active_Authentication_Policy,
 'Property Value' = 0
6 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X56.7 Lockout State Test

Purpose: To verify that access is denied for any credential when the access point is in the lockout state. To verify that using an
invalid credential at the access point multiple times will cause the access point to go into a lockout state. To verify that the
lockout will automatically relinquish after the specified time.

Test Concept: A credential which will result in denied access is repeatedly presented at the access point until the access point
becomes locked out. When the access point becomes locked, valid credentials will also be denied access until the lockout
relinquish time has expired.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) The Max_Failed_Attempts property, if present, has a value greater than 0.
b) An active credential with valid access rights for the access point shall be represented by Access Credential object C1.
c) An active credential with no valid access rights for the access point shall be represented by Access Credential object

C2.
d) The Failed_Attempts_Events list, if present, shall have at least one entry corresponding to the reason why C2 is denied

access.
e) The Lockout_Relinquish_Time has a value greater than 0.

Test Steps:

-- verify that valid credentials are denied when the Lockout property is TRUE
1. WRITE Lockout = TRUE
2. WAIT Internal Processing Fail Time
3. VERIFY Access_Event = LOCKOUT_OTHER
4. VERIFY Access_Event_Time = (the time that TRUE was written to the Lockout property)
5. VERIFY Access_Event_Credential = (4194303, ?, 4194303)
6. MAKE (present credential C1 at credential reader for this access point)
7. VERIFY Access_Event = DENIED_LOCKOUT
8. VERIFY Access_Event_Time = (the time that credential C1 was presented)
9. VERIFY Access_Event_Credential = C1

-- verify that using an invalid credential at the an access point multiple times will cause the access point to go into a lockout
state
10. WRITE Lockout = FALSE
11. WAIT Internal Processing Fail Time
12. VERIFY Access_Event = LOCKOUT_RELINQUISH
13. VERIFY Access_Event_Time = (the time that FALSE was written to the Lockout property)
14. VERIFY Access_Event_Credential = (4194303, ?, 4194303)
15. IF (Failed_Attempts and Max_Failed_Attempts are supported) THEN

REPEAT X= (1 to Max_Failed_Attempts + 1) DO {
READ FailedAttempts = Failed_Attempts
MAKE (present credential C2 at credential reader for this access point)
VERIFY (Failed_Attempts = FailedAttempts + 1)
}

16. VERIFY (Lockout = TRUE)
17. VERIFY (Access_Event = LOCKOUT_MAX_ATTEMPTS)
18. VERIFY (Access_Event_Time = the time that Lockout was set to TRUE)
19. VERIFY (Access_Event_Credential = C2)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 255

20. MAKE (present credential C1 at credential reader for this access point)
21. VERIFY (Access_Event = DENIED_LOCKOUT)
22. VERIFY (Access_Event_Time = the time that credential C1 was presented)
23. VERIFY (Access_Event_Credential = C1)

-- verify that the lockout will automatically relinquish after the specified time
24. WAIT Lockout_Relinquish_Time
25. VERIFY (Lockout = FALSE)
26. VERIFY (Access_Event = LOCKOUT_RELINQUISHED)
27. VERIFY (Access_Event_Time = the time that Lockout was set to FALSE)
28. VERIFY Access_Event_Credential = (4194303, ?, 4194303)
29. MAKE (present credential C1 at credential reader for this access point)
30. VERIFY (Access_Event = GRANTED)
31. VERIFY (Access_Event_Time = the time that credential C1 was presented)
32. VERIFY (Access_Event_Credential = C1)

7.3.2.X56.8 Threat Level Test

Purpose: To verify Threat_Level is used to Grant or Deny access based on the Threat_Authority of the Access Credential.

Test Concept: Vary the Threat_Level of the access point to be lower or equal than the Threat_Authority of the credential to
verify that access is granted at this access point. Change the Threat_Level of the access point to the higher than the
Threat_Authority of the credential to verify that access is denied.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) An active credential with valid access rights for the access point shall be represented by Access Credential object
C1.This credential shall have a Threat_Authority of X, where 0 < X <100.

Test Steps:

-- verify that a credential with threat authority greater than threat level of the access point is granted access
1. WRITE Threat_Level = (any value less than X)
2. MAKE (present credential C1 at credential reader for this access point)
3. VERIFY Access_Event = GRANTED
4. VERIFY Access_Event_Time = (the time that credential C1 was presented)
5. VERIFY Access_Event_Credential = C1

-- verify that a credential with threat authority equal to the threat level of the access point is granted access
6. WRITE Threat_Level = X
7. MAKE (present credential C1 at credential reader for this access point)
8. VERIFY Access_Event = GRANTED
9. VERIFY Access_Event_Time = (the time that credential C1 was presented)
10. VERIFY Access_Event_Credential = C1

-- verify that a credential with threat authority less than the threat level of the access point is denied access
11. WRITE Threat_Level = (any value greater than X)
12. MAKE (present credential C1 at credential reader for this access point)
13. VERIFY Access_Event = DENIED_THREAT_LEVEL
14. VERIFY Access_Event_Time = (the time that credential C1 was presented)
15. VERIFY Access_Event_Credential = C1

7.3.2.X56.9 Denied Access Occupancy Upper Limit Test

Purpose: To verify occupancy counting, occupancy restrictions, and occupancy exemptions.

Test Concept: When occupancy counting is enabled and a valid credential is presented at the access point, then this test verifies
that access is granted only if the occupancy limits are not violated. If the occupancy limits are violated, then access is denied.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

256 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

If the credential has an occupancy exemption, then the credential will be granted access regardless of the occupancy count of
the zone.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) The Access Point object is configured to be an entry access point to an access zone which is represented by Access
Zone object Z1.

b) The Occupancy_Upper_Limit property of Z1 shall have the value X, where X>0.
c) A number of active credentials all with valid access rights for the access point shall be represented by Access

Credential objects C1...C(X+1) which shall be configured such that each has valid access to the access point.
d) The Occupancy_Upper_Limit_Enforced property shall have a value of TRUE.
e) The Occupancy_Count_Adjust property shall have a value of TRUE.
f) The Occupancy_Count property of Z1 shall have the value 0.
g) The Occupancy_Count_Enable property of Z1 shall have a value of TRUE.
h) The Authorization_Exemptions property, if it exists, of C(X+1) shall be empty.

Test Steps:

-- verify that a credential with valid access is granted access while the occupancy count of the zone is less than
the Occupancy_Upper_Limit property in the zone
1. REPEAT C = (C1…CX) DO {

 READ Count = Z1, Occupancy_Count
 MAKE (present credential C at credential reader for this access point)
 VERIFY Z1,Occupancy_Count = (Count +1)
 VERIFY Access_Event = GRANTED
 VERIFY Access_Event_Time = (the time that credential C was presented)
 VERIFY Access_Event_Credential = C
}

-- verify that a credential with valid access is denied access when the occupancy count of the zone becomes
greater than the Occupancy upper limit
2. READ Count = Z1, Occupancy_Count
3. VERIFY Z1,Occupancy_Upper_Limit = Count
4. MAKE (present credential C(X+1) at credential reader for this access point)
5. VERIFY Access_Event = DENIED_UPPER_OCCUPANCY_LIMIT
6. VERIFY Access_Event_Time = (the time that credential C(X+1) was presented)
7. VERIFY Access_Event_Credential = C(X+1)
8. VERIFY Z1,Occupancy_Count = Count

-- verify that a credential with valid access and an occupancy exemption is granted access when the occupancy count of the
zone becomes greater than the Occupancy upper limit
9. IF (the Authorization_Exemption property is not supported or the OCCUPANCY_CHECK exemption is not supported)

THEN {
10. READ Count = Z1, Occupancy_Count
11. VERIFY Z1,Occupancy_Upper_Limit = Count
12. WRITE C(X+1), Authorization_Exemptions = (OCCUPANCY_CHECK)
13. MAKE (present credential C(X+1) at credential reader for this access point)
14. VERIFY Access_Event = GRANTED
15. VERIFY Access_Event_Time = (the time that credential C(X+1) was presented)
16. VERIFY Access_Event_Credential = C(X+1)
17. VERIFY Z1,Occupancy_Count = Count + 1
}

7.3.2.X56.10 Denied Access Disabled Credential Test

Purpose: To test that a credential is denied access at an access point when the credential is disabled even when it has valid
access rights.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 257

Test Concept: A disabled credential is presented at an access point and access is denied. For testing purposes, the credential
shall be disabled by setting the Expiration_Time to a time in the past.

Configuration Requirements:
See 7.3.2.X56.1. This test requires the following additional configuration:

a) An access credential with valid access to AP1 shall be represented by Access Credential C1.
b) The Credential_Status property shall have the value ACTIVE.
c) The Reason_For_Disable property shall be empty.

Test Steps:

– test granted access when credential is active
1. VERIFY Reason_For_Disable = ()
2. VERIFY Credential_Status = ACTIVE
3. MAKE (present credential C1 at credential reader for access point AP1)
4. VERIFY AP1,Access_Event = GRANTED
5. VERIFY AP1,Access_Event_Time = (the time that the credential C1 was presented)
6. VERIFY AP1,Access_Event_Credential = C1

– test denied access when credential is inactive
7. MAKE (Expiration_Time = time < current time)
8. VERIFY Reason_For_Disable = (DISABLED_EXPIRED)
9. VERIFY Credential_Status = INACTIVE
10. MAKE (present credential C1 at credential reader for access point AP1)
11. VERIFY AP1,Access_Event = DENIED_CREDENTIAL_EXPIRED
12. VERIFY AP1,Access_Event_Time = (the time that the credential C1 was presented)
13. VERIFY AP1,Access_Event_Credential = C1

[Add new Clause 7.3.2.X57, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Access Zone object type.]

7.3.2.X57 Access Zone Object Tests

Many of the tests for the Access Zone object require interactions from other BACnet access control objects as a result of a valid
credential being processed. The required and optional BACnet object types are shown in figure X2.

The Access Zone is defined by list of Access Points that act as entry and exit points of the zone. The configuration requires at
least one Access Point object which is configured to be an entry access point and at least one Access Point that is configured
to be an exit access point. Each Access Point object which is part of the Access Zone must have an associated Credential Data
Input or a proprietary method to input credential values to the Access Point.

Properties in the Access Zone are written by the corresponding Access Point object when a valid credential is processed. The
vendor must configure the IUT to have a sufficient number of valid credentials for the test being executed. Each credential
must have an associated Access Credential object. Each Access Credential must have an associated Access Rights object that
provides valid access to the zone.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

258 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Credential Reader
(optional)

Entry access
point

Access
Point

Valid Access

Access
Credential 1

optional
optional

Credential
Data input

Access
Zone

Valid access

Access
Rights 1

Valid access

Access
Rights 2

Valid access

Access
Rights 3

Valid access

Access
Rights N

Valid Access

Access
Credential 2

Valid Access

Access
Credential 3

Valid Access

Access
Credential N

...
Exit access

point

Access
Point

optional
optional

Credential
Data input

NOTE: Line direction specifies the “is
referenced by” relationship between

the two objects.

Figure X2: Objects used for testing the Access Zone object

7.3.2.X57.1 Occupancy State Test

Purpose: This test verifies that the occupancy state reflects the occupancy conditions of the zone.

Test Concept: Adjust the occupancy count of the zone to levels above, at, and below the Occupancy_Upper_Limit and
Occupancy_Lower_Limit and verify that the Occupancy_State has the appropriate value.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.
b) Occupancy_Count_Enable shall have a value of TRUE
c) The Occupancy_Upper_Limit shall have a value X where X>0.
d) If the property is supported, the Occupancy_Lower_Limit shall have a value Y where 0 < Y < X.

Test Steps:

-- test normal case where occupancy count is between the upper and lower limit

1. WRITE Adjust_Value = 0
2. VERIFY Occupancy_Count = 0
3. WRITE Adjust_Value = X-1
4. VERIFY Occupancy_Count = (X-1)
5. VERIFY Occupancy_State = NORMAL

-- verify the case where occupancy count is at and above the upper limit
6. WRITE Adjust_Value = 1
7. VERIFY Occupancy_Count = X
8. VERIFY Occupancy_State = AT_UPPER_LIMIT
9. WRITE Adjust_Value = 1
10. VERIFY Occupancy_Count = X+1
11. VERIFY Occupancy_State = ABOVE_UPPER_LIMIT

-- verify the case where occupancy count is at and above the lower limit
12. WRITE Adjust_Value = 0
13. VERIFY Occupancy_Count = 0
14. VERIFY Occupancy_State = BELOW_LOWER_LIMIT
15. WRITE Adjust_Value = Y
16. VERIFY Occupancy_Count = Y
17. VERIFY Occupancy_State = AT_LOWER_LIMIT

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 259

18. WRITE Adjust_Value = 1
19. VERIFY Occupancy_Count = (Y+1)
20. VERIFY Occupancy_State = NORMAL

-- verify occupancy state when occupancy counting is disabled
21. WRITE Occupancy_Count_Enable = FALSE
22. VERIFY Occupancy_State = DISABLED

7.3.2.X57.2 Occupancy Counting Test

Purpose: To verify the occupancy counting functionality.

Test Concept:
Present a credential at the entry and exit access points and test that the occupancy count is properly changed.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.
b) Occupancy_Count_Enable shall have a value of TRUE
c) An access point which is an entry point to this zone shall be represented by Access Point object AP1. The

Occupancy_Count_Adjust property for this object shall have a value of TRUE.
d) An access point which is an exit point to this zone shall be represented by Access Point object AP2. The

Occupancy_Count_Adjust property for this object shall have a value of TRUE.
e) Two active credentials with valid access rights for the access points AP1 and AP2 shall be represented by Access

Credential objects C1 and C2.

Test Steps:

-- verify that presenting a credential at the entry access point increases the occupancy count
1. WRITE Adjust_Value = 0
2. VERIFY Occupancy_Count = 0
3. MAKE (present credential C1 at credential reader for access point AP1)
4. VERIFY Occupancy_Count = 1
5. MAKE (present credential C2 at credential reader for access point AP1)
6. VERIFY Occupancy_Count = 2

-- verify that presenting a credential at the exit access point decreases the occupancy count
7. MAKE (present credential C1 at credential reader for access point AP2)
8. VERIFY Occupancy_Count = 1
9. MAKE (present credential C2 at credential reader for access point AP2)
10. VERIFY Occupancy_Count = 0

7.3.2.X57.3 Keeping Track of Credentials Test

Purpose: To verify that the zone can keep track of the current credentials in the zone.

Test Concept:
Present a valid credential at an entry access point to this access zone. The object reference of the credential should be in the
credentials in zone list. When the credential is presented to an exit access point for this zone the reference to the credential in
the credential in zone list should be removed.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.
b) The Credentials_In_Zone property shall be an empty list.
c) An access point which is an entry point to this zone shall be represented by Access Point object AP1.
d) An access point which is an exit point to this zone shall be represented by Access Point object AP2.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

260 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

e) Two active credential with valid access rights for the access points AP1 and AP2 shall be represented by Access
Credential object C1 and C2.

Test Steps:

-- verify that presenting a credential at an entry access point puts it in the Credentials_In_Zone list
1. VERIFY Credentials_In_Zone = ()
2. MAKE (present credential C1 at credential reader for access point AP1)
3. VERIFY Credentials_In_Zone = (C1)
4. VERIFY Last_Credential_Added = C1
5. VERIFY Last_Credential_Added_Time = (the time that credential C1 was presented at AP1)
6. MAKE (present credential C2 at credential reader for access point AP1)
7. VERIFY Credentials_In_Zone = (C1,C2)
8. VERIFY Last_Credential_Added = C2
9. VERIFY Last_Credential_Added_Time = (the time that credential C2 was presented at AP1)

-- verify that presenting a credential at an exit access point removes it from the Credentials_In_Zone list
10. MAKE (present credential C1 at credential reader for access point AP2)
11. VERIFY Credentials_In_Zone = (C2)
12. VERIFY Last_Credential_Removed = C1
13. VERIFY Last_Credential_Removed_Time = the time that credential C1 was presented at AP2
14. MAKE (present credential C2 at credential reader for access point AP2)
15. VERIFY Credentials_In_Zone = ()
16. VERIFY Last_Credential_Removed = C2
17. VERIFY Last_Credential_Removed_Time = the time that credential C2 was presented at AP2

7.3.2.X57.4 Passback Mode Test

Purpose: To verify the passback functionality and passback exemption.

Test Concept: A valid credential is presented at the entry access point to this access zone. When the credential is presented a
second time, a passback notification should be generated, and if the passback mode is set to hard passback, then access to the
zone should be denied. If the credential has a passback exemption, then access will never be denied due to a passback violation.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.
b) An access point which is an entry point to this zone shall be represented by Access Point object AP1. The

Authoriztion_Mode property of AP1 shall have the value Authorize.
c) An access point which is an exit point to this zone shall be represented by Access Point object AP2. The

Authoriztion_Mode property of AP2 shall have the value Authorize.
d) An active credential with valid access rights for the access point AP1 and AP2 shall be represented by Access

Credential object C1.
e) The C1.Authorization_Exemptions list shall be empty.

Test Steps:

-- verify soft passback mode
1. MAKE (Passback_Mode = SOFT_PASSBACK)
2. READ EventTag = AP1,Access_Event_Tag
3. MAKE (present credential C1 at credential reader for access point AP1)
4. VERIFY AP1, Access_Event = GRANTED
5. VERIFY AP1,Access_Event_Time = (the time that credential C1 was presented)
6. VERIFY AP1,Access_Event_Credential = C1
7. VERIFY AP1,Access_Event_Tag = (EventTag + 1)
8. MAKE (present credential C1 at credential reader for access point AP1)
9. VERIFY AP1,Access_Event = GRANTED
10. VERIFY (AP1.Access_Event_Time = (the time that credential C1 was presented most recently)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 261

11. VERIFY AP1.Access_Event_Credential = C1
12. VERIFY AP1,Access_Event_Tag = (EventTag +2)
13. MAKE (present credential C1 at credential reader for access point AP2)

-- verify hard passback mode
14. MAKE (Passback_Mode = HARD_PASSBACK)
15. READ EventTag = AP1,Access_Event_Tag
16. MAKE (present credential C1 at credential reader for access point AP1)
17. VERIFY AP1.Access_Event = GRANTED
18. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
19. VERIFY AP1.Access_Event_Credential = C1
20. VERIFY AP1,Access_Event_Tag = EventTag + 1
21. MAKE (present credential C1 at credential reader for access point AP1)
22. VERIFY AP1.Access_Event = DENIED_PASSBACK
23. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
24. VERIFY AP1.Access_Event_Credential = C1
25. VERIFY AP1,Access_Event_Tag = (EventTag + 2)

-- verify passback timeout
26. WAIT (Passback_Timeout)
27. MAKE (present credential C1 at credential reader for access point AP1)
28. VERIFY AP1.Access_Event = GRANTED
29. VERIFY (AP1.Access_Event_Time = the time that credential C1 was presented)
30. VERIFY (AP1.Access_Event_Credential = C1)

-- verify hard passback off
31. MAKE (Passback_Mode = PASSBACK_OFF)
32. READ EventTag = AP1,Access_Event_Tag
33. MAKE (present credential C1 at credential reader for access point AP1)
34. VERIFY AP1.Access_Event = GRANTED
35. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
36. VERIFY AP1.Access_Event_Credential = C1
37. VERIFY AP1,Access_Event_Tag = EventTag + 1
38. MAKE (present credential C1 at credential reader for access point AP1)
39. VERIFY AP1.Access_Event = GRANTED
40. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
41. VERIFY (AP1.Access_Event_Credential = C1
42. VERIFY AP1,Access_Event_Tag = (EventTag + 2)

-- verify passback exemption
43. MAKE (Passback_Mode = HARD_PASSBACK)
44. MAKE (C1, Authorization_Exemption = (PASSBACK))
45. READ EventTag = AP1,Access_Event_Tag
46. MAKE (present credential C1 at credential reader for access point AP1)
47. VERIFY AP1.Access_Event = GRANTED
48. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
49. VERIFY AP1.Access_Event_Credential = C1
50. VERIFY AP1,Access_Event_Tag = EventTag + 1
51. MAKE (present credential C1 at credential reader for access point AP1)
52. VERIFY AP1.Access_Event = GRANTED
53. VERIFY AP1.Access_Event_Time = (the time that credential C1 was presented most recently)
54. VERIFY AP1.Access_Event_Credential = C1
55. VERIFY AP1,Access_Event_Tag = (EventTag + 2)

[Add new Clause 7.3.2.X59, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Access Rights object type.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

262 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X59 Access Rights Object Tests

Many of the tests for the Access Rights object require interactions from other BACnet access control objects as a result of a
credential being processed. The required and optional BACnet object types are shown in Figure d.

The Access Rights object specifies both positive and negative access rights. This list of access rights is used by the Access
Point object to determine the access decision. To test the access rights, the vendor must configure the IUT to have at least one
Access Point object which is referenced in the Access Rights objects used for this test.

Each Access Point object used in the test must have an associated Credential Data Input or a proprietary method to input
credential values to the Access Point.

The vendor must configure the IUT such that for each Access Rights object there is at least one corresponding Access Credential
object that references the Access Rights object.

When the access decision is determined, the IUT shall provide a method to show the result. Typically, the decision is exposed
through the Access Door object. When access is granted, the door is pulsed unlocked and when denied the door remains locked.
If the Access Door object is not used, then another method of showing the result shall be configured.

Credential Reader
(optional)

Access Door (optional)

Access
Point

Valid Access

Access
Credential

Valid access

Access
Rights

optional

optional

optional

Credential
Data input

optional

Access Door

Invalid access

Access
Credential

Invalid access

Access
Rights

Invalid access

Access
Rights

Invalid access

Access
Credential

...

NOTE: Line direction specifies the “is
referenced by” relationship between

the two objects.

Figure d: Objects used for testing the Access Rights object

7.3.2.X59.1 Enable Test

Purpose: This test verifies that the access rights object does not allow access when the Enable property is FALSE.

Test Concept: Present a valid credential at the access point. Since the access rights object that provides the access rights to the
access point is not enabled, access shall be denied.

Configuration Requirements: See 7.3.2.X59. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
c) AR1 shall have the Enable property set to TRUE
d) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

-- verify access granted with this access rights object when enable property is TRUE
1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = GRANTED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 263

3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1

 -- verify access denied with this access rights object when Enable property is FALSE
5. WRITE AR1, Enable = FALSE
6. MAKE (present credential C1 at credential reader for access point AP1)
7. VERIFY AP1,Access_Event = DENIED_NO_ACCESS_RIGHTS
8. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
9. VERIFY AP1,Access_Event_Credential = C1

7.3.2.X59.2 Negative Rules Test

Purpose: To verify that negative access rules explicitly disable access to an access point.

Test Concept: Present a credential at the access point. The access point at which the credential is trying to get entry is in the
negative rules list, and that rule is valid at the current time. Access to the access point is denied.

Configuration Requirements: See 7.3.2.X59. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies negative access rights to AP1 shall be represented by Access Rights object

AR1.
c) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = DENIED_POINT_NO_ACCESS_RIGHTS
3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1

7.3.2.X59.3 Positive Access Rules Test

Purpose: To verify that the positive access rules explicitly enable access to an access point.

Test Concept: Present a credential at the access point. The access point at which the credential is trying to get entry is in the
positive rules list, and that rule is valid at the current time. Access to the access point is granted.

Configuration Requirements: See 7.3.2.X59. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies positive access rights to AP1 shall be represented by Access Rights object

AR1.
c) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = GRANTED
3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1

7.3.2.X59.4 Accompaniment Test

Purpose: To verify that the accompaniment functionality works properly.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

264 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: Present a credential which needs accompaniment at the access point. Wait for the accompaniment time, as
specified in the access point. When this times out, the credential should be denied entry to the access point. Present the first
credential again at the access point. Present a second credential at the access point which has the rights to accompany the first
credential. Access should be granted to the first credential.

Configuration Requirements: See 7.3.2.X59. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1. If the Accompaniment_Time property is supported,
it shall be set to a value > 0.

b) An access rights object which specifies positive access rights to AP1 shall be represented by Access Rights object
AR1.

c) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1 that
requires accompaniment.

d) An active credential which has access rights which allow it to accompany a credential with access rights specified by
AR1 through AP1, shall be represented by Access Credential object C2.

e) An active credential which has valid access rights to AP1 but which does not meet the accompaniment requires of
AR1, shall be represented by Access Credential object C3.

Test Steps:

-- valid access through the access point
1. READ Tag = Access_Event_Tag
2. MAKE (present credential C1 at credential reader for access point AP1)
3. MAKE (present credential C2 at credential reader for access point AP1)
4. VERIFY AP1,Access_Event = GRANTED
5. VERIFY AP1,Access_Event_Time = (the time that the credential C1 was presented)
6. VERIFY AP1,Access_Event_Credential = C1
7. VERIFY AP1,Access_Event_Tag = (Tag + 1)

-- no accompaniment presented
8. MAKE (present credential C1 at credential reader for access point AP1)
9. WAIT AP1,Accompaniment_Time

10. VERIFY AP1,Access_Event = DENIED_NO_ACCOMPANIMENT
11. VERIFY AP1,Access_Event_Time = (the time that the credential C1 was presented)
12. VERIFY AP1,Access_Event_Credential = C1
13. VERIFY Access_Event_Tag = (Tag + 2)

-- Invalid accompaniment

14. MAKE (present credential C1 at credential reader for access point AP1)
15. MAKE (present credential C3 at credential reader for access point AP1)
16. VERIFY AP1,Access_Event = DENIED_INCORRECT_ACCOMPANIMENT
17. VERIFY AP1,Access_Event_Time = (the time that the credential C1 was presented)
18. VERIFY AP1,Access_Event_Credential = C1
19. VERIFY AP1,Access_Event_Tag = (Tag + 3)

[Add new Clause 7.3.2.X60, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Access Credential object type.]

7.3.2.X60 Access Credential Object Tests

Many of the tests for the Access Credential object require interactions from other BACnet access control objects as a result of
a credential being processed. The required and optional BACnet object types are shown in Figure e.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 265

The Access Credential defines a list of credential values (authentication factors) that are used to identify the credential. The
credential values are used by the Access Point object in determining the access control decision. To test the Access Credential
object, the vendor must configure the IUT to have at least one Access Point object. Each Access Credential used in this test
must reference an Access Rights object which references the Access Point object

Each Access Point object used in the test must have an associated Credential Data Input or a proprietary method to input
credential values to the Access Point.

The vendor must configure the IUT such that for each Access Rights object there is at least one corresponding Access Credential
object that references the Access Rights object.

When the access decision is determined, the IUT shall provide a method to show the result. Typically, the decision is exposed
through the Access Door object. When access is granted, the door is pulsed unlocked and when denied the door remains locked.
If the Access Door object is not used, then another method of showing the result shall be configured.

Credential Reader
(optional)

Access Door (optional)

Access
Point

Valid Access

Access
Credential

Valid access

Access
Rights

optional

optionaloptional

Credential
Data input

optional

Access Door
NOTE: Line direction specifies the “is
referenced by” relationship between

the two objects.

Figure e: BACnet Objects used for testing the Access Credential object

7.3.2.X60.1 Credential Status, Credential Disable and Reason for Disable Test

Purpose: To verify the ability to disable the credential and set the associated reason and to enable the credential.

Test Concept: The credential status is set to INACTIVE, and the corresponding reason or reasons are written to the
Reason_For_Disable list.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) An access credential shall be represented by Access Credential C1.
b) The Credential_Status property shall have the value ACTIVE.
c) The Reason_For_Disable property shall be empty.

Notes to Tester: This test only verifies the most common disable reasons (DISABLED_MANUAL,
DISABLED_NOT_YET_ACTIVE, DISABLED_EXPIRED).

Test Steps:

 -- test DISABLED_MANUAL
1. VERIFY Credential_Status = ACTIVE
2. VERIFY Reason_For_Disable = ()
3. MAKE (add DISABLED_MANUAL to Reason_For_Disable property)
4. VERIFY Reason_For_Disable = (DISABLED_MANUAL)
5. VERIFY Credential_Status = INACTIVE
6. MAKE (remove DISABLED_MANUAL from Reason_For_Disable property)
7. VERIFY Reason_For_Disable = ()
8. VERIFY Credential_Status = ACTIVE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

266 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- test DISABLED_NOT_YET_ACTIVE
9. VERIFY Credential_Status = ACTIVE

10. VERIFY Reason_For_Disable = ()
11. MAKE (set Activation_Time = time > current time)
12. VERIFY Reason_For_Disable = (DISABLED_NOT_YET_ACTIVE)
13. VERIFY Credential_Status = INACTIVE
14. MAKE (set Activation_Time = time < current time)
15. VERIFY Reason_For_Disable = ()
16. VERIFY Credential_Status = ACTIVE

-- test DISABLED_EXPIRED

17. VERIFY Credential_Status = ACTIVE
18. VERIFY Reason_For_Disable = ()
19. MAKE (set Expiration_Time = time < current time)
20. VERIFY Reason_For_Disable = (DISABLED_EXPIRED)
21. VERIFY Credential_Status = INACTIVE
22. MAKE (set Expiration_Time = time > current time)
23. VERIFY Reason_For_Disable = ()
24. VERIFY Credential_Status = ACTIVE

7.3.2.X60.2 Activation Time and Expiration Time Test

Purpose: To test the activation time and expiration time functionality of this object.

Test Concept: The Activation_Time of the credential is set to a time in the future and the credential should be disabled. The
Expiration_Time is set to a time in the past and the credential should be disabled.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) The Credential_Status property shall have the value ACTIVE.
b) The Reason_For_Disable property shall be empty.
c) The Activation_Time shall have an initial value of 0xFF
d) The Expiration_Time shall have an initial value of 0xFF.

Test Steps:

-- test activation time
1. VERIFY Credential_Status = ACTIVE
2. VERIFY Reason_For_Disable = ()
3. MAKE (set Activation_Time = time > current time)
4. VERIFY Credential_Status = INACTIVE
5. VERIFY Reason_For_Disable = (DISABLED_NOT_YET_ACTIVE)
6. MAKE (set Activation_Time = time < current time)
7. VERIFY Credential_Status = ACTIVE
8. VERIFY Reason_For_Disable = ()

-- test expiration time
9. VERIFY Credential_Status = ACTIVE
10. VERIFY Reason_For_Disable = ()
11. MAKE (Expiration_Time = time < current time)
12. VERIFY Credential_Status = INACTIVE
13. VERIFY Reason_For_Disable = (DISABLED_EXPIRED)
14. MAKE (Expiration_Time = time > current time)
15. VERIFY Credential_Status = ACTIVE
16. VERIFY Reason_For_Disable = ()

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 267

7.3.2.X60.3 Disabled Access Rights Test

Purpose: To verify the enable field disables an access right for this credential when set to FALSE.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
c) An active credential where Assigned_Access_Rights[1].Assigned-Access-Rights = AR1 shall be represented by

Access Credential object C1. Assigned_Access_Rights[1].Enable shall be TRUE.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = GRANTED
3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1
5. WRITE Assigned_Access_Rights[1].Enable = FALSE
6. MAKE (present credential C1 at credential reader for access point AP1)
7. VERIFY AP1,Access_Event = DENIED_NO_ACCESS_RIGHTS
8. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
9. VERIFY AP1,Access_Event_Credential = C1

7.3.2.X60.4 Days Remaining and Uses Remaining Test

Purpose: To test the days remaining and uses remaining functionality of this object.

Test Concept: Set the Days_Remaining property to 0. The credential will become inactive and the corresponding reason for
disable put in the Reason_For_Disable property.

Set the Uses_Remaining to 0. The credential will become inactive and the corresponding reason for disable will be put in the
Reason_For_Disable property.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) The Credential_Status property shall have the value ACTIVE.
b) The Reason_For_Disable property shall be empty.
c) Days_Remaining shall have a value of -1 or >0.
d) Uses_Remaining shall have a value of -1 or >0.

Test Steps:

-- test day remaining
1. VERIFY Credential_Status = ACTIVE
2. VERIFY Reason_For_Disable = ()
3. MAKE (Days_Remaining = 0)
4. VERIFY Credential_Status = INACTIVE
5. VERIFY Reason_For_Disable = (DISABLED_MAX_DAYS)
6. MAKE (Days_Remaining = -1 OR Days_Remaining > 0)
7. VERIFY Credential_Status = ACTIVE
8. VERIFY Reason_For_Disable = ()

-- test uses remaining
9. VERIFY Credential_Status = ACTIVE
10. VERIFY Reason_For_Disable = ()
11. MAKE (Uses_Remaining = 0)
12. VERIFY Credential_Status = INACTIVE
13. VERIFY Reason_For_Disable = (DISABLED_MAX_USES)
14. MAKE (Uses _Remaining = -1 OR Uses _Remaining > 0)
15. VERIFY Credential_Status = ACTIVE
16. VERIFY Reason_For_Disable = ()

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

268 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X60.5 Absentee Limit Test

Purpose: To verify the absentee limit functionality of this object.

Test Concept: Set the Absentee_Limit property some value >= 0. Use the credential to access an access point. Change the
current date to one that is greater than (current date + Absentee_Limit) and attempt to gain access to an access point. Access
should be denied because the credential should be disabled due to inactivity.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) Absentee_Limit >= 0
b) The Credential_Status property shall have the value ACTIVE.
c) The Reason_For_Disable property shall be empty.
d) Days_Remaining shall have a value > 0.
e) Last_Use_Time shall be set to a valid date and time.

Test Steps:

1. VERIFY Credential_Status = ACTIVE
2. VERIFY Reason_For_Disable = ()
3. TRANSMIT UTCTimeSynchronization-Request, 'Time' = (any day and time greater than Absentee_Limit days)
4. VERIFY Credential_Status = INACTIVE
5. VERIFY Reason_For_Disable = (DISABLED_INACTIVITY)

 - clear the condition
6. MAKE (set Absentee_Limit > number of days since Last_Use_Time)
7. VERIFY Credential_Status = ACTIVE
8. VERIFY Reason_For_Disable = ()

7.3.2.X60.6 Last Access Point, Last Use Time and Last Access Event Test

Purpose: To verify that the Last Access Point, Last Access Event, and Last Use Time properties are updated when this credential
is used at an access point.

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:

a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
c) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = GRANTED
3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1
5. VERIFY Last_Access_Point = AP1
6. VERIFY Last_Use_Time = AP1,Access_Event_Time
7. VERIFY Last_Access_Event = GRANTED

7.3.2.X60.7 Extended Time Enable Test

Purpose: To verify that a credential used at an access point with the extended flag set to TRUE results in the corresponding
door to pulse open for a Pulse_Extended period of time as defined in the door object.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 269

Configuration Requirements: See 7.3.2.X60. This test requires the following additional configuration:
a) An access door shall be represented by Access Door object AD1 and Door_Delay_Time shall be 0.
b) An access point, which controls AD1, shall be represented by Access Point object AP1.
c) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
d) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.
e) The Extended_Time_Enable property shall be FALSE.

Test Steps:

-- verify that PULSE_UNLOCK is written when the extended time enable is FALSE
1. MAKE (present credential C1 at credential reader for access point AP1)
2. VERIFY AP1,Access_Event = GRANTED
3. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event_Credential = C1
5. BEFORE Door_Pulse_Time VERIFY AD1, Present_Value = PULSE_UNLOCK

-- verify that EXTENDED_PULSE_UNLOCK is written when the extended time enable is TRUE
6. WRITE Extended_Time_Enable = TRUE
7. MAKE (present credential C1 at credential reader for access point AP1)
8. VERIFY AP1,Access_Event = GRANTED
9. VERIFY AP1,Access_Event_Time = (the time that the credential was presented)
10. VERIFY AP1,Access_Event_Credential = C1
11. BEFORE Door_Pulse_Time VERIFY AD1, Present_Value = EXTENDED_PULSE_UNLOCK

[Add new Clause 7.3.2.X61, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Credential Data object type.]

7.3.2.X61 Credential Data Input Object Tests
The Credential Data Input object type represents a device or process that reads an authentication factor from a physical device
such as a card reader, keypad, or biometric device. There are countless variations and authentication formats supported for
these devices. As such, there is not a standard format or device configuration that can be mandated for these tests.
The vendor must configure the IUT such that the Credential Data Input device can read an authentication factor from the
corresponding physical device, including setting the Supported_Formats[1] property to the correct authentication factor format
(Figure f). This configuration is considered to be a local matter and will not be tested.

Credential Reader

Credential Data
input

Proprietary configuration

Figure f: Credential Data Input configuration

7.3.2.X61.1 Return from Out Of Service Undefined Test

Purpose: To verify that the Present_Value Format-Type becomes undefined when out of service is set to false.

Configuration Requirements: See 7.3.2.X61. This test requires the following additional configuration:

a) The Out_Of_Service property shall be TRUE.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

270 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. WRITE Out_Of_Service = FALSE
2. VERIFY Present_Value. Format-Type = UNDEFINED
3. VERIFY Present_Value. Format-Class = 0

7.3.2.X61.2 Read Valid Authentication Factor Test

Purpose: To verify that Present_Value is set to the proper value when an authentication factor with a recognized format is read
at the corresponding physical device.

Configuration Requirements: See 7.3.2.X61. This test requires the following additional configuration:

a) The Out_Of_Service property shall be FALSE.
b) Two authentication factors, AF1 and AF2, shall be provided which can be read by the physical device which have the

format specified in Supported_Formats[1].

Test Steps:

 -- test AF1
1. MAKE (present AF1 at the credential reader)
2. VERIFY Present_Value. Format-Type = Supported_Formats[1]. Format-Type
3. VERIFY Present_Value. Format-Class = Supported_Formats[1]. Format-Class
4. VERIFY Present_Value. Value = the authentication format value of AF1

-- test AF2

5. MAKE (present AF2 at the credential reader)
6. VERIFY Present_Value. Format-Type = Supported_Formats[1]. Format-Type
7. VERIFY Present_Value. Format-Class = Supported_Formats[1]. Format-Class
8. VERIFY Present_Value. Value = the authentication format value of AF2

[Add new Clause 7.3.2.X62, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Network Port object type.]

7.3.2.X62 Network Port Object Tests

Configuration Requirements: In addition to the requirements listed for each test, the Network Port object which is being tested
shall be configured and operating and have no changes pending, unless required by the specific test’s specification.

7.3.2.X62.1 Network Port Configuration Tests

These tests verify that Network Port objects reflect the configuration in use, and for writable ones, change the network
configuration.

7.3.2.X62.1.1 Configure Network Through Network Port Object Test

Purpose: This test verifies that Network Port properties control aspects of the network configuration as expected.

Test Concept: Given the complexity of the Network Port object, and the impact changes to the Network Port has on the test
network, this test is provided to allow testing of the Network Port functionality as the network is reconfigured for other tests.
The Network Port object is modified to meet the conditions of the new test network setup. The changes are activated, the TD

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 271

is reconfigured to match, and communication with the IUT is re-verified. The configuration of the network is expected to be
tested in more detail as the other datalink tests are applied.

Test Configuration: The test network is configured such that the TD and IUT can communicate, but the configuration does not
match the target network configuration. P1 through PN are Network Port properties that need to be written in order to transition
the network from the current setup to the target network setup. This set of properties shall be selected from the set of the
properties that are writable in the IUT.

Test Steps:

1. REPEAT P = P1 ... PN {
 WRITE P = (NV: the value required for the target network setup)
 VERIFY P = NV
 }
2. VERIFY Changes_Pending = TRUE
3. REPEAT P = P1 ... PN {
 CHECK (the new value for P is not in use by the network port, unless the new value is the same as the
 old value)
 }
4. TRANSMIT ReinitializeDevice-Request
 'Reinitialized State of Device' = WARMSTART | ACTIVATE_CHANGES
 'Password' = (any valid password)
5. RECEIVE BACnet-SimpleACK-PDU
6. MAKE(change the TD network setup and the network setup of all other devices on the network to match the
 target network setup)
7. WAIT Activate Changes Fail Time
8. VERIFY Changes_Pending = FALSE

7.3.2.X62.1.2 Verify Network Configuration Through Network Port Object Test

Purpose: This test verifies that Network Port properties correctly reflect aspects of the network configuration as expected.

Test Concept: Given the complexity of the Network Port object, and the impact changes to the Network Port has on the test
network, this test is provided to allow testing of the Network Port functionality as the network is reconfigured for other tests.
The IUT’s network configuration is modified to meet the conditions of the new test network setup. The TD is reconfigured to
match, and communication with the IUT is re-verified. The Network Port object is then checked to ensure it reflects the new
network setup.

Test Steps:

1. MAKE(configure the network, including reconfiguring the TD, IUT, and other devices on the network)
2. CHECK(that the value of each of the present Network Port properties which applies to the associated data link reflects the
current network setup)

7.3.2.X62.1.3 Network Port Non-Volatility Properties Test

Purpose: This test verifies that after Network Port properties are changed and activated, the revised value is maintained through
a power failure and device restart.

Test Concept: Write one or more properties, P1 ... PN, of a Network Port object which are required for proper operation of the
network port. If any of the properties utilize the pending changes functionality, activate the changes. Restart the IUT device by
temporarily removing power. When the device has resumed operation after that restart, verify that the new values for the
properties were maintained across the reset and are in use by the port.

Test Steps:

1. REPEAT P = P1 ... PN {

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

272 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 WRITE P = (a new value different from the property’s current value)
 }
2. IF any of the properties utilize the pending change functionality THEN
 VERIFY Changes_Pending = TRUE
 TRANSMIT ReinitializeDevice-Request
 'Reinitialized State of Device' = WARMSTART | ACTIVATE_CHANGES
 'Password' = (any valid password)
 RECEIVE BACnet-SimpleACK-PDU
 MAKE(reconfigure the TD and other devices on the network to the new network settings)
 WAIT Activate Changes Fail Time
 ELSE
 VERIFY Changes_Pending = FALSE
3. REPEAT P = P1 ... PN {
 VERIFY P = (the new value for the property)
 }
4. MAKE (the IUT power cycle to reinitialize)
5. REPEAT P = P1 ... PN {
 VERIFY P = (the new value for the property)
 CHECK (that the value for P is in use by the network port)
 }

7.3.2.X62.1.4 Network Port Configuration Conflict Test
Purpose: To verify that either multiple clients can write to a Network Port object at the same time, or the
CONFIGURATION_IN_PROGRESS error is reported.

Test Concept: The TD simulates 2 devices (TD and TD2), attempting to write to properties in a Network Port object, O1. The
IUT must either accept the second write, or the IUT returns an error with an Error Class of DEVICE and an error code of
CONFIGURATION_IN_PROGRESS. Finally, the Network Port’s changes are activated and then verified.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 SOURCE = TD,
 'Object Identifier' = O1,
 'Property Identifier' = (P1: a writable property which utilizes the pending changes
 functionality),
 'Property Value' = (any valid value),
2. RECEIVE BACnet-SimpleACK-PDU
3. TRANSMIT WriteProperty-Request,
 SOURCE = TD2,
 'Object Identifier' = O1,
 'Property Identifier' = (P2: a writable property which utilizes the pending changes
 functionality, and is different than P1, if possible),
 'Property Value' = (any valid value),
4. RECEIVE BACnet-SimpleACK-PDU
 DESTINATION = IUT
 | BACnet-Error-PDU
 'Error Class' = DEVICE,
 'Error Code' = CONFIGURATION_IN_PROGRESS

5. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ACTIVATE_CHANGES,
 'Password' = (any valid password)
6. RECEIVE BACnet-SimpleACK-PDU
7. MAKE(reconfigure the TD and other devices on the network to the new network settings)
8. WAIT Activate Changes Fail Time
9. IF P1 is a different property than P2 THEN
 CHECK(P1’s value is in use by the network port)
10. CHECK(P2’s value is in use by the network port)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 273

7.3.2.X62.2 Network-Number-Is Updates Network_Number_Quality Test

Purpose: To verify that Network_Number_Quality is updated when the IUT learns its Network_Number from Network-
Number-Is.

Test Concept: Write 0 to Network_ Number to set Network_Number_Quality to UNKNOWN. Send a Network-Number-Is
message to the IUT indicating that the Network_Number is learned and verify that Network_Number_Quality changes to
LEARNED. Send a Network-Number-Is message to the IUT indicating that the Network_Number is configured and verify that
Network_Number_Quality changes to LEARNED_CONFIGURED. Write 0 to Network_ Number and verify that
Network_Number_Quality changes to UNKNOWN.

Test Configuration: Select a Network Port object, O1, which is enabled and has a writable Network_Number. Connect the TD
to the network associated with Network Port O1. This test shall be skipped if the TD cannot be directly connected to the IUT’s
network.

Test Steps:

-- set network number quality to UNKNOWN
1. WRITE Network_Number = 0
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ACTIVATE_CHANGES,
 'Password' = (any valid password)
3. RECEIVE BACnet-SimpleACK-PDU
4. WAIT Activate Changes Fail Time
5. VERIFY Network_Number_Quality = UNKNOWN

-- make IUT learn the network number
6. TRANSMIT Network-Number-Is
 DESTINATION = LOCAL_BROADCAST | IUT,
 'Network Number' = (N1: any valid value)
 'Flag' = 0 -- learned
7. VERIFY Network_Number_Quality = LEARNED
8. VERIFY Network_Number = N1

-- make IUT learn the network number from a configure device
9. TRANSMIT Network-Number-Is
 DESTINATION = LOCAL_BROADCAST | IUT,
 'Network Number' = (N2: any valid value)
 'Flag' = 1 -- configured
10. VERIFY Network_Number_Quality = LEARNED_CONFIGURED
11. VERIFY Network_Number = N2

-- configure the IUT’s network number
12. WRITE Network_Number = (N3: any valid value other than 0)
13. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ACTIVATE_CHANGES,
 'Password' = (any valid password)
14. RECEIVE BACnet-SimpleACK-PDU
15. WAIT Activate Changes Fail Time
16. VERIFY Network_Number_Quality = CONFIGURED

17. TRANSMIT Network-Number-Is
 DESTINATION = LOCAL_BROADCAST | IUT,
 'Network Number' = (N4: any valid value)
 'Flag' = 1 -- configured
18. VERIFY Network_Number_Quality = CONFIGURED
19. VERIFY Network_Number = N3

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

274 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- revert network number quality to UNKNOWN
20. WRITE Network_Number = 0
21. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ACTIVATE_CHANGES,
 'Password' = (any valid password)
22. RECEIVE BACnet-SimpleACK-PDU
23. WAIT Activate Changes Fail Time
24. VERIFY Network_Number_Quality = UNKNOWN

7.3.2.X62.3 Network Port Command Tests

7.3.2.X62.3.1 IDLE Command Rejected

Purpose: To verify that the Command property does not accept write of IDLE.

Test Concept: Write IDLE to the command property and verify that an error-class of PROPERTY with an error-code of
VALUE_OUT_OF_RANGE is returned.

Test Configuration: Execute the test against a Network Port object with a writable Command property. This test shall be skipped
if the IUT does not support the Command property. The Network Port object shall have no pending changes.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (a Network Port object),
 'Property Identifier' = Command,
 'Property Value' = IDLE
2. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X62.3.2 DISCARD_CHANGES Command Test

Purpose: To verify that the Network Port discards pending changes when the Command DISCARD_CHANGES is received.

Test Concept: Write values to one or more properties, P1 .. Px, which utilize the pending changes functionality. Write
DISCARD_CHANGES to the Command property and verify that the properties have reverted to their previous values.

Test Configuration: Execute the test on a Network Port object which supports the DISCARD_CHANGES command. This test
shall be skipped if the IUT does not support the DISCARD_CHANGES command.

Test Steps:

-- save initial values of the properties and change each one to a new value
1. REPEAT I = (in the range 1 through the number of properties being written) {
 V[I] = READ P[I]
 WRITE P[I] = (a value different than V[I], if possible)
}

-- discard the changes
2. WRITE Command = DISCARD_CHANGES
3. WAIT Activate Changes Fail Time

-- verify that no changes are pending any more
4. VERIFY Changes_Pending = FALSE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 275

5. VERIFY Command = IDLE

-- verify that the properties have reverted in value, and that the old value remains in use by the port
6. REPEAT I = (in the range 1 through the number of properties being written) {
 VERIFY P[I] = V[I]
 CHECK(the value V[I] is in use by the network port)
}

-- command the device to activate any changes which should have no effect
7. TRANSMIT ReinitializeDevice-Request
 'Reinitialized State of Device' = WARMSTART | ACTIVATE_CHANGES
 'Password' = (any valid password)
8. RECEIVE BACnet-SimpleACK-PDU
9. MAKE(reconfigure the TD and other devices on the network to the new network settings)
10. WAIT Activate Changes Fail Time
11. VERIFY Command = IDLE

-- verify that the properties retain their original values, and that that value remains in use by the port
12. REPEAT I = (in the range 1 through the number of properties being written) {
 VERIFY P[I] = V[I]
 CHECK(the value V[I] is in use by the network port)
}

7.3.2.X62.3.3 RENEW_FD_REGISTRATION Command Tests

7.3.2.X62.3.3.1 RENEW_FD_REGISTRATION Command Test

Purpose: To verify that the Network Port attempts to renew its Foreign Device registration when commanded to do so.

Test Concept: Starting with a Network Port object which is already registered with a BBMD as a Foreign Device, command
the Network Port to RENEW_FD_REGISTATION but do have the TD respond. Verify that the Network Port attempts to
renew its Foreign Device registration. Wait until the Network Port has completed its attempt and verify that the Relibaility has
been set to RENEW_FD_REGISTATION_FAILURE. Command the Network Port to RENEW_FD_REGISTRATION and
have the TD respond. Verify that the attempt succeeds and that Reliability is reset to NO_FAULT_DETECTED. Command
the Network Port to RENEW_FD_REGISTRATION and have the TD respond. Verify that the attempt succeeds.

Test Configuration: Configure a Network Port for BACnet/IP or BACnet/IPv6 in FOREIGN mode. Allow the IUT to complete
its registration with the TD acting as the BBMD before continuing. If the IUT does not support registering as a Foreign Device,
or the IUT does not support the RENEW_FD_REGISTRATION command, then this test shall be skipped. The Network Port
object shall have no pending changes.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Changes_Pending = FALSE
2. VERIFY Reliability = NO_FAULT_DETECTED
3. VERIFY BACnet_IP_Mode = FOREIGN

-- request the renewal, and wait for it to timeout
4. WRITE Command = RENEW_FD_REGISTRATION
5. BEFORE Internal Processing Fail Time
 RECEIVE Register-Foreign-Device
 ‘Time-to-Live’ = FD_Subscription_Lifetime

6. WAIT Foreign Device Registration Fail Time
7. VERIFY Reliability = RENEW_FD_REGISTRATION_FAILURE
8. VERIFY Command = IDLE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

276 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- re-request the renewal, and allow it to succeed
9. WRITE Command = RENEW_FD_REGISTRATION
10. BEFORE Internal Processing Fail Time
 RECEIVE Register-Foreign-Device
 ‘Time-to-Live’ = FD_Subscription_Lifetime
11. TRANSMIT BVLC-Result,
 ‘Result Code’ = Successful completion
12. VERIFY Reliability = NO_FAULT_DETECTED
13. VERIFY Command = IDLE

14. WAIT (a random amount of time significantly less than FD_Subscription_Lifetime)

-- re-request the renewal, and allow it to succeed
15. WRITE Command = RENEW_FD_REGISTRATION
16. BEFORE Internal Processing Fail Time
 RECEIVE Register-Foreign-Device
 ‘Time-to-Live’ = FD_Subscription_Lifetime
17. TRANSMIT BVLC-Result,
 ‘Result Code’ = Successful completion
18. VERIFY Reliability = NO_FAULT_DETECTED
19. VERIFY Command = IDLE

7.3.2.X62.3.3.2 RENEW_FD_REGISTRATION Command Failure Test

Purpose: To verify that Network Port object respond to RENEW_FD_REGISTRATION commands when the command is not
supported / enabled.

Test Concept: Attempt to command a Network Port which is either not an BACnet/IP nor BACnet/IPv6 port or which is not in
FOREIGN mode, to renew its FD subscription. Verify that the attempt fails with an Error Class of PROPERTY and an error
code of VALUE_OUT_OF_RANGE.

Test Configuration: Select a Network Port which is not in FOREIGN mode. If the IUT does not support the Command property,
then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. IF Network_Type is IPV4 or IPV6 THEN
2. VERIFY BACnet_IP_Mode <> FOREIGN

3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = RENEW_FD_SUBSCRIPTION,
4. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
5. VERIFY Command = IDLE

7.3.2.X62.3.4 RESTART_SLAVE_DISCOVERY Command Tests

7.3.2.X62.3.4.1 RESTART_SLAVE_DISCOVERY Command Test

Purpose: To verify that the Network Port restarts the slave discovery process when commanded to.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 277

Test Concept: Starting with a Network Port object which is configured as an MS/TP Slave Proxy, command the Network Port
to RESTART_SLAVE_DISCOVERY. Verify that the IUT restarts slave discovery.

Test Configuration Configure an MSTP Network Port object to act as an MS/TP Slave Proxy with Auto_Slave_Discovery set
to TRUE. Configure the TD to act as an MS/TP slave. Delay the stat of the test until after the IUT has completed its initial
slave confirmation. If the IUT does not support automatic slave discovery, or the IUT does not support the
RESTART_SLAVE_DISCOVERY command, then this test shall be skipped.

Notes to Tester: The IUT may interrogate the slave addresses in any order. The IUT is allowed to generate any other traffic
during the test, including, and is not limited to reading property values from the devices it finds.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Network_Type = MSTP
2. VERIFY Slave_Proxy_Enable = TRUE

-- request the renewal, and wait for it to timeout
3. WRITE Command = RESTART_SLAVE_DISCOVERY
4. BEFORE Slave Proxy Confirm Interval
 REPEAT addr=(all MS/TP addresses excluding the IUT’s MAC address) DO {
 RECEIVE DESTINATION=addr, SRC=IUT
 ReadProperty-Request,
 ‘Object Identifier’ = (DEVICE,4194303),
 ‘Property Identifier’ = Protocol_Services_Supported
 }
5. VERIFY Command = IDLE

7.3.2.X62.3.4.2 RESTART_SLAVE_DISCOVERY Command Failure Test

Purpose: To verify that Network Port object respond to RESTART_SLAVE_DISCOVERY commands when the command is
not supported / enabled.

Test Concept: Attempt to command a Network Port which is not acting as a slave proxy to RESTART_SLAVE_DISCOVERY.
Verify that the attempt fails with an Error Class of PROPERTY and an error code of VALUE_OUT_OF_RANGE.

Test Configuration: Select a Network Port which is not configured to be a slave proxy. If the IUT supports slave proxy
functionality, this test shall be skipped as the standard does not specify how the IUT should respond when slave proxy is
supported but not enabled. If the IUT does not support the Command property, then this test shall be skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = RESTART_SLAVE_DISCOVERY
2. IF Network_Type is MSTP THEN
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_SUPPORTED
 ELSE
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
3. VERIFY Command = IDLE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

278 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X62.3.5 RENEW_DHCP Command Tests

7.3.2.X62.3.5.1 RENEW_DHCP Command Test

Purpose: To verify that the Network Port attempts to renew its addressing information when commanded to.

Test Concept: Starting with a Network Port object which is configured to use DHCP and which supports the RENEW_DHCP
command, command the port to RENEW_DHCP. Verify that the IUT requests a renewal of addressing information.

Test Configuration: Select a Network Port which is an IP or IPv6 port setup for auto-addressing. If the IUT does not support
the Command property, then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. IF Network_Type = IPV4 THEN
 VERIFY IP_DHCP_Enable = TRUE
2. If Network_Type = IPV6 THEN
 VERIFY IPv6_Auto_Addressing_Enable = TRUE

-- request the renewal, and wait for it to timeout
3. WRITE Command = RENEW_DHCP
4. CHECK(that the IUT requested a renewal of its addressing information)
5. VERIFY Command = IDLE

7.3.2.X62.3.5.2 RENEW_DHCP Command Failure Test

Purpose: To verify that Network Port object responds to RENEW_DHCP commands when the command is not supported /
enabled.

Test Concept: Attempt to command a Network Port which is either not an BACnet/IP nor BACnet/IPv6 port or which is not in
configured for auto-addressing. Verify that the attempt fails with an Error Class of PROPERTY and an error code of
VALUE_OUT_OF_RANGE.

Test Configuration: Select a Network Port which is not an IP or IPv6 port setup for auto-addressing. If the IUT does not support
the Command property, then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. IF Network_Type is IPV4 and IP_DHCP_Enable is present THEN
 VERIFY IP_DHCP_ENABLE = FALSE
2. IF Network_Type is IPV6 and IPV6_Auto_Addressing_Enabled is present THEN
 VERIFY IPV6_Auto_Addressing_Enabled = FALSE

3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = RENEW_DHCP

4. IF Network_Type is IPV4 or IPV6 THEN
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 ELSE
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
5. VERIFY Command = IDLE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 279

7.3.2.X62.3.6 RESTART_AUTO-NEGOTIATION Command Tests

7.3.2.X62.3.6.1 RESTART_AUTO-NEGOTIATION Command Test

Purpose: To verify that the Network Port attempts to renegotiate its link speed when commanded to.

Test Concept: Starting with a Network Port object which is configured to auto-negotiate its link speed and which supports the
RESTART_AUTONEGOTIATION command, is commanded to restart auto-negotiation. The link speed is changed, and it is
verified that the IUT performs link speed negotiation and is able to communicate with the new speed.

Test Configuration: The TD and IUT are connected on a network for which the IUT performs link speed auto-negotiation. The
Network Port object for the port is configured to perform auto-negotiation, If the IUT does not support the
RESTART_AUTONEGOTIATION command, then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Link_Speed_Autonegotiate = TRUE

-- request the renewal, and wait for it to timeout
3. WRITE Command = RESTART_AUTONEGOTIATION
4. MAKE(change the link speed for the network or link)
5. WAIT Auto Negotiation Fail Time
6. CHECK(check any external indications that the new link speed was detected)
7. VERIFY Command = IDLE -- the act of validating the command
 -- property is sufficient to validate that the command worked

7.3.2.X62.3.6.2 RESTART_AUTONEGOTIATION Command Failure Test

Purpose: To verify that Network Port objects respond to the RESTART_AUTO-NEGOTIATION command with the correct
error codes when the command is not supported / enabled.

Test Concept: Starting with a Network Port object which is not configured to auto-negotiate its link speed or which does not
support the RESTART_AUTO-NEGOTIATION, command it to restart auto-negotiation. Verify that the correct error code is
returned.

Test Configuration: If the network port support auto-negotiation, disable it. If the IUT does not support the Command property,
or all Network Port object support auto-negotiation and it cannot be disabled, then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Link_Speed_Auto-negotiate = TRUE

-- request the renewal, and wait for it to timeout
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = RESTART_AUTO-NEGOTIATION

3. IF the port does not support auto-negotiation THEN
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 ELSE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

280 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X62.3.7 DISCONNECT Command Tests

7.3.2.X62.3.7.1 DISCONNECT Command Test

Purpose: To verify that the Network Port attempts to disconnect its link speed when commanded to.

Test Concept: Starting with a Network Port object which supports the DISCONNECT command. The port is commanded to
disconnect. The disconnection of the link is verified.

Test Configuration: The TD and IUT are connected on a network which supports disconnection. If the IUT does not support
the DISCONNECT command, then this test shall be skipped.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Network_Type = (a network type that supports disconnection, such as PTP)
2. WRITE Command = DISCONNECT
3. CHECK(that the link was disconnected)

7.3.2.X62.3.7.2 DISCONNECT Command Failure Test

Purpose: To verify that Network Port objects respond to the DISCONNECT command with the correct error codes when the
command is not supported / enabled.

Test Concept: With a Network Port object for a network which does not support disconnection, command it to disconnect.
Verify that the correct error code is returned.

Test Configuration: If the IUT does not support the Command property, or all Network Port object support disconnection, then
this test shall be skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = DISCONNECT
2. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X62.3.8 RESTART_PORT Command Tests

7.3.2.X62.3.8.1 RESTART_PORT Command Test

Purpose: To verify that the Network Port attempts to restart its port when commanded to.

Test Concept: With a Network Port object which supports the RESTART_PORT command, command the port to restart. The
restart of the port is verified.

Test Configuration: If the IUT does not support the RESTART_PORT command, then this test shall be skipped.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 281

Test Steps:

-- make sure our initial conditions are good
1. WRITE Command = RESTART_PORT
2. CHECK(that the port was restarted)

7.3.2.X62.3.8.2 RESTART_PORT Command Failure Test

Purpose: To verify that Network Port objects respond to the RESTART_PORT command with the correct error codes when
the command is not supported.

Test Concept: With a Network Port object which does not support the RESTART_PORT command, command the port to
restart. Verify that the correct error code is returned.

Test Configuration: If the IUT does not support the Command property, or all Network Port object support disconnection, then
this test shall be skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the Network Port object),
 'Property Identifier' = Command,
 'Property Value' = RESTART_PORT
2. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

7.3.2.X62.3.9 No Commands if Changes_Pending Test

Purpose: To verify that the Network Port disallows commands, except DISCARD_CHANGES, when Changes_Pending.

Test Concept: using Network Port object NP, write values to one or more properties, P1 .. Px, which utilize the pending changes
functionality. Write each of the other commands and verify they are rejected.

Test Configuration: Execute the test on a Network Port object which supports the Command property.

Test Steps:

-- write some properties
1. REPEAT P = (P1 .. Px) {
 WRITE NP, P = (any valid value)
}

-- verify that changes are pending
2. VERIFY Changes_Pending = TRUE

-- write each supported Command value, except DISCARD_CHANGES
3. REPEAT CMD = (all non-IDLE valid values that NP supports except DISCARD_CHANGES) {
 TRANSMIT WriteProperty-Request
 'Object Identifier' = NP
 'Property' = Command,
 'Property Value' = CMD
 RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_VALUE_IN_THIS_STATE
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

282 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

-- revert the Network Port object
4. IF the IUT supports DISCARD_CHANGES THEN {
 WRITE Command = DISCARD_CHANGES
 } ELSE {
 MAKE(the IUT discard its changes)
 }

7.3.2.X62.4 Hierarchical Network Port Tests

7.3.2.X62.4.1 Valid Hierarchy Test

Purpose: To verify that the set of network port objects in the IUT are organized in a valid hierarchy.

Test Concept: Visit each Network Port object which represents a configured application layer port. Ensure that the top Network
Port object has a Protocol_Level of BACNET_APPLICATION or NON_BACNET_APPLICATION. Visit each Network Port
object in the hierarchy ensuring that the Protocol_Level properties are valid.

Test Steps:

1. REPEAT NP = (object id of each Network Port object which has a Protocol_Level of
 BACNET_APPLICATION or NON_BACNET_APPLICATION) {
2. REPEAT NPx = (object id of each Network Port object in NP’s hierarchy) {
 PL = READ (Network Port, NPx), Protocol_Level
 IF PL is BACNET_APPLICATION or NON_BACNET_APPLICATION THEN
 ERROR Invalid Protocol_Level in child Network Port object
 IF PL is PHYSICAL THEN
 VERIFY (Network Port, NPx), Reference_Port = 4194303
 }
 }

7.3.2.X62.4.2 Properties in Referenced Network Port Reflected in Top Network Port Object

Purpose: To verify that properties in referenced Network Port objects are reflected in the top Network Port object.

Test Concept: Visit each Network Port object which represents a configured BACnet application layer port. Visit each Network
Port object in the hierarchy ensuring that the properties in the referenced Network Port object exist and have the same value in
the top Network Port object.

Test Steps:

1. REPEAT NP = (object id of each Network Port object which has a Protocol_Level of
 BACNET_APPLICATION) {
 -- verify that the required properties exist for this Network Port object based
 -- on its Network_Type
2. REPEAT P = (each required property for NP’s Network_Type, see Table 12-72) {
 VERIFY (Network Port, NP), P = (any valid value)
 }
3. REPEAT NPx = (object id of each Network Port object in NP’s hierarchy) {
 -- verify that the expected properties exist in the Network Port object based
 -- on its Network_Type and Protocol_Level. In addition, verify that the property
 -- value is inherited into NP (unless already inherited from a different Network Port)
 REPEAT P = (each expected property in NPx based on its Network_Type and
 Protocol_Level as defined in Table 12-73) {
 V1 = READ (Network Port, NPx), P
 IF P is not in a higher Network Port object in this hierarchy THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 283

 VERIFY (Network Port, NP), P = V1
 }
 }
 }

7.3.2.X62.4.3 Changes Reflected in Top Network Port Object

Purpose: To verify that changing properties in child Network Port objects result in the new property values reflected in the top
Network Port object.

Test Concept: Write a writable, inheritable property within a Network Port’s hierarchy and verify that the new value is reflected
in the top Network Port object after activating the change, if required.

Test Configuration: Select a Network Port object, O1, which represents a configured network port, has a Protocol_Level of
BACNET_APPLICATION, which references a Network Port object and for which there is a writable inherited property, P,
within hierarchy. Let O2 be the Network Port object which contains P.

Test Steps:

1. V1 = READ O2, P
2. VERIFY O1, P = V1
3. WRITE O2, P = (V2: any valid value different that V1)
4. IF O2, Changes_Pending THEN
 TRANSMIT ReinitializeDevice
 'Reinitialized State of Device' = ACTIVATE_CHANGES
 RECEIVE BACnet-SimpleACK-PDU
 MAKE(reconfigure the TD and other devices on the network to the new network settings)
 WAIT Activate Changes Fail Time
5. VERIFY O1, P = V2

7.3.2.X62.4.4 Changes Reflected in Lower Network Port Objects

Purpose: To verify that changing properties in the top Network Port object results in the new property values reflected in the
child Network Port objects.

Test Concept: Write a writable, inherited property within a top Network Port object and verify that the new value is reflected
in the property from which value is inherited after activating the change, if required.

Test Configuration: Select a Network Port object, O1, which represents a configured network port, has a Protocol_Level of
BACNET_APPLICATION, which references a Network Port object and for which there is a writable inherited property, P, in
O1 which inherits is value from property P in O2.

Test Steps:

1. V1 = READ O2, P
2. VERIFY O1, P = V1
3. WRITE O1, P = (V2: any valid value different that V1)
4. IF O1, Changes_Pending THEN
 TRANSMIT ReinitializeDevice
 'Reinitialized State of Device' = ACTIVATE_CHANGES
 RECEIVE BACnet-SimpleACK-PDU
 MAKE(reconfigure the TD and other devices on the network to the new network settings)
 WAIT Activate Changes Fail Time
5. VERIFY O2, P = V2

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

284 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X62.5 APDU_Length Test

Purpose: To verify that the Device object does not report a Max_APDU_Length_Accepted that is larger than the largest value
reported by the configured and enabled Network Port objects.

Test Concept: Determine the largest APDU_Length property for all configured and enabled Network Port objects with a
Protocol_Level of BACNET_APPLICATION. Verify that each is larger than 50 and less than or equal the maximum allowed
for the attached datalink. Verify that the Max_APDU_Length_Supported property of the Device object is not larger than that
maximum.

Notes to Tester: the maximum allowable APDU_Length for a network type should be calculated from the maximum NPDU
size minus 21 according to SSPC interpretation IC135-2020-2.

Test Steps:

1. MAX_APDU = 0
2. REPEAT NP = (all configured and enabled Network Port objects with a
 Protocol_Level of BACNET_APPLICATION) {
 IF NP.APDU_Length < 50 THEN
 ERROR "APDU_Length must not be less than 50."
 IF NP.APDU_Length > (the maximum allowable for the Network_Type) THEN
 ERROR "APDU_Length is too large for the connected Network_Type"
 IF MAX_APDU <> NP.APDU_Length THEN
 MAX_APDU = NP.APDU_Length
 }
3. VERIFY (Device, 4194303), Max_APDU_Length_Supported <= MAX_APDU

7.3.2.X62.6 Routing_Table Test

Purpose: To verify that routes are added to the Routing_Table property of the Network Port object when they are found.

Test Concept: Starting with a clear routing table, send an I-Am-Router-To-Network message with multiple networks listed and
verify that all are added to the Routing_Table. Send the remaining Nmax-2 I-Am-Router-To-Network messages to the IUT and
verify that the entries are placed into the Routing_Table. Verify that no other Network Port objects are affected by the messages.

Configuration: All enabled Network Port objects, NP1 .. NPx, have empty Routing_Table properties. NP1 is the Network Port
for port A. Nmax is the smaller of the maximum number of entries the IUT can hold in its routing table, and the maximum that
can be encoded in a single segment ReadProperty response. N1 .. Nmax is a set of random network numbers, none of which
are in use by the IUT. R1 .. Rmax are the router MAC addresses for each of the network numbers in N1 .. Nmax. R1 and R2
shall be the same. The TD and IUT shall be on the same BACnet network and there shall be no other routers connected.

Notes to Tester: If the network cannot be configured with the TD and the IUT on the same network, the test shall be adjusted
to include the router to the TDs network instead of having a cleared routing table from the start of the test.

Test Steps:

-- verify that no routes are known
1. REPEAT NP = (all enabled Network Port objects with a Protocol_Level of BACNET_APPLICATION) {
 VERIFY NP, Routing_Table = ()
 }

-- verify that the IUT notices all routes in the I-Am-Router-To-Network
2. IF the IUT supports storing the address of more than 1 router THEN
TRANSMIT PORT A
 DESTINATION = LOCAL BROADCAST,
 SOURCE R1,
 I-Am-Router-To-Network,
 Network Numbers = N1, N2
 VERIFY NP1, Routing_Table = (

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 285

 (N1, R1, AVAILABLE, (optionally, any valid index)),
 (N2, R2, AVAILABLE, (optionally, any valid index))
) -- the order of the entries does not matter
 ELSE
TRANSMIT PORT A
 DESTINATION = LOCAL BROADCAST,
 SOURCE R1,
 I-Am-Router-To-Network,
 Network Numbers = N1
 VERIFY NP1, Routing_Table = (
 (N1, R1, AVAILABLE, (optionally, any valid index)),
)

-- verify that the IUT supports up to Nmax entries
4. REPEAT NP = (all enabled Network Port objects, except NP1, with a Protocol_Level of
 BACNET_APPLICATION) {
 VERIFY NP, Routing_Table = ()
 }
5. REPEAT N,R = (N2 up to Nmax, R2 up to Rmax) {
 TRANSMIT PORT A
 DESTINATION = LOCAL BROADCAST,
 SOURCE = R
 I-Am-Router-To-Network,
 Network Numbers = N
 }
6. VERIFY NP1, Routing_Table = (
 N1, R1, AVAILABLE, (optionally, any valid index),
 N2, R2, AVAILABLE, (optionally, any valid index),
 …
 Nmax, Rmax, AVAILABLE, (optionally, any valid index)
) -- the order of the entries does not matter

-- verify that the other Network Port objects are unaffected
7. REPEAT NP = (all enabled Network Port objects, except NP1, with a Protocol_Level of
 BACNET_APPLICATION) {
 VERIFY NP, Routing_Table = ()
 }

7.3.2.X62.7 DHCP Tests

7.3.2.X62.7.1 Basic IPv4 DHCP Test

Purpose: Verify that the IUT is able to participate in IPv4 DHCP and correctly report its DHCP status.

Test Concept: The DHCP server is removed from network. The IUT is then configured with an IPv4 network requiring DHCP,
and if required, its DHCP settings are cleared. The related Network Port object is queried to verify that the DHCP related
properties have the appropriate values indicating DHCP has not completed. The DHCP is connected to the network. It is verified
that the IUT obtains network setttings from the DHCP server, and that the DHCP properties reflect the current status.

Configuration Requirements: The DHCP is disconnected from the network or turned off. The IUT is configured for DHCP and
any settings it previously received via DHCP are cleared.

Test Steps:

1. IF the IUT has a second enabled network port THEN
 VERIFY IP_DHCP_Enable = True
 IF IP_DHCP_Lease_Time property is present THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

286 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY IP_DHCP_Lease_Time = 0
 IF IP_DHCP_Lease_Time_Remaining property is present THEN
 VERIFY IP_DHCP_Lease_Time_Remaining = 0
 IF IP_DHCP_Server property is present THEN
 VERIFY IP_DHCP_Server = X’00000000’
2. MAKE(connect the DHCP server to the network)
3. WAIT until the IUT obtains DHCP information
4. IF IP_DHCP_Lease_Time property is present THEN
 VERIFY IP_DHCP_Lease_Time = (0 or the value provided by the DHCP server)
5. IF IP_DHCP_Lease_Time_Remaining property is present THEN
 VERIFY IP_DHCP_Lease_Time_Remaining = (0 or a value less than that provided by the DHCP server)
6. IF IP_DHCP_Server property is present THEN
 VERIFY IP_DHCP_Server = (the DHCP server’s address or X’00000000’)
7. VERIFY IP_Address = (the value served by the DHCP server)
8. VERIFY IP_Default_Gateway = (the value served by the DHCP server)

7.3.2.X62.7.2 Basic IPv6 DHCP Test

Test Concept: The DHCP server is removed from network. The IUT is then configured with an IPv6 network requiring DHCP,
and if required, its DHCP settings are cleared. The related Network Port object is queried to verify that the DHCP related
properties have the appropriate values indicating DHCP has not completed. The DHCP is connected to the network. It is verified
that the IUT obtains network settings from the DHCP server, and that the DHCP properties reflect the current DHCP status.

Configuration Requirements: The DHCP is disconnected from the network or turned off. The IUT is configured for DHCP and
any settings it previously received via DHCP are cleared.

Test Steps:

1. IF the IUT has a second enabled network port THEN
 VERIFY IPv6_DHCP_Enable = True
 IF IPv6_DHCP_Lease_Time property is present THEN
 VERIFY IPv6_DHCP_Lease_Time = 0
 IF IPv6_DHCP_Lease_Time_Remaining property is present THEN
 VERIFY IPv6_DHCP_Lease_Time_Remaining = 0
 IF IPv6_DHCP_Server property is present THEN
 VERIFY IPv6_DHCP_Server = X’00000000’
2. MAKE (connect the DHCP server to the network)
3. WAIT until the IUT obtains DHCP information
4. IF IPv6_DHCP_Lease_Time property is present THEN
 VERIFY IPv6_DHCP_Lease_Time = (0 or the value provided by the DHCP server)
5. IF IPv6_DHCP_Lease_Time_Remaining property is present THEN
 VERIFY IPv6_DHCP_Lease_Time_Remaining = (0 or a value less than that provided by the DHCP server)
6. IF IPv6_DHCP_Server property is present THEN
 VERIFY IPv6_DHCP_Server = (the DHCP server’s address or X’00000000’)
7. VERIFY IPv6_Address = (the value served by the DHCP server)
8. VERIFY IPv6_Default_Gateway = (the value served by the DHCP server)

[Add new Clause 7.3.2.X63, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Timer object type.]

7.3.2.X63 Timer Object Tests

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 287

7.3.2.X63.1.1 Timer State_Change_Values

Purpose: Verify all State_Change_Values property transitions.

Test Concept: Start this test in the IDLE state. Write Timer_Running and observe the object enter RUNNING state, and after
time passes, observe it enters the EXPIRED state. Force it into the IDLE state. Write Timer_Running again observe it enter
RUNNING state, then write Timer_Running again and observe it make the RUNNING_TO_RUNNING transition. Force it
into the IDLE state again. Observe that per State_Change_Values transitions, all writes take place.

Configuration Requirements: The State_Change_Values property, if present, holds a valid configuration.

Test Steps:

1. WRITE Timer_Running = TRUE
2. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition)
3. READ RT = Present_Value
4. WAIT RT
5. CHECK (IUT exhibits any changes configured in RUNNING_TO_EXPIRED transition)
6. WRITE Timer_State = IDLE
7. CHECK (IUT exhibits any changes configured in EXPIRED_TO_IDLE transition)
8. WRITE Timer_Running = TRUE
9. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition)
10. BEFORE the timer expires
 WRITE Timer_Running = TRUE
11. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition)
12. WRITE Timer_State = IDLE
13. CHECK (IUT exhibits any changes configured in RUNNING_TO_IDLE transition)
14. VERIFY Present_Value = 0

7.3.2.X63.1.2 Timer Running then Expired Test

Purpose: Verify that Timer T1 when set to RUNNING, enters the EXPIRED state after the configured time.

Test Concept: Start this test in the IDLE state. Write Timer_Running and observe it enter RUNNING state, with its current
configuration. After time passes, observe it enters the EXPIRED state. Observe that specified properties take their required
values.

Configuration Requirements: T1 starts this test with the Timer_State equal to IDLE.

Test Steps:

1. VERIFY Timer_State = IDLE
2. WRITE Timer_Running = TRUE
3. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition)
4. IF (Default_Timeout property is present in T1) THEN {
 READ DV = Default_Timeout
 VERIFY Initial_Timeout = DV
 }
5. VERIFY Timer_State = RUNNING
6. READ RT = Present_Value
7. WAIT RT
8. CHECK (IUT exhibits any changes configured in RUNNING_TO_EXPIRED transition)
9. VERIFY Timer_State = EXPIRED
10. VERIFY Present_Value = 0
11. VERIFY Last_State_Change = RUNNING_TO_EXPIRED
12. IF (Update_Time property is present in T1) THEN {
 READ UT = Update_Time
 VERIFY UT ~= (the current date and time)
 IF (Expiration_Time property is present in T1) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

288 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 VERIFY Expiration_Time = UT
 }
 ELSE IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time ~= (the current date and time)

7.3.2.X63.1.3 Default_Timeout Test

Purpose: Verify that starting the Timer running via Timer_Running uses Default_Timeout.

Test Concept: Start this test in the IDLE state. Default_Timeout is a valid non-zero value, different from the value which is
Initial_Timeout at start of test. Write Timer_Running and observe the Timer enter RUNNING state. Observe that specified
properties take their required values.

Configuration Requirements: Timer starts this test with the Timer_State equal to IDLE. IUT is configured with Initial_Timeout
and Default_Timeout being different. If this cannot be done, then this test shall be skipped.

Test Steps:

1. READ PrevIT = Initial_Timeout
2. VERIFY Default_Timeout <> PrevIT
3. WRITE Timer_Running = TRUE
4. VERIFY Present_Value ~= Default_Timeout

7.3.2.X63.1.4 Running Timer by writing the Present_Value

Purpose: Start or Restart the Timer by writing the Present_Value property.

Test Concept: Start the Timer with a non-zero value PV1, written to the Present_Value property, and observe that the Timer
counts down according to the new value written.

Configuration Requirements: This test can start with T1 in any of the IDLE, EXPIRED, or RUNNING states.

Test Steps:

1. IF (Default_Timeout property is present in T1) THEN
 READ DT = Default_Timeout
2. READ PrevIT = Initial_Timeout
3. WRITE Present_Value = (PV1, any valid non-zero value, sufficiently different from DT and PrevIT so that it is clear that
countdown is according to the new value written)
4. VERIFY Present_Value <= PV1

7.3.2.X63.1.5 Restarting An Expired Timer

Purpose: Verify that writes to Timer_Running with TRUE while in the EXPIRED state are successful.

Test Concept: Start this test with the Timer_State equal to EXPIRED. Write TRUE to Timer_Running.

Configuration Requirements: T1 starts this test with the Timer_State equal to EXPIRED.

Test Steps:

1. VERIFY Timer_State = EXPIRED
2. WRITE Timer_Running = TRUE
3. VERIFY Timer_State = RUNNING

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 289

7.3.2.X63.1.6 Already Running Timer restarted by writing the Present_Value

Purpose: Verify Timer can be restarted while running by writing Present_Value.

Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state. Then write the Timer with a
different non-zero value written to the Present_Value property and observe that specified properties take their required values
and all configured State_Change_Values transitions if any, take place. The timer counts down and observe that it operates
according to the new value written.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING. If Present_Value is not writable,
this test shall be skipped.

Test Steps:

1. VERIFY Timer_State = RUNNING
2. WRITE Present_Value = (any valid non-zero value)
3. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition)
4. VERIFY Timer_Running = TRUE
5. VERIFY Last_State_Change = RUNNING_TO_RUNNING

7.3.2.X63.1.7 Already Running Timer restarted with Default_Timeout

Purpose: Verify the success of writes to Timer_Running with TRUE while already in the RUNNING state.

Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state with an Initial_Value different from
Default_Value. Then write the Timer_Running property with TRUE and observe that Present_Value restarts with the value
from Default_Timeout.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING. In service of observing the change
between step 3 and step 6, it is necessary that at the test start, the Timer went into RUNNING state with an Initial_Value
different from Default_Value.

Test Steps:

1. VERIFY Timer_State = RUNNING
2. READ DV = Default_Timeout
3. VERIFY Initial_Timeout <> DV
4. WRITE Timer_Running = TRUE
5. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition)
6. VERIFY Initial_Timeout = DV
7. VERIFY Present_Value ~= DV
8. VERIFY Timer_Running = TRUE
9. VERIFY Last_State_Change = RUNNING_TO_RUNNING

7.3.2.X63.1.8 Timer accepts all the required datatypes in an Internal Reference

Purpose: Verify that the IUT with a modifiable List_Of_Object_Property_References, accepts all the required datatypes.

Test Concept: Verify in a Timer object, T1, that supports modification, the IUT allows altering the
List_Of_Object_Property_References to refer to an object within the IUT. Repeat for each of the datatypes required for Timers
with writable List_Of_Object_Property_References. Also write State_Change_Values or its entries with values of that
datatype.

Notes to Tester: It is required that the IUT allows modifying the Timer one property at a time.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

290 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. REPEAT (for all the required datatypes: values of type NULL, BOOLEAN, Unsigned, INTEGER, REAL, and
ENUMERATED {
 WRITE (the State_Change_Values and/or List_Of_Object_Property_References with that datatype, and which
references an object within the IUT)
}
2. CHECK (Did the IUT accept the writes, and apply the modified values to properties correctly?)

7.3.2.X63.1.9 Timer supports writing an External Device

Purpose: Verify that IUT allows its List_Of_Object_Property_References to refer to an external device.

Test Concept: Verify in a Timer object, T1, that supports modification, the IUT allows altering the
List_Of_Object_Property_References to refer to an object in an external device.

Configuration Requirements: If there is no Timer object in IUT which supports reference to an object in an external device,
then this test shall be skipped.

Test Steps:

1. WRITE List_Of_Object_Property_References = (a value that is different, and which contains one or more references to
objects which are in one or more external devices)
2. VERIFY List_Of_Object_Property_References = (the value written)

7.3.2.X63.1.10 Forcing Timer Expiration by writing Zero

Purpose: Interrupt the Timer while it is RUNNING, via a value of zero written to the Present_Value property.

Test Concept: Configure and start the Timer, T1, to operate according to its values. Then write a value of zero to the
Present_Value property and observe that specified properties take their required values and that the State_Change_Values
operations take place.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.

Test Steps:

1. VERIFY Timer_Running = TRUE
2. VERIFY Timer_State = RUNNING
3. WRITE Present_Value = 0
4. CHECK (IUT exhibits any changes configured in FORCED_TO_EXPIRED transition)
5. VERIFY Timer_State = EXPIRED
6. VERIFY Last_State_Change = FORCED_TO_EXPIRED
7. VERIFY Present_Value = 0
8. IF (Update_Time property is present in T1) THEN {
 READ UT = Update_Time
 VERIFY UT ~= (the current date and time)
 IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time = UT
 }
 ELSE IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time ~= (the current date and time)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 291

7.3.2.X63.1.11 Forcing Timer Expiration by writing FALSE

Purpose: Interrupt the Timer while it is RUNNING, via a value of FALSE written to the Timer_Running property.

Test Concept: Configure and start Timer, T1, to operate according to its values. Then write FALSE to Timer_Running and
observe that specified properties take their required values and all configured State_Change_Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.

Test Steps:

1. VERIFY Timer_Running = TRUE
2. VERIFY Timer_State = RUNNING
3. WRITE Timer_Running = FALSE
4. CHECK (IUT exhibits any changes configured in FORCED_TO_EXPIRED transition)
5. VERIFY Timer_State = EXPIRED
6. VERIFY Last_State_Change = FORCED_TO_EXPIRED
7. IF (Update_Time property is present in T1) THEN {
 READ UT = Update_Time
 VERIFY UT ~= (the current date and time)
 IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time = UT
}
 ELSE IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time ~= (the current date and time)

7.3.2.X63.1.12 Forcing Timer Expiration by writing IDLE

Purpose: Interrupting the Timer while it is RUNNING, via a value of IDLE written to the Timer_State property.

Test Concept: Configure and start the Timer, T1, to operate according to its values. Then write IDLE to Timer_State and
observe that specified properties take their required values and all configured State_Change_Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.

Test Steps:

1. VERIFY Timer_Running = TRUE
2. VERIFY Timer_State = RUNNING
3. WRITE Timer_State = IDLE
4. CHECK (IUT exhibits any changes configured in RUNNING_TO_IDLE transition)
5. VERIFY Timer_State = IDLE
6. VERIFY Last_State_Change = RUNNING_TO_IDLE
7. IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time = (the unspecified datetime value)
8. IF (Update_Time property is present in T1) THEN
 VERIFY Update_Time = (the current date and time)
9. VERIFY Present_Value = 0

7.3.2.X63.1.13 Resetting Timer by writing IDLE

Purpose: Verify the correct behaviors when Timer_State is written from EXPIRED to IDLE value.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

292 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: Configure and run the Timer as necessary to put it into EXPIRED state. Then write IDLE to Timer_State and
observe that specified properties take their required values and all configured State_Change_Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer_State equal to EXPIRED.

Test Steps:

1. VERIFY Timer_State = EXPIRED
2. WRITE Timer_State = IDLE
3. CHECK (IUT exhibits any changes configured in EXPIRED_TO_IDLE transition)
4. VERIFY Timer_State = IDLE
4. VERIFY Timer_Running = FALSE
5. VERIFY Last_State_Change = EXPIRED_TO_IDLE
6. IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time = (the unspecified datetime value)
7. IF (Update_Time property is present in T1) THEN
 VERIFY Update_Time = (the current date and time)
8. VERIFY Present_Value = 0

7.3.2.X63.1.14 Timer Object Operation Unaffected by Changes to Local_Time and Local_Date

Purpose: Verify that Timer expiration is not affected by time changes.

Test Concept: Configure and start the Timer, T1, to operate according to its values. Then before the Timer expires, change
Local_Date / Local_Time to a NewDate / NewTime in the past or future and observe that the length of time until Timer
expiration is not affected, and that expiry still occurs at the time indicated in Present_Value.

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.

Test Steps:

1. VERIFY Timer_Running = TRUE
2. VERIFY Timer_State = RUNNING
3. READ PV_beforeTimeChange = Present_Value
4. MAKE (Local_Date/ Local_Time = NewDate/ NewTime)
4. VERIFY Present_Value ~= PV_beforeTimeChange, continuing its decreasing trend
5. VERIFY Local_Date = NewDate
6. VERIFY Local_Time ~= NewTime
7. WAIT PV_beforeTimeChange
8. VERIFY Present_Value = 0
9. IF (Update_Time property is present in T1) THEN
 VERIFY Update_Time ~= (the current date and time)
10. IF (Expiration_Time property is present in T1) THEN
 VERIFY Expiration_Time ~= (the current date and time)

Hints to Tester: To ensure that testing would detect an implementation which prematurely expires when the Local_Time
becomes a time that the Timer would not be RUNNING, select NewDate / NewTime which when converted to local date/time
using UTC_Offset and Daylight_Saving_Status, is earlier or later than the window of time that the Timer would be RUNNING
when it started.

7.3.2.X63.1.15 Changes made by State_Change_Values are at Correct Priority

Purpose: Verify by changing the Priority_for_Writing property that subsequent State_Change_Values operations use the right
Priority.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 293

Test Concept: Write Timer_Running and observe it enter RUNNING state, with its current configuration. After time passes,
observe it enters the EXPIRED state. Observe that specified properties take their required values.

Configuration Requirements: Start this test in the IDLE state. O1 P1 is any commandable property amongst the elements of
List_Of_Object_Property_References. O1 should contain in its Priority_Array at the index which will change, a value which
is different from the values in State_Change_Values, for the operations which will take place, for ease of ensuring that the
Timer commanded the change.

Test Steps:

1. WRITE Priority_for_Writing = (any valid value, different from what it had)
2. READ ValueItR = State_Change_Values, ARRAY INDEX = IDLE_TO_RUNNING
3. WRITE Timer_Running = TRUE
4. VERIFY Timer_State = RUNNING
5. READ RT = Present_Value
6. IF (ValueItR is a value other than no-value) THEN
 VERIFY (O1), Priority_Array = ValueItR, ARRAY INDEX = Priority_for_Writing
7. WAIT RT
8. READ ValueRtE = State_Change_Values, ARRAY INDEX = RUNNING_TO_EXPIRED
9. VERIFY Timer_State = EXPIRED
10. IF (ValueRtE is a value other than no-value) THEN
 VERIFY (O1), Priority_Array = ValueRtE, ARRAY INDEX = Priority_for_Writing

7.3.2.X63.1.16 Changing Default_Timeout Test

Purpose: Reconfigure the Default_Timeout and see that governs the length the timer runs.

Test Concept: Start this test in the IDLE state. Configure the Timer with an updated Default_Time and observe it operates
according to the new value written.

Configuration Requirements: T1 starts this test with the Timer_State equal to IDLE.

Test Steps:

1. READ IT = Initial_Timeout
2. WRITE Default_Timeout = (any valid value, different from IT and different from what it had)
3. WRITE Timer_Running = TRUE
4. VERIFY Present_Value ~= Default_Timeout

7.3.2.X63.2.1 Writing Timer with an Unsupported External Reference

Purpose: Verify the correct Result(-) when List_Of_Object_Property_References does not support objects in an external device.

Test Concept: Attempt writing List_Of_Object_Property_References of a Timer object, T1, which does not support referring
to an object in an external device. Verify the IUT returns the correct Result(-).

Configuration Requirements: If the IUT supports referring to an object in an external device in all of its Timer objects, then
this test shall be skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = List_Of_Object_Property_References
 'Property Value' = (a value that is different, and which references an object in an external device)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

294 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

7.3.2.X63.2.2 Writing an Unsupported Datatype to State_Change_Values

Purpose: Verify the correct Result(-) when State_Change_Values is written with a datatype that instance does not support.

Test Concept: Attempt writing State_Change_Values of a Timer object T1 with a datatype that instance does not support.
Verify the IUT returns the correct Result(-).

Configuration Requirements: The State_Change_Values property initially holds a valid configuration.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = State_Change_Values
 'Property Value' = (a value which contains a datatype that T1 does not support)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = DATATYPE_NOT_SUPPORTED

7.3.2.X63.2.3 Invalid Property Writing in a Timer

Purpose: Verify the correct Result(-) when Timer_State or Present_Value is written with an invalid value.

Test Concept: Attempt writing of a Timer object T1 with a value outside the supported range and not zero being written to the
Present_Value property, or a value of other than IDLE written to the Timer_State property. Verify the IUT returns the correct
Result(-).

Configuration Requirements: The State_Change_Values property, if present, holds a valid configuration.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = Present_Value
 'Property Value' = (a value that is outside the supported range and not zero)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = VALUE_OUT_OF_RANGE
3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = Timer_State
 'Property Value' = (a value other than IDLE)
4. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = VALUE_OUT_OF_RANGE

7.3.2.X63.2.4 Expired Timer Ignores Writing Zero

Purpose: Verify the success of writes to Present_Value of a Timer with an expiration value while in the EXPIRED state.

Test Concept: With a Timer object in the EXPIRED state, write 0 to Present_Value and verify that the object remains in the
EXPIRED state.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 295

Configuration Requirements: The Timer object starts the test with Timer_State equal to EXPIRED.

Test Steps:

1. VERIFY Timer_State = EXPIRED
2. WRITE Present_Value = 0
3. VERIFY Timer_State = EXPIRED

7.3.2.X63.2.5 Expired Timer Ignores Writing FALSE

Purpose: Verify the success of writes to Timer_Running property of a Timer with an expiration value while in the EXPIRED
state.

Test Concept: With a Timer object in the EXPIRED state, write FALSE to Timer_Running and verify that the object remains
in the EXPIRED state.

Configuration Requirements: The Timer starts this test with Timer_State equal to EXPIRED.

Test Steps:

1. VERIFY Timer_State = EXPIRED
2. WRITE Timer_Running = FALSE
3. VERIFY Timer_State = EXPIRED

7.3.2.X63.2.6 Idle Timer Ignores Writing Zero

Purpose: Verify the success of writes to Present_Value of a Timer with an expiration value while in the IDLE state.

Test Concept: With a Timer object in the IDLE state, write 0 to Present_Value and verify that the object remains in the IDLE
state.

Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE.

Test Steps:

1. VERIFY Timer_State = IDLE
2. WRITE Present_Value = 0
3. VERIFY Timer_State = IDLE

7.3.2.X63.2.7 Idle Timer Ignores Writing FALSE

Purpose: Verify the success of writes to Timer_Running property of a Timer with an expiration value while already in the IDLE
state.

Test Concept: With a Timer object in the IDLE state, write FALSE to Timer_Running and verify that the object remains in the
IDLE state.

Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE.

Test Steps:
1. VERIFY Timer_State = IDLE
2. WRITE Timer_Running = FALSE
3. VERIFY Timer_State = IDLE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

296 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X63.2.8 Idle Timer Ignores Writing IDLE

Purpose: Verify the success of writes to Timer_State of a Timer with the reset value while already in the IDLE state.

Test Concept: With a Timer object in the IDLE state, write IDLE to Timer_State and verify that the object remains in the IDLE
state.

Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE.

Test Steps:

1. VERIFY Timer_State = IDLE
2. WRITE Timer_State = IDLE
3. VERIFY Timer_State = IDLE

7.3.2.X63.2.9 Default_Timeout Written Outside Supported Range

Purpose: Verify the correct Result(-) when Default_Timeout is written with an invalid value.

Test Concept: Attempt writing Timer object, T1, with a value outside the supported range to the Default_Timeout property.
Verify the IUT returns the correct Result(-).

Configuration Requirements: If Default_Timeout is not present or is not writable, this test shall be skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = Default_Timeout
 'Property Value' = (a value lower than Min_Pres_Value)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = VALUE_OUT_OF_RANGE
3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = T1
 'Property Identifier' = Default_Timeout
 'Property Value' = (a value higher than Max_Pres_Value)
4. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = VALUE_OUT_OF_RANGE

[Add new Clause 7.3.2.X64, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Audit Log object type.]

7.3.2.X64 Audit Log Object Tests

7.3.2.X64.1 One Audit Log Holds all of an Objects History Test

Purpose: Ensure that, for any arbitrary object, there is at least one Audit Log into which all of the object's audit notifications
are placed.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 297

Test Concept: Send a sequence of audit notifications which contain entries for multiple objects to the IUT. At least some of the
objects shall have multiple audit records in the sequence. For each object instance represented in the audit notifications sent to
the IUT, verify that there is at least one Audit Log which contains all of the audit notifications for the object.

Configuration Requirements: S is a sequence of audit notifications which contain entries for multiple objects to the IUT where
at least some of the objects shall have multiple audit records in the sequence.

Test Steps:

1. REPEAT AN = (each notification in S) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
2. REPEAT O = (each object represented in S) DO {
 SO = (the sequence of notifications in S for object O)
 FOUND = (false)
 REPEAT AL = (each Audit Log object) DO {
 IF (AL contains all notifications in SO) THEN
 FOUND = (true)
 }
 IF (FOUND is false) THEN {
 ERROR "no audit log was found which contains all notifications for object"
 }
}

7.3.2.X64.2 Audit Notification Basic Combining Test

Purpose: Ensure that Audit Log objects correctly combine related audit notification records.

Test Concept: Send a sequence, SEQ1, of unrelated audit notifications to the IUT and verify that the notifications are not
combined. Send a source audit notification, SN1, followed by a sequence, SEQ2, of unrelated audit notifications and verify
that the notifications are not combined. Send a target audit notification, TN1, which should be combined with SN1. Verify that
SN1 and TN1 are combined in the Audit Log. Repeat the process with new notifications but send the target notification before
the source notification.'

Configuration Requirements: An audit log that should receive the combined SN/TN notification is AL. The Target Value and
Current Value fields in SN and TN shall not be greater than 500 octets. D1 shall be the device sending the source notification
and D2 shall be the device sending the target notification. It is acceptable if D1 is the same as D2.

Test Steps:

-- the source notification is sent before the target notification
1. REPEAT AN = (each notification in SEQ1) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = (D1 or D2),
 'Notifications' = AN
}
2. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = D1,
 'Notifications' = SN1
3. REPEAT AN = (each notification in SEQ2) DO {
 SOURCE = (D1 or D2),
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
4. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = D2,
 'Notifications' = TN1
5. CHECK(that no record exists in AL which is just SN1)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

298 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

6. CHECK(that no record exists in AL which is just TN1)
7. CHECK(that a record exists in AL which is the combination of SN1 and TN1)
8. CHECK(that the combined record has all of the source and target fields provided in SN1 and TN1, and no more.)

-- the target notification is sent before the source notification
9. REPEAT AN = (each notification in SEQ3) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = (D1 or D2),
 'Notifications' = AN
}
10. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = D1,
 'Notifications' = TN2
11. REPEAT AN = (each notification in SEQ4) DO {
 SOURCE = (D1 or D2),
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
12. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = D2,
 'Notifications' = SN2
13. CHECK(that no record exists in AL which is just SN2)
14. CHECK(that no record exists in AL which is just TN2)
15. CHECK(that a record exists in AL which is the combination of SN2 and TN2)
16. CHECK(that the combined record has all of the source and target fields provided in SN2 and TN2, and no more.)

7.3.2.X64.3 Audit Notification Combining Failure Test

Purpose: Ensure that Audit Log objects correctly combine related audit notification records which indicate failed actions.

Test Concept: Send a source audit notification, SN. Send a target audit notification, TN, which should be combined with SN,
and which indicates that the action failed. Verify that SN and TN are combined in the Audit Log.

Configuration Requirements: An audit log that should receive the combined SN/TN notification is AL. The Target Value and
Current Value fields in SN and TN shall not be greater than 500 octets.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = SN
2. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = TN
3. CHECK(that no record exists in AL which is just SN)
4. CHECK(that no record exists in AL which is just TN)
5. CHECK(that a record exists in AL which is the combination of SN and TN)
6. CHECK(that the combined record has all of the source and target fields provided in SN and TN, and no more.)

7.3.2.X64.4 Audit Notification Non-combining Test

Purpose: Ensure that Audit Log objects correctly do not combine unrelated audit notification records.

Test Concept: Send a sequence of unrelated audit notifications to the IUT each differing by 1 field in the matching criteria.
Verify that the notifications are not combined.

Configuration Requirements: SEQ is a sequence of audit notifications where each record differs from the previous record by 1
field. For the sequence, SN is a source notification with user-id, user-role, target-value fields, and without source-comment
field, and TN is the matching target notification with user-id, user-role, target-value fields. The sequence is:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 299

 {
 (SN),
 (SN but with source-comment field),
 (TN with differing operation-source),
 (TN with differing operation),
 (TN with differing invoke-id),
 (TN with differing target-device),
 (TN with differing target-property),
 (TN with differing user-id),
 (TN with differing user-role),
 (TN with differing target-value),
 (TN with target-timestamp equal to source-timestamp + APDU_Timeout * 3)
 }

Test Steps:

1. REPEAT AN = (each notification in SEQ) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
2. REPEAT AN = (each notification in SEQ) DO {
 CHECK(that AN is in an Audit Log and is not combined)
}

7.3.2.X64.5 Audit Notification Combining Duplicate Test

Test Concept: Send a source audit notification SN. Verify it is placed in the log. Send a sequence, SEQ1, of unrelated audit
notifications and verify SN is not combined with any. Resend SN and verify that SN was not re-added to the log.
Send a target audit notification, TN, which should be combined with SN. Verify that SN and TN are combined in the Audit
Log. Send a sequence, SEQ2, of unrelated audit notifications. Resend TN and verify that TN was not re-added to the log.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = SN
2. CHECK(that SN is in the Audit Log)
3. REPEAT AN = (each notification in SEQ1) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
4. CHECK(that SN is in the Audit Log and is not combined)
5. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = SN
6. CHECK(that SN is in the Audit Log only once and is at its original position)

7. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = TN
8. CHECK(that SN is in the Audit Log only once, is combined with TN, and is at its original position)
9. CHECK(that the combined record has all of the source and target fields provided in SN and TN, and no more.)

10. REPEAT AN = (each notification in SEQ2) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = AN
}
11. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = TN
12. CHECK(that TN is in the Audit Log only once, is combined with SN and is at SN's original position)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

300 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X64.6 Audit Notification Combining Target Value Preference Test

Purpose: Ensure that Audit Log objects use the Current Value from a target notification when it is provided in both the source
and target notifications.

Test Concept: Send a target audit notification TN1 which includes the Current Value field with a value CV1-T.
Send a source audit notification, SN1, which should be combined with TN1, and which contains a Current Value field with a
value CV1-S (CV1-S is different than CV1-T). Verify that SN1 and TN1 are combined in the Audit Log and that the Current
Value in the log uses CV1-T. Repeat the steps sending a target notification TN2 before the source notification SN2 where CV2-
S is different than CV2-T.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = TN1
2. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = SN1
3. CHECK(that TN1 is in the Audit Log only once, is combined with SN1, and that target-value is CV1-T)

4. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = SN2
5. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = TN2
6. CHECK(that SN2 is in the Audit Log only once, is combined with TN2, and that target-value is CV2-T)

7.3.2.X64.7 Accepts Audit Notifications from an Audit Forwarder Test

Purpose: Ensure that Audit Log accepts forwarded audit notifications.

Test Concept: The notification forwarder, AF1, sends a forwarded source notification, SN1, from the original sending device
D1, to the IUT. Verify that the IUT places the notification in the Audit Log. AF1 then sends a forwarded target notification,
TN1, from the original target device D2, to the IUT. Verify that the IUT combines the target with the source notification.

Configuration Requirements: The test network consists of a source device D1, a target device D2, and a notification forwarder,
AF1.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = AF1,
 'Notifications' = SN1
2. TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = AF1,
 'Notifications' = TN1
3. CHECK(that SN1 and TN1 are combined in the Audit Log)

7.3.2.X64.8 Hierarchical Logging Test

Purpose: Ensure that an Audit Log configured with a parent correctly forwards notifications to the parent log.

Test Concept: An Audit Log, AL1, configured to reference a parent log located in another device, is sent a sequence of audit
notifications. Within the sequence will some notifications which should be combined and some which should not be
combined. Verify that the IUT forwards the notifications to the parent before the vendor specified maximum forwarding
delay.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 301

Configuration Requirements: The Audit Log, AL1, is configured with a Member_Of set to AL2, where AL2 is in the TD. AL1's
Delete_On_Forward shall be set to FALSE. SEQ is a sequence of audit notifications where at least 2 are related and should be
combined.

Notes to Tester: The standard does not provide guidance on how long an Audit Log object has before it must forward audit
notifications to its parent. As such, the vendor is allowed to specify the maximum time as long as it is not unreasonable (delays
on the order of days are clearly unreasonable; delays on the order of minutes are clearly acceptable).

Notes to Tester: When receiving notifications from the IUT, those notifications which should be combined, may be sent
combined or not at the IUT's discretion.

Test Steps:

1. REPEAT AN = (each notification in SEQ) DO {
 TRANSMIT UnconfirmedAuditNotification-Request,
 SOURCE = (a value appropriate to the notification),
 'Notifications' = AN
}
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE Audit Notification Forwarder Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (one or more of the notifications from SEQ)
} ELSE {
 BEFORE Audit Notification Forwarder Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (one or more of the notifications from SEQ)
 TRANSMIT BACnet-SimpleACK-PDU
}

3. WHILE (not all notifications in SEQ have been sent by the IUT) {
 IF the IUT is configured to send unconfirmed audit notifications THEN {
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = (one or more of the as yet unreceived notifications from SEQ)
 } ELSE {
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = (one or more of the as yet unreceived notifications from SEQ)
 TRANSMIT BACnet-SimpleACK-PDU
 }
}
4. CHECK(that the notifications in SEQ are still in AL1)
5. CHECK(that the notifications in SEQ which are to be combined are combined in AL1)

[Add new Clause 7.3.2.X65, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Audit Reporter object type.]

7.3.2.X65 Audit Reporter Object Tests

7.3.2.X65.4 Target Audit Reporting - Basic Notification Test

Purpose: Verify that target audit notifications are properly formed.

Test Concept: The IUT is made to send a target audit notification. It is verified that the target fields are present, no source fields
are present, and other notification fields represent the auditable operation performed.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

302 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The IUT is configured to report all auditable operations. The IUT is configured so that the
notification will be reported through Audit Reporter AR.

Test Steps:

1. MAKE(perform an auditable operation, O, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent unless O is GENERAL),
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent unless O is GENERAL),
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 303

 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.5 Target Audit Reporting - Unconfirmed Service Operation Test

Purpose: Verify that target audit notifications for unconfirmed services do not contain InvokeId information.

Test Concept: An auditable unconfirmed service is performed on the IUT, and it is verified that the resulting target audit
notification does not contain an InvokeId, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for an unconfirmed service. If the IUT does
not support audit reporting for any unconfirmed services, this test shall be skipped. The IUT is configured so that the notification
will be reported through Audit Reporter AR.

Test Steps:

1. MAKE(perform an auditable operation, O, which uses an unconfirmed service, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent unless O is GENERAL),
 -- invoke-id absent,
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

304 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 target-comment = (any valid value, or absent unless O is GENERAL),
 -- invoke-id absent,
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.6 Target Audit Reporting - Confirmed Service Operation Audit Notification

Purpose: Verify that target audit notifications for confirmed services contain InvokeId information.

Test Concept: An auditable confirmed service is performed on the IUT, and it is verified that the resulting target audit
notification contains an InvokeId, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for an unconfirmed service. The IUT is
configured so that the notification will be reported through Audit Reporter AR.

Test Steps:

1. MAKE(perform an auditable operation, O, which uses an unconfirmed service, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({ -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent unless O is GENERAL),
 -- invoke-id absent,
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 305

 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({ -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent unless O is GENERAL),
 -- invoke-id absent,
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.7 Target Audit Reporting - Operations with Priority Test

Purpose: Verify that target audit notifications which for writes which convey a priority include the priority in the notification.

Test Concept: An auditable write, which includes a priority, is performed on a commandable object in the IUT and it is verified
that the resulting target audit notification contains a priority, and other notification fields represent the auditable operation
performed.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1. The
IUT is configured so that the notification will be reported through Audit Reporter AR using unconfirmed notifications. If the
IUT does not support the Priority_Array property in any object for which audit reporting can be configured, this test shall be
skipped.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Invoke Id' = I,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,
 'Property Value' = (V: any valid value),
 'Priority' = (PRIO: a priority in the range 1 - 15)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

306 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. BEFORE Internal Processing Fail Time
 RECEIVE BACnet-SimpleACK-PDU
 |
 (BACnet-Error-PDU,
 'Error Type' = (E : any error)
)
3. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = I,
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value size is
 larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = WRITE,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = I,
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = O1,
 target-property = Present_Value,
 target-priority = PRIO,
 target-value = V,
 current-value = (the value before the write. may be absent if the value size is
 larger than 32 encoded octets),
 result = (E, if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU

}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 307

7.3.2.X65.8 Target Audit Reporting - Target_Value and Current_Value Test

Purpose: Verify that the IUT reports target values and current values, when the audited operation contains a value (such as for
writes).

Test Concept: An auditable operation, which contains a value, is performed on object O1 and property P1. The resulting audit
notification is verified to contain the provided value and the value before the operation.

Configuration Requirements: The IUT is configured to report all audit notifications. If possible, a property which is not
changing shall be the target of the operation so that the current value field can be validated. If the IUT does not have any objects
which support reporting of operation which contain target value, this test shall be skipped. AR is the Audit Report through
which O1 reports audit notifications.

Test Steps:

1. IF P1 is not changing outside of the operation THEN {
 READ IV = O1, P1
2. MAKE(perform an auditable operation, on O1, P1, which provides a target value, V,
 which is less than 32 octets in size)
3. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = (the operation performed),
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = O1,
 target-property = P1,
 target-priority = (the priority from the operation, or absent if 16 or not
 provided in the operation),
 target-value = V,
 current-value = (CV: any valid value),
 result = (E, if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = (the operation performed),
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

308 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 absent),
 target-device = IUT,
 target-object = O1,
 target-property = P1,
 target-priority = (the priority from the operation, or absent if 16 or not
 provided in the operation),
 target-value = V,
 current-value = (CV: any valid value),
 result = (E, if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}
4. IF the P1 is not changing outside of the operation THEN
 CHECK(CV equals IV)

7.3.2.X65.9 Target Audit Reporting - Error Audit Notification Test

Purpose: Verify that operations that fail are properly reported in audit notifications.

Test Concept: An auditable operation, which will fail with a Result(-) or Result(+) with error information is performed on the
IUT. It is verified that an audit notification is sent which contains the error that occurred. The auditable operation performed
shall be one for which the IUT will report failures via audit notifications.

Configuration Requirements: The IUT is configured to report all audit notifications.

Test Steps:

1. MAKE(perform an auditable operation, O, on IUT which will fail (via return of a BACnetErrorPDU,
 or a Result(+) with error information)
2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = O,
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 309

 octets),
 result = (the error reported for the operation)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = (the operation performed),
 -- source-comment absent
 target-comment = (any valid value, or absent),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the error reported for the operation)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.10 Target Audit Reporting - GENERAL Operation Test

Purpose: Verify that GENERAL operation audit notifications contain a Target Comment.

Test Concept: An auditable GENERAL operation is performed on the IUT. It is verified that an audit notification is sent which
contains the error that occurred.

Configuration Requirements: The IUT is configured to report all audit notifications. If the IUT does not generate GENERAL
audit notifications, this test shall be skipped.

Test Steps:

1. MAKE(make the IUT generate a GENERAL audit notification)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

310 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 operation = GENERAL,
 -- source-comment absent
 target-comment = (any valid value),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 -- source-timestamp absent
 target-timestamp = (IUT's local time),
 source-device = TD,
 -- source-object absent
 operation = GENERAL,
 -- source-comment absent
 target-comment = (any valid value),
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op or absent if no target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 311

7.3.2.X65.11 Source Audit Reporting - Basic Notification Test

Purpose: Verify that source audit notifications are properly formed.

Test Concept: The IUT is made to send a source audit notification. It is verified that the source fields are present, no target
fields are present, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report all auditable source operations. The IUT is configured with AR
as the source Audit Reporter object.

Test Steps:

1. MAKE(the IUT perform an auditable operation, O, on the TD)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

312 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.12 Source Audit Reporting - Same Device Notification Test

Purpose: Verify that source and target fields are in audit notifications are performed by the IUT on the IUT.

Test Concept: The IUT is made to perform an auditable operation on itself. It is verified that the source and target fields are
present, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report all auditable operations. The IUT is configured with AR as the
source Audit Reporter object. If the IUT is unable to perform an auditable operation on itself, this test shall be skipped.

Notes to Tester: The IUT is allowed to send the notifications as 2 separate notifications in the same audit notification message,
or in separate messages. When sending separate notifications, one shall be a correctly formed target notification and the other
a correctly formed source notification for the operation performed

Test Steps:

1. MAKE(the IUT perform an auditable operation, O, on the itself)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (T: IUT's local time),
 target-timestamp = T,
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 target-comment = (any valid value or absent),
 -- invoke-id absent
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 313

 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (T: IUT's local time),
 target-timestamp = T,
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 target-comment = (any valid value or absent),
 -- invoke-id absent
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = IUT,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.13 Source Audit Reporting - Unconfirmed Service Operation Test

Purpose: Verify that source audit notifications for unconfirmed services do not contain InvokeId information.

Test Concept: An auditable unconfirmed service is performed by the IUT, and it is verified that the resulting source audit
notification does not contain an InvokeId, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report source audit notifications for an unconfirmed service. If the IUT
does not support source audit reporting for any unconfirmed services, this test shall be skipped. The IUT is configured with
AR as the source Audit Reporter object.

Test Steps:

1. MAKE(the IUT perform an auditable operation, O, on the TD which uses an unconfirmed service)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 -- invoke-id absent
 source-user-id = (the value from the operation if provided, otherwise absent),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

314 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 -- invoke-id absent
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.14 Source Audit Reporting - Confirmed Service Operation Audit Notification

Purpose: Verify that source audit notifications for confirmed services contain InvokeId information.

Test Concept: An auditable confirmed service is performed by the IUT, and it is verified that the resulting source audit
notification contains an InvokeId, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report source audit notifications for a confirmed service. If the IUT
does not support source audit reporting for any confirmed services, this test shall be skipped. The IUT is configured with AR
as the source Audit Reporter object.

Test Steps:

1. MAKE(the IUT perform an auditable operation, O, on the TD which uses an confirmed service)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 315

2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the Invoke Id from the operation),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the Invoke Id from the operation),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

316 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X65.15 Source Audit Reporting - Operations with Priority Test

Purpose: Verify that source audit notifications which for writes which convey a priority include the priority in the notification.

Test Concept: An auditable write, which includes a priority, is performed on a commandable object by the IUT and it is verified
that the resulting source audit notification contains a priority, and other notification fields represent the auditable operation
performed.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1. The
IUT is configured with AR as the source Audit Reporter object. If the IUT does not provide priorities in auditable operations
it performed, this test shall be skipped.

Test Steps:

1. MAKE(the IUT perform an auditable operation in containing a priority, other than 16, on the TD)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the Invoke Id from the operation),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object),
 target-property = (the target property),
 target-priority = (the priority supplied),
 target-value = (the target value.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (any valid value, or absent),
 result = (the reason for failure if the op failed, otherwise absent)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the Invoke Id from the operation),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object),
 target-property = (the target property),
 target-priority = (the priority supplied),
 target-value = (the target value.
 may be absent if the value size is larger than 32 encoded

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 317

 octets),
 current-value = (any valid value, or absent),
 result = (the reason for failure if the op failed, otherwise absent)
 })
 TRANSMIT BACnet-SimpleACK-PDU

}

7.3.2.X65.16 Source Audit Reporting - Error Audit Notification Test

Purpose: Verify that operations performed by the IUT which fail are properly reported in audit notifications.

Test Concept: The IUT is made to perform an auditable operation on the TD and the TD returns an Error-PDU. It is verified
that a source audit notification is sent which contains the error that occurred. This is repeated twice more with the TD returning
a Reject PDU, and then an Abort PDU.

Configuration Requirements: The IUT is configured to report all audit notifications. The IUT is configured with AR as the
source Audit Reporter object.

Test Steps:

-- Error-PDU
1. MAKE(the IUT perform an auditable operation on TD which will fail (via return of a BACnetErrorPDU,
 or a Result(+) with error information)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not
 initiated by an object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op if the op targeted a property, or
 absent. May be absent even if targeting a property),
 result = (the error reported for the operation)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

318 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not
 initiated by an object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was
 unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise
 absent),
 source-user-role = (the value from the operation if provided, otherwise
 absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a
 property),
 target-priority = (the priority supplied, or absent if the target is not a
 property. shall be 16 or absent if no priority supplied and the
 target is a property),
 target-value = (the target value or absent if no target value for the
 operation. may be absent if the value size is larger than 32
 encoded octets),
 current-value = (the value before the op if the op targeted a property, or
 absent. May be absent even if targeting a property),
 result = (the error reported for the operation)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

-- Reject-PDU
3. MAKE(the IUT perform an auditable operation on TD which will fail (via return of a BACnetRejectPDU))
4. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 319

 May be absent even if targeting a property),
 result = (the error reported for the operation)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the error reported for the operation)
 }) TRANSMIT BACnet-SimpleACK-PDU
}

-- Abort-PDU
3. MAKE(the IUT perform an auditable operation on TD which will fail (via return of a BACnetAbortPDU))
4. IF the IUT is configured to send unconfirmed audit notifications THEN {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

320 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 May be absent even if targeting a property),
 result = (the error reported for the operation)
 })
} ELSE {
 BEFORE AR.Maximum_Send_Delay + Notification Fail Time
 RECEIVE ConfirmedAuditNotification-Request,
 'Notifications' = ({
 source-timestamp = (IUT's local time),
 -- target-timestamp absent
 source-device = IUT,
 source-object = (the object which initiated the op or absent if not initiated by an
 object),
 operation = O,
 source-comment = (any valid value or absent),
 -- target-comment absent
 invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
 source-user-id = (the value from the operation if provided, otherwise absent),
 source-user-role = (the value from the operation if provided, otherwise absent),
 target-device = TD,
 target-object = (the target object or absent if the target is not an object),
 target-property = (the target property or absent if the target is not a property),
 target-priority = (the priority supplied, or absent if the target is not a property.
 shall be 16 or absent if no priority supplied and the target is a
 property),
 target-value = (the target value or absent if no target value for the operation.
 may be absent if the value size is larger than 32 encoded
 octets),
 current-value = (the value before the op if the op targeted a property, or absent.
 May be absent even if targeting a property),
 result = (the error reported for the operation)
 })
 TRANSMIT BACnet-SimpleACK-PDU
}

7.3.2.X65.17 Source Audit Reporting - Single Source Audit Reporter Object Test

Purpose: Verify that the IUT contains a single Audit Report for source audit reporting.

Test Concept: Check all Audit Reporter objects in the IUT and verify that only one is for source audit reporting.

Test Steps:
1. SourceAR = NONE
2. REPEAT AR = (each Audit Reporter object) DO {
 IF AR.Audit_Source_Reporter is TRUE THEN
 IF SourceAR is not NONE THEN
 ERROR "Multiple Audit Reporter objects setup for source reporting."
}
3. CHECK(SourceAR is not NONE)

7.3.2.X65.18 Audit Forwarding Test

Purpose: Verify that the IUT forwards received audit notifications.

Test Concept: Send a sequence of confirmed and unconfirmed, unicast, and broadcast audit notifications to the IUT and verify
they are forwarded.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 321

Configuration Requirements: The IUT is configured with an Audit Log, AL, which is setup to forward and delete audit
notifications with no delay. The IUT is configured to send notifications unconfirmed.

Test Steps:
-- Unicast confirmed
1. TRANSMIT ConfirmedAuditNotification-Request,
 'Notifications' = (N1: a list of 1 or more notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = N1
4. TRANSMIT ReadRange-Request,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 1,
 'Count' = 10
5. RECEIVE ReadRange-Ack,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = (False, False, False),
 'Count' = 0

-- Unicast unconfirmed
6. TRANSMIT UnconfirmedAuditNotification-Request,
 'Notifications' = (N2: a list of 1 or more notifications)
7. BEFORE Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = N2
8. TRANSMIT ReadRange-Request,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 1,
 'Count' = 10
9. RECEIVE ReadRange-Ack,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = (False, False, False),
 'Count' = 0

-- Local Broadcast
10. TRANSMIT UnconfirmedAuditNotification-Request,
 DESTINATION = LOCAL BROADCAST,
 'Notifications' = (N3: a list of 1 or more notifications)
11. BEFORE Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = N3
12. TRANSMIT ReadRange-Request,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 1,
 'Count' = 10
13. RECEIVE ReadRange-Ack,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = (False, False, False),
 'Count' = 0
-- Global Broadcast
10. TRANSMIT UnconfirmedAuditNotification-Request,
 DESTINATION = GLOBAL BROADCAST,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

322 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Notifications' = (N4: a list of 1 or more notifications)
11. BEFORE Notification Fail Time
 RECEIVE UnconfirmedAuditNotification-Request,
 'Notifications' = N4
12. TRANSMIT ReadRange-Request,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 1,
 'Count' = 10
13. RECEIVE ReadRange-Ack,
 'Object Identifier' = AL,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = (False, False, False),
 'Count' = 0

[Add new Clause 7.3.2.X66, p. 185]

[Reviewer Note: Clause 7.3.2 (Object Specific Tests) contains no tests for the Staging object type.]

7.3.2.X66 Staging Object Tests

7.3.2.X66.1 Clamping Present_Value to Max_Pres_Value or Min_Pres_Value

Purpose: To verify that Present_Value will be modified internally to stay within the boundaries of Min_Pres_Value or
Max_Pres_Value.

Test Concept: Present_Value is written with a value greater than Max_Pres_Value. If the value is accepted, Present_Value is
read to verify that it clamped to Max_Pres_Value. If Stages is writable, an attempt is made to reduce the limit defined in the
last stage. If successful, Present_Value is checked to verify it changed to match the new limit. Present_Value is then written
with a value less than Min_Pres_Value. If the value is accepted, Present_Value is read to verify that it clamped to
Min_Pres_Value. If Min_Pres_Value is writable, the value is increased and Present_Value is read to verify that it matches the
new Min_Pres_Value.

Configuration Requirements: None

Test Steps:

1. READ MAXPV1 = Max_Pres_Value
2. READ PV1 = Present_Value
3. TRANSMIT WriteProperty-Request
 'Object-Identifier' = (the Staging object under test),
 'Property Identifer' = Present_Value,
 'Property Value' = (a value greater than MAXPV1)
4. RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = Property,
 'Error Code' = VALUE_OUT_OF_RANGE)
5. IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Present_Value = MAXPV1
 ELSE
 VERIFY Present_Value = PV1
 WRITE Present_Value = MAXPV1
6. IF (Stages is writable) THEN
 READ NS = Stages[0]
 READ STGN = Stages, ARRAY INDEX = NS
 TRANSMIT WriteProperty-Request
 'Object-Identifier' = (the Staging object under test),
 'Property Identifer' = Stages,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 323

 'Property Array Index' = NS,
 'Property Value' = {
 Limit = (STAGEPV1: any value less than STGN.Limit)
 Values = STGN.Values,
 DeadBand = STGN.Deadband
 }
 RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
 IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Present_Value = STAGEPV1
7. READ MINPV1 = Min_Pres_Value
8. READ PV2 = Present_Value
9. TRANSMIT WriteProperty-Request
 'Object-Identifier' = (the Staging object under test),
 'Property Identifer' = Present_Value,
 'Property Value' = (a value less than MINPV1)
10. RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
11. IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Present_Value = MINPV1
 ELSE
 VERIFY Present_Value = PV2
 WRITE Present_Value = MINPV1
12. IF (Min_Pres_Value is writable) THEN
 READ STG1 = Stages, ARRAY INDEX = 1
 TRANSMIT WriteProperty-Request
 'Object-Identifier' = (the Staging object under test),
 'Property Identifer' = Min_Pres_Value,
 'Property Value' = (MINPV2: MINPV1< MINPV2< (STG1.Limit - STG1.Deadband))
 WAIT Internal Processing Fail Time
 VERIFY Present_Value = MINPV2

7.3.2.X66.2 Present_Stage Evaluation

Purpose: To verify that Present_Stage evaluates correctly based on the Present_Value, stage limits, and deadband values.

Test Concept: Present_Value is written with different values that exercise the Present_Stage evaluation algorithm. After each
write to Present_Value, Present_Stage is read to verify that the algorithm evaluates correctly.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

324 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. If supported,
Deadband shall be configured with a non-zero value for stage N (Stage[N].deadband <> 0). At the start of the test, the Staging
object is configured with Present_Value = V1.

Test Steps:

1. READ N = Present_Stage
2. VERIFY Present_Value = V1
3. If (Stages[N].Deadband > 0) THEN {
 WRITE Present_Value = (V2: Stages[N].Limit - Stages[N].Deadband < V2 < Stages[N].Limit)
 VERIFY Present_Stage = N
 WRITE Present_Value = (V3: Stages[N].Limit < V3 < Stages[N].Limit + Stages[N].Deadband)
 VERIFY Present_Stage = N
 WRITE Present_Value = V2
 VERIFY Present_Stage = N
 WRITE Present_Value = (V4: Stages[N].Limit + Stages[N].Deadband < V4 < Stages[N+1].Limit)
 VERIFY Present_Stage = N+1
 WRITE Present_Value = V3
 VERIFY Present_Stage = N+1
 WRITE Present_Value = V2
 VERIFY Present_Stage = N+1
 WRITE Present_Value = V1
 VERIFY Present_Stage = N
}
4. WRITE Present_Value = V4
5. VERIFY Present_Stage = N+1
6. WRITE Present_Value = V1
7. VERIFY Present_Stage = N

7.3.2.X66.3 Present_Stage Evaluates on Restart

Purpose: To verify that Present_Stage is re-evaluated on device restart.

Test Concept: Present_Value is written with a value, V3, that exceeds Stages[N].limit but does not exceed the deadband
threshold and cause a change to Present_Stage. The IUT is restarted and Present_Stage is read to verify that it is now (N+1).
Present_Value is then written with a value, V2, that is below Stages[N].limit but above the deadband threshold so Present_Stage
remains at (N+1). The IUT is restarted and Present_Stage is read to verify that it is now N.

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. Deadband shall
be configured with a non-zero value for stage N (Stage[N].Deadband <> 0). If deadband for stage N cannot be configured this
way in a Staging object which does not support Default_Present_Value, this test shall be skipped. At the start of the test, the
Staging object is configured with Present_Value = V1 and Present_Stage = N. If the IUT supports remote Target_References,
then at least 1 shall be set to an object outside the IUT.

Test Steps:

1. VERIFY Present_Stage = N
2. VERIFY Present_Value = V1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 325

3. WRITE Present_Value = (V3: Stages[N].Limit < V3 < (Stages[N].Limit + Stages[N].Deadband))
4. VERIFY Present_Stage = N
5. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
 TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART
 'Password' = (any valid password)
 RECEIVE BACnet-SimpleACK-PDU
 } ELSE {
 MAKE (power cycle the IUT to make it reinitialize)
 }
6. WAIT for the IUT to complete its restart
7. CHECK(that the IUT wrote to all Target References which are outside the device)
8. VERIFY Present_Value = V3
9. VERIFY Present_Stage = N+1
10. WRITE Present_Value = (V2: (Stages[N].Limit - Stages[N].Deadband) < V2 < Stages[N].Limit)
11. VERIFY Present_Stage = N+1
12. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
 TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART
 'Password' = (any valid password)
 RECEIVE BACnet-SimpleACK-PDU
 } ELSE {
 MAKE (power cycle the IUT to make it reinitialize)
 }
13. WAIT for the IUT to complete its restart
14. CHECK(that the IUT wrote to all Target References which are outside the device)
15. VERIFY Present_Value = V2
16. VERIFY Present_Stage = N+1

7.3.2.X66.4 Default_Present_Value is Abided on Restart

Purpose: To verify that Default_Present_Value defines the Staging object's value on device restart.

Test Concept: A staging object which contains Default_Present_Value. The stage associated with Default_Present_Value is
S1. The staging object starts with the value V2, which evaluates to a different stage, S2. The IUT is restarted, and it is verified
that the staging object takes on Default_Present_Value, changes to the stage S1 and performs the associated writes. The IUT
is restarted again, and it is verified that the staging object maintains its value, remains in stage S1 and performs the associated
writes for the stage S1.

Configuration Requirements: If the IUT supports remote Target_References, then at least 1 shall be set to an object in the TD.

Test Steps:

1. VERIFY Default_Present_Value = V1
2. VERIFY Present_Value = V2
3. VERIFY Present_Stage = S2
4. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
 TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART
 'Password' = (any valid password)
 RECEIVE BACnet-SimpleACK-PDU
 } ELSE {
 MAKE (power cycle the IUT to make it reinitialize)
 }
5. WAIT for the IUT to complete its restart
6. CHECK(that the IUT wrote to all Target References which are outside the device)
7. VERIFY Present_Value = V1
8. VERIFY Present_Stage = S1
9. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
 TRANSMIT ReinitializeDevice-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

326 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Reinitialized State of Device' = WARMSTART
 'Password' = (any valid password)
 RECEIVE BACnet-SimpleACK-PDU
 } ELSE {
 MAKE (power cycle the IUT to make it reinitialize)
 }
10. WAIT for the IUT to complete its restart
11. CHECK(that the IUT wrote to all Target References which are outside the device)
12. VERIFY Present_Value = V1
13. VERIFY Present_Stage = S1

7.3.2.X66.5 Writing to Target References

Purpose: To verify that a change of Present_Stage results in the target references being written as per the stage definition.

Test Concept: A Stage object, O1, is selected for testing. O1's Present_Value is written with a value that results in a change of
Present_Stage. Each Present_Value of the Target_References is monitored to verify that its value is set in accordance with
Stage[Present_Stage].Values. O1's Present_Value is written again with a value that returns Present_Stage to its initial value.
Again, the Target_References are monitored to verify that they have been written with the appropriate values.

Configuration Requirements: Target_References is configured with references to existing binary objects with writable
Present_Value properties. The Stages property is configured with at least two stages, X and Y, such that Stages[X].Values <>
Stages[Y].Values. Present_Stage shall be X at the start of the test. Throughout the test, O1 is expected to be properly configured
such that Reliability is NO_FAULT_DETECTED.

Test Steps:

1. VERIFY Present_Stage = X
2. WRITE Present_Value = (any value that causes Present_Stage to change to Y)
3. VERIFY Present_Stage = Y
4. REPEAT J = (1 ... Target_References[0]) = DO {
 READ O = Target_References, ARRAY INDEX = J
 VERIFY O, Present_Value = Stages[Y].Values[J]
5. WRITE Present_Value = (any value that causes Present_Stage to change to X)
6. VERIFY Present_Stage = X
7. REPEAT J = (1.. Target_References[0]) = DO {
 READ O = Target_References, ARRAY INDEX = J
 VERIFY O, Present_Value = Stages[X].Values[J]

7.3.2.X66.6 Stage Value Bitstring is Same Length as Target_References

Purpose: To verify that the bitstring length for the Values component of each stage is equal and corresponds to the number of
entries in the Target_References property.

Test Concept: For each staging object in the IUT, the Stages and Target_References properties are read. For each object, the
length of the 'Values' bitstring from the first stage is extracted. This length is compared to the length of the 'Values' bitstring
in every other stage and the size of the Target_References property to verify equality.

Configuration Requirements: None

Test Steps:

1. REPEAT O = (each Staging object in the IUT) DO {
 READ NS = O, Stages, ARRAY INDEX = 0
 READ STG1 = Stages, ARRAY INDEX = 1
 NUMBITS = (number bits in STG1.Values)
 REPEAT N = (2 through NS) DO {
 -- check that the length of Stages[1].Values equals length of Stages[N].Values.
 READ STGN = Stages, ARRAY INDEX = N
 IF number of bits in STGN.Values <> NUMBITS THEN
 ERROR "Length of the Values bitstrings are not the same in all stages."

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 327

 }
 VERIFY Target_References = NUMBITS, ARRAY_INDEX = 0
 }

7.3.2.X66.7 Max_Pres_Value Equals Last Stage Limit

Purpose: To verify that Max_Pres_Value is equivalent to the Limit defined in the last Stage.

Test Concept: Max_Pres_Value is read and checked for equality with the Limit defined in the last element of the Stages
array.

Configuration Requirements: None

Test Steps:

1. READ N = Stages, ARRAY INDEX = 0
2. VERIFY Max_Pres_Value = Stages[N].Limit

7.3.2.X66.8 CONFIGURATION_ERROR when Min_Pres_Value is too Large

Purpose: To verify that Reliability has a value of CONFIGURATION_ERROR when Min_Pres_Value has a value greater than
Stages[1].Limit - Stages[1].Deadband.

Test Concept: Min_Pres_Value is made to exceed the value of Stages[1].Limit - Stages[1].Deadband by first writing directly
to Min_Pres_Value, then by making a change to Stages[1].Limit, and then by making a change to Stages[1].Deadband. After
each modification, if it is successful, Reliability is verified to have a value of CONFIGURATION_ERROR and then the
modification is reversed, and Reliability is verified to have a value of NO_FAULT_DETECTED.

Configuration Requirements: At the start of the test, the Staging object used for this test, O1, shall be properly configured such
that Reliability = NO_FAULT_DETECTED. At the start of the test, Present_Value shall be equal to Min_Pres_Value.

Test Steps:

1. READ MINPV1 = Min_Pres_Value
2. VERIFY Present_Value = MINPV1
3. VERIFY Reliability = NO_FAULT_DETECTED
4. READ STG1 = Stages, ARRAY INDEX = 1
5. SL = STG1.Limit
6. SV = STG1.Values
7. SD = STG1.Deadband
8. IF (Min_Pres_Value is writable) THEN
 TRANSMIT WriteProperty-Request,
 'Object Identifier' = O1
 'Property Identifier' = Min_Pres_Value ,
 'Property Value' = (MINPV2: where MINPV2 > (SL-SD))
 RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = Property,
 'Error Code' = VALUE_OUT_OF_RANGE)
 IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Min_Pres_Value = MINPV2
 VERIFY Reliability = CONFIGURATION_ERROR
 VERIFY Present_Value = MINPV2
 VERIFY Present_Stage = 1
 WRITE Min_Pres_Value = MINPV1
 VERIFY Reliability = NO_FAULT_DETECTED
 ELSE
 VERIFY Present_Value = MINPV1
 VERIFY Reliability = NO_FAULT_DETECTED
9. IF (Stages is writable) THEN
 TRANSMIT WriteProperty-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

328 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = (the staging object under test),
 'Property Identifier' = Stages,
 'Property Array Index' = 1,
 'Property Value' = {
 Limit = (NL: where NL-SD < Min_Pres_Value),
 Values = SV,
 DeadBand = SD
 }
 RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
 IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Stages = { Limit=NL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
 VERIFY Reliability = CONFIGURATION_ERROR
 VERIFY Present_Value = MINPV1
 VERIFY Present_Stage = 1
 WRITE Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
 VERIFY Reliability = NO_FAULT_DETECTED
 ELSE
 VERIFY Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
 VERIFY Reliability = NO_FAULT_DETECTED
 TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the staging object under test),
 'Property Identifier' = Stages,
 'Property Array Index' = 1,
 'Property Value' = {
 Limit=SL,
 Values=SV,
 Deadband=(ND: where SL-ND < Min_Pres_Value)
 }
 RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
 IF (a BACnet-SimpleACK-PDU was received) THEN
 VERIFY Stages = { Limit=SL, Values=SV, Deadband=ND }, ARRAY INDEX = 1
 VERIFY Reliability = CONFIGURATION_ERROR
 VERIFY Present_Value = MINPV1
 VERIFY Present_Stage = 1
 WRITE Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
 VERIFY Reliability = NO_FAULT_DETECTED
 ELSE
 VERIFY Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
 VERIFY Reliability = NO_FAULT_DETECTED

7.3.2.X66.9 COMMUNICATION_FAILURE on Failed Write to External Target Reference

Purpose: To verify that Reliability is set to COMMUNICATION_FAILURE when an attempt to write to a remote target fails.

Test Concept: The Staging object is configured with a Target_Reference aimed at an object in the TD. The Staging object's
Present_Value is written such that a change to Present_Stage occurs. When the external target property is written by the IUT,
the TD shall not respond. The test verifies that the write to Present_Value returns a Result(+) and Reliability is set to
COMMUNICATION_FAILURE.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object, O1, in the
Target_References property which is located in the TD. The Stages property shall be configured with two stages such that
Stages[S].Values = {…V1…} and Stages[S+1].Values = {…V2…} where V1 and V2 correspond to the target, O1, and V1 <>
V2. At the start of the test, the Staging object is properly configured such that Reliability = NO_FAULT_DETECTED and

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 329

Present_Stage = S. If no Staging object in the IUT supports external references in the Target_References property, this test
shall be skipped.

Test Steps:

1. READ S = Present_Stage
2. WRITE Present_Value = (X: a value that will change Present_Stage to S+1)
3. RECEIVE WriteProperty-Request,
 'Object Identifier' = O1,
 'Property Identifier' = Present_Value,
 'Property Value' = V2
4. WAIT (Number_Of_APDU_Retries + 1) * (Internal Processing Fail Time + APDU_Timeout)
5. VERIFY Reliability = COMMUNICATION_FAILURE

7.3.2.X66.10 Fault Indicated on Failed Write to Local Target Reference

Purpose: To verify that Reliability is set when an attempt to write to a local target fails.

Test Concept: The Staging object is configured with a Target_Reference aimed at an object in the IUT which is not writable or
non-existent. The Staging object's Present_Value is written such that a change to Present_Stage occurs. The test verifies that
the write to the Staging object’s Present_Value returns a Result(+) and Reliability is set to indicate a failure to write one of the
targets.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object, O1, in the
Target_References property, which is local to the IUT, yet not writable or non-existent. The Stages property shall be configured
with two stages such that Stages[S].Values = {…V1…} and Stages[S+1].Values = {…V2…} where V1 and V2 correspond to
the target, O1, and V1 <> V2. At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT_DETECTED and Present_Stage = S. If no Staging object can be configured to reference a non-writable or non-
existent local object, this test shall be skipped.

Test Steps:

1. READ S = Present_Stage
-- cause the staging object to write to the non-existent or non-writable target object
2. WRITE Present_Value = (X: a value that will change Present_Stage to S+1)
3. VERIFY Reliability <> NO_FAULT_DETECTED

7.3.2.X66.11 Out_Of_Service, Status_Flags, and Reliability for Staging Object

Purpose: To verify that Present_Value and Reliability are writable when Out_Of_Service is TRUE, to verify the relationship
between Out_Of_Service, Status_Flags, and Reliability, and to verify that writes to Target_References only occur when
Out_Of_Service is FALSE.

Test Concept: The Out_Of_Service property is set to TRUE and the value of the Status_Flags property is validated.
Present_Value is modified to verify that Present_Stage evaluates but writes to Target_References do not occur. If the IUT
supports Reliability values other than NO_FAULT_DETECTED, writability for that property is tested and the value of the
Status_Flags property is validated. The Out_Of_Service property is set to FALSE and the value of the Status_Flags property
is validated. The Present_Value for one of the Target_References is checked to verify that it has the correct value, indicative
of a write that occurred when transitioning Out_Of_Service from TRUE to FALSE.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object in the
Target_References property. The Stages property shall be configured with two stages such that Stages[S].Values = {V1…}
and Stages[S+1].Values = {V2…} where V1 <> V2. At the start of the test, the Staging object is properly configured such that
Reliability = NO_FAULT_DETECTED and Present_Stage = S.

Test Steps:

1. READ SF1 = Status_Flags
2. VERIFY Reliability = NO_FAULT_DETECTED
3. VERIFY Present_Stage = S
4. READ O1 = Target_References, ARRAY INDEX = 1
5. VERIFY O1, Present_Value = V1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

330 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

6. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Out_Of_Service TRUE)
7. VERIFY Out_Of_Service = TRUE
8. VERIFY Status_Flags = (?, ?, ?, TRUE)
9. WRITE Present_Value = (PV: (Stages[S].Limit + Stages[S].Deadband) < PV < Stages[S+1].Limit)
10. VERIFY Present_Value = PV
11. VERIFY Present_Stage = S+1
12. VERIFY O1, Present_Value = V2
13. IF (the IUT supports Reliability values other than NO_FAULT_DETECTED) THEN
 REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
 NO_FAULT_DETECTED) DO {
 WRITE Reliability = X
 VERIFY Reliability = X
 VERIFY Status_Flags = (?, TRUE, ?, TRUE)
 WRITE Reliability = NO_FAULT_DETECTED
 VERIFY Reliability = NO_FAULT_DETECTED
 VERIFY Status_Flags = (?, FALSE, ?, TRUE)
 }
14. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
 ELSE
 MAKE (Out_Of_Service FALSE)
15. VERIFY Status_Flags = SF1
16. VERIFY Reliability = NO_FAULT_DETECTED
17. IF (Present_Stage = S+1) THEN
 VERIFY O1, Present_Value = V2

7.3.2.X66.12 Stages Array Sizing Test

Purpose: This test case verifies that, when the size of the of the Stages array is changed by writing to the ARRAY INDEX, the
size of the array changes accordingly and any new entries are properly initialized.

Test Concept: The Stages array is increased by writing the array size. It is verified that the Stages property is extended and that
the new entries contain 'Limit' = 0.0, 'Values' = {0…0}, and 'Deadband' = 0.0. Reliability is verified to be
CONFIGURATION_ERROR. Present_Stage is verified to be 1. Present_Value is verified to be Min_Pres_Value. If the
Stage_Names property is present, the size of the array is checked to verify that it matches the size of the Stages array.

Throughout the test, the array size of the Stage_Names property is checked to verify it is consistent with the array size of the
Stages property.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT_DETECTED and Present_Stage = S. The size of the Stages array is greater than 1 and less than the maximum
array size.

Test Steps:

1. READ N = Stages, ARRAY INDEX = 0
2. IF (Stage_Names is present) THEN {
 VERIFY = Stage_Names = N, ARRAY INDEX = 0
}
3. READ NT = Target_References, ARRAY INDEX = 0
4. WRITE Stages = N+X, ARRAY INDEX = 0 -- where (X ≥ 1)
5. VERIFY Stages = N+X, ARRAY INDEX = 0
6. VERIFY Stages = (0.0,{0…0},0.0), ARRAY INDEX = N+X -- where the number of bits in Values is NT
7. VERIFY Reliability = CONFIGURATION_ERROR
8. VERIFY Present_Stage = 1
9. READ MV = Min_Pres_Value
10. VERIFY Present_Value = MV
11. IF (Stage_Names is present) THEN {

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 331

 VERIFY Stage_Names = N+X, ARRAY INDEX = 0
 WRITE Stages = N, ARRAY INDEX = 0
 VERIFY Stage_Names = N, ARRAY INDEX = 0
}

7.3.2.X66.13 Present_Stage Evaluates on Change to Stages Property

Purpose: To verify that Present_Stage gets re-evaluated when the Stages property is changed.

Test Concept: Present_Value is written with a value, V3, that exceeds Stages[N].limit but does not exceed the deadband
threshold and cause a change to Present_Stage. The Stages property is written with a new value such that Stage[N] is unaffected
by the change. Present_Stage is read to verify that it is now (N+1). Present_Value is then written with a value, V2, that is below
Stages[N].limit but above the deadband threshold so Present_Stage remains at (N+1). The Stages property is written with a
new value such that Stage[N] is unaffected by the change. Present_Stage is read to verify that it is now N.

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. Deadband shall
be configured with a non-zero value for stage N (Stage[N].Deadband <> 0). If deadband for stage N cannot be configured this
way, this test shall be skipped. At the start of the test, the Staging object is configured with Present_Value = V1 and
Present_Stage = N.

Test Steps:

1. VERIFY Present_Stage = N
2. VERIFY Present_Value = V1
3. READ STAGES1 = Stages
4. WRITE Present_Value = (V3: Stages[N].Limit < V3 < (Stages[N].Limit + Stages[N].Deadband))
5. VERIFY Present_Stage = N
6. IF (Stages is writable) THEN
 WRITE Stages = (STAGES2: any valid value different from STAGES1 but
 with the same value for Stage[N])
 ELSE
 MAKE Stages = (STAGES2: any valid value different from STAGES1but
 with the same value for Stage[N])
7. VERIFY Present_Value = V3
8. VERIFY Present_Stage = N+1
9. WRITE Present_Value = (V2: (Stages[N].Limit - Stages[N].Deadband) < V2 < Stages[N].Limit)
10. VERIFY Present_Stage = N+1
11. IF (Stages is writable) THEN
 WRITE Stages = (STAGES3: any valid value different from STAGES2 but
 with the same value for Stage[N])
 ELSE
 MAKE Stages = (STAGES3: any valid value different from STAGES2 but
 with the same value for Stage[N])
12. VERIFY Present_Value = V2
13. VERIFY Present_Stage = N

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

332 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7.3.2.X66.14 CONFIGURATION_ERROR when Limits are Out of Order

Purpose: To verify that Stages defined in the staging object are arranged in ascending order and, if not, Reliability is set to
CONFIGURATION_ERROR.

Test Concept: Write Stages out of order; use specific values that violate the limit value ascension rule. Verify that the object
identifies the problem and sets Reliability.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT_DETECTED.

Test Steps:

1. VERIFY Reliability = NO_FAULT_DETECTED
2. READ NS = Stages, ARRAY INDEX = 0
3. N = (any value where 1 <= N < NS)
4. WRITE Stages = {
 Limit = (LIM: where LIM > Stages[N+1].Limit),
 Values = (any valid value of the correct length),
 Deadband = (any valid value)
 }, ARRAY INDEX = N
5. VERIFY Reliability = CONFIGURATION_ERROR
6. VERIFY Present_Value = Min_Pres_Value
7. VERIFY Present_Stage = 1

7.3.2.X66.15 CONFIGURATION_ERROR when Deadband < 0

Purpose: To verify that Stages defined in the staging object do not have a Deadband value less than 0, or if they do, when
Deadband is less than 0, Reliability is set to CONFIGURATION_ERROR.

Test Concept: Write an entry in the Stages property, changing the deadband to a negative value. Verify that the either the write
fails, or that Reliability is set to CONFIGURATION_ERROR.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT_DETECTED.

Test Steps:

1. VERIFY Reliability = NO_FAULT_DETECTED
2. READ NS = Stages, ARRAY INDEX = 0
2. N = (any value where 1 <= N < NS)
3. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the staging object under test),
 'Property Identifier' = Stages,
 'Property Array Index' = N,
 'Property Value' = {
 Limit = Stages[N].Limit,
 Values = Stages[N].Values,
 Deadband = (any negative value)
 }
4. RECEVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
5. IF (a BACnet-SimpleACK-PDU was received) THEN {
 VERIFY Reliability = CONFIGURATION_ERROR
 VERIFY Present_Value = Min_Pres_Value
 VERIFY Present_Stage = 1
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 333

7.3.2.X66.16 CONFIGURATION_ERROR when Stages Size is less than Two

Purpose: To verify that the Stages array has a minimum length of two, and if not, Reliability is set to
CONFIGURATION_ERROR.

Test Concept: Write the Stages property, without an array index, setting the length of the array to 1. Verify that either the write
fails, or that Reliability is set to CONFIGURATION_ERROR.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT_DETECTED.

Test Steps:

1. VERIFY Reliability = NO_FAULT_DETECTED
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the staging object under test),
 'Property Identifier' = Stages,
 'Property Array Index' = 0,
 'Property Value' = (0 or 1)
3. RECEVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE)
5. IF (a BACnet-SimpleACK-PDU was received) THEN {
 VERIFY Reliability = CONFIGURATION_ERROR
 VERIFY Present_Value = Min_Pres_Value
 VERIFY Present_Stage = 1
}

7.3.2.X66.17 Stage_Names and Stages Size Equality Test

Purpose: To verify that the size of the Stage_Names array is equal to the size of the Stages array.

Test Concept: Verify that the Stages array and Stage_Names array are of the same length.

Test Steps:

1. READ N = Stages, ARRAY INDEX = 0
2. VERIFY Stage_Names = N, ARRAY INDEX = 0

7.3.2.X66.18 Stage_Names Array Sizing Test

Purpose: This test case verifies that, when the size of the Stage_Names array is changed by writing to the ARRAY INDEX, the
size of the array and the size of the Stages array changes accordingly and new values added to the Stages array are initialized
to contain 'Limit' = 0.0, 'Values' = {0…0}, and 'Deadband' = 0.0, and Reliability is set to CONFIGURATION_ERROR.

Test Concept: Resize the Stage_Names array larger by writing the size and verify that Stages is also resized. Shrink the array
back and verify Stages. Resize once more by writing the whole array and verify that Stages resizes correctly. Each time verify
that new stages are correct.

Configuration Requirements: If the Stages property is not resizable by writing to it, this test shall be skipped.

Test Steps:

1. READ N = Stage_Names, ARRAY INDEX = 0
2. WRITE Stage_Names = N+1, ARRAY INDEX = 0
3. VERIFY Stages = N+1, ARRAY INDEX = 0
4. VERIFY Stages = {Limit=0.0, Values={0…0}, Deadband=0.0}, ARRAY INDEX = N+1
5. WRITE Stage_Names = N, ARRAY INDEX = 0
6. VERIFY Stages = N, ARRAY INDEX = 0

7. WRITE Stage_Names = (an array, of strings, with a length, N2, which the IUT will accept other than N)
8. VERIFY Stages = N2, ARRAY INDEX = 0

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

334 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9. VERIFY Stages = (an array of length N2 of stages consistent with the object's configuration)
10. IF (N2 > N) THEN {
 REPEAT J = (N … N2) {
 VERIFY Stages = {Limit=0.0, Values={0…0}, Deadband=0.0}, ARRAY INDEX = J
 }
}

7.3.2.X66.19 Target_References Array Sizing Test

Purpose: To verify that a change to size of the Target_References array results in an equivalent change to the length of the
'Values' portion of all elements of the Stages property and that new bits in the 'Values' are set to '0'.

Test Concept: Resize the Target_References array larger and verify that the values field in each stage is updated with new bits.
Resize the array smaller and verify that the values field in each stage is resized smaller.

Configuration Requirements: The staging object is configured with at least 1 Target_Reference.

Test Steps:

1. READ STAGES1 = Stages
2. NTR = (length of STAGES1[0].Values)
3. WRITE Target_References = NTR+1, ARRAY INDEX = 0
4. REPEAT J = (1 … STAGES1[0]) DO {
 VERIFY Stages = {
 Limit=STAGES1[J].Limit,
 Values=(the value of STAGES1[J].Values with 1 more 0 tacked on the end),
 DeadBand=STAGES1 [J].Deadband
 }, ARRAY INDEX = J
}

5. WRITE Target_References = NTR, ARRAY INDEX = 0
6. REPEAT J = (1 … STAGES1[0]) DO {
 VERIFY Stages = {
 Limit=STAGES1[J].Limit,
 Values=(the value of STAGES1[J].Values),
 DeadBand=STAGES1[J].Deadband
 }, ARRAY INDEX = J
}

7.3.2.X66.20 Writing Target_References with an Unsupported External Reference

Purpose: To verify the correct Result(-) when Target_References does not support objects in an external device.

Test Concept: Attempt writing Target_References of a Staging object with an external object reference. Verify the IUT returns
the correct Result(-).

Configuration Requirements: The IUT is configured with a Staging Value object which does not support references to external
objects. If the IUT cannot be configured this way, this test shall be skipped.

Test Steps:

1. READ X = Target_References
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (the staging object under test),
 'Property Identifier' = Target_References,
 'Property Array Index' = 1,
 'Property Value' = (a reference to a binary object in the TD)

3. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 335

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

336 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-8 Add new and correct existing Application Service Initiation Tests

Rationale

Errors have been identified in a number of application service initiation tests in ANSI/ASHRAE Standard 135.1-
2019.
In addition, the test coverage is increased by the addition of new tests.

8. APPLICATION SERVICE INITIATION TESTS

[Change and renumber Clause 8.1, p. 186]

[Reviewer Note: Corrected the 'Event State Acknowledged' field to allow for OFFNORMAL for any of the off-normal states.
Moved test 8.1 to new subclause 8.1.1.]

8.1 AcknowledgeAlarm Service Initiation Tests

8.1.1 AcknowledgeAlarm Service Initiation Test
Purpose: To verify that the IUT is capable of acknowledging alarms and events that are reported to the IUT via the
ConfirmedEventNotification and UnconfirmedEventNotfication services.

Configuration: For this test, the tester shall choose 1 object, O1, in the TD, which is configured to send event notifications to
the IUT. The tester places O1 into an alarm state such that the transition requires an acknowledgment.

Test Steps:

1. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,
 'Subscriber Process Identifier' = (a value acceptable to the IUT configured in the Notification Class
 object for the IUT),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid value, T1),
 'Notification Class' = (the value configured in O1),
 'Priority' = (any value selected by the TD),
 'Event Type' = (any value selected by the TD),
 'Message Text' = (optional, any valid value),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE,
 'From State' = (any valid value),
 'To State' = (any valid value, S1),
 'Event Values' = (any event values appropriate to the event type)
2. IF (the ConfirmedEventNotification choice was selected) THEN
 RECEIVE BACnet-SimpleACK-PDU
3. MAKE (the IUT acknowledge O1)
4. RECEIVE AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (any process identifier),
 'Event Object Identifier' = O1,
 'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
 'Time Stamp' = T1,
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgement' = (any valid value)
5. TRANSMIT BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 337

[Add new Clause 8.1.X2, p. 187]

[Reviewer Note: Added a new test ensuring correct behavior acknowledging an event notification that has been forwarded by
a Notification Forwarder.]

8.1.X2 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the 'Initiating Device Identifier'
Parameter
Purpose: To verify that the IUT is correctly implemented to send AcknowledgeAlarm directly to the device indicated by the
’Initiating Device Identifier’ parameter of the event notification, in alarms and events that are reported to the IUT via the
ConfirmedEventNotification and UnconfirmedEventNotfication services. Requests having the 'Initiating Device Identifier'
parameter equal-to and different from SOURCE, are both tested.

Test Concept: Two times a purposefully constructed event notification is sent, and it is observed that IUT is acknowledging
directly to the device indicated by the 'Initiating Device Identifier' parameter of the event notification.

Configuration: For this test, the tester shall choose an object, O1, and tester places O1 into an alarm state such that the
transition requires an acknowledgment. Then purposefully the EventNotification packet which is sent is crafted to represent
that a Notification Forwarder was involved, so though SOURCE is from the TD, the O1 resides in a different device TD1.
Then the steps are repeated but with 'Initiating Device Identifier' representing that O1 is in TD and thus the same device.
Each time it is observed that the AcknowledgeAlarm is sent to the device represented as the 'Initiating Device Identifier'.

Test Steps:

1. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,
 'Subscriber Process Identifier' = (a value acceptable to the IUT configured in the Notification Class
 object for the IUT),
 'Initiating Device Identifier' = TD1, // representing that O1 is in different device from SOURCE
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid value, T1),
 'Notification Class' = (the value configured in O1),
 'Priority' = (any value selected by the TD),
 'Event Type' = (any value selected by the TD),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE,
 'From State' = (any valid value),
 'To State' = (any valid value, S1),
 'Event Values' = (any event values appropriate to the event type)
2. IF (the ConfirmedEventNotification choice was selected) THEN
 RECEIVE BACnet-SimpleACK-PDU
3. MAKE (the IUT acknowledge O1)
4. RECEIVE AcknowledgeAlarm-Request, DESTINATION=TD1
 'Acknowledging Process Identifier' = (any process identifier),
 'Event Object Identifier' = O1,
 'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
 'Time Stamp' = T1,
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgement' = (any valid value)
5. TRANSMIT BACnet-SimpleACK-PDU
6. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,
 'Subscriber Process Identifier' = (a value acceptable to the IUT configured in the Notification Class
 object for the IUT),
 'Initiating Device Identifier' = TD, // representing that O1 is present in same device as SOURCE
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid value, T1),
 'Notification Class' = (the value configured in O1),
 'Priority' = (any value selected by the TD),
 'Event Type' = (any value selected by the TD),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

338 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE,
 'From State' = (any valid value),
 'To State' = (any valid value, S1),
 'Event Values' = (any event values appropriate to the event type)
7. IF (the ConfirmedEventNotification choice was selected) THEN
 RECEIVE BACnet-SimpleACK-PDU
8. MAKE (the IUT acknowledge O1)
9. RECEIVE AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (any process identifier),
 'Event Object Identifier' = O1,
 'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
 'Time Stamp' = T1,
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgement' = (any valid value)
10. TRANSMIT BACnet-SimpleACK-PDU

8.2 ConfirmedCOVNotification Service Initiation Tests

[Change Clause 8.2.1, p. 187]

[Reviewer Note: Updated description of the 'List of Values' to improve readability. Updated 'Configuration Requirements'.
Add clarification to test that the last COVNotification shall reflect the correct values. Removed unnecessary RECEIVE
BACnet-SimpleACK-PDU steps. Improved test name and wording to include generic object references.]

8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Valuea Object's for Changes to
Present_Value in Objects with a COV_Increment
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Analog Input, Analog Output, Lighting Output, and Analog Value, Large Analog Value, Integer
Value, and Positive Integer Value in Numeric Objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the
COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an amount greater
than the COV increment and a notification shall be received. The Present_Value may be changed using the WriteProperty
service or by another means such as changing the input signal represented by an Analog Input object. For some implementations
it may be necessary to write to the Out_Of_Service property first to accomplish this task. For implementations where it is not
possible to write to these properties at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All
of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment or which
has a writable Out_Of_Service. In devices where the COV_Increment is always less than the minimal change that
Present_Value can make, skip steps 8 through 10.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value) DO {
1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 339

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,
 'Object Identifier' = X,
 'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
 'Object Identifier' = X,
 'Property Identifier' = COV_Increment,
 'Property Value' = (a value "increment" that will be used below)
7. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = TRUE
 RECEIVE BACnet-SimpleACK-PDU
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initialReportedPV = the current Present_Value, and new
 Status_Flags)
 TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is now writable) THEN
 WRITE X, Present_Value = (any value that differs from "initial Present_Value" ReportedPV by less than "increment")
 RECEIVE BACnet-SimpleACK-PDU
 ELSE
 MAKE (Present_Value = any value that differs from "initial Present_Value" ReportedPV by less than "increment")
9. WAIT Notification Fail Time
10. CHECK (verify that no COV notification was transmitted)
11. IF (Present_Value is now writable) THEN
 WRITE X, Present_Value = (any value that differs from "initial Present_Value" ReportedPV by an amount greater
 than "increment")
 RECEIVE BACnet-SimpleACK-PDU
 ELSE
 MAKE (Present_Value = any value that differs from "initial Present_Value" ReportedPV by an amount greater than
 "increment")
12. BEFORE NotificationFailTime
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value and new Status_Flags)
13. TRANSMIT BACnet-SimpleACK-PDU
14. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
15. RECEIVE BACnet-SimpleACK-PDU
16. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

340 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Change Clause 8.2.2, p. 188]

[Reviewer Note: Add more primitive value objects. Updated 'Configuration Requirements'. Removed extraneous
SimpleACKs after WRITE statements. Updated descriptive text for 'List of Value' property.]

8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for Changes to
Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Analog Input, Analog Output, and Analog Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by
another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other
means, this test shall be skipped

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment. If the
COV_Increment is supported, or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Outputand Analog Value) DO {

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |
 MAKE (Status_Flags = any value that differs from "initial Status_Flags")
6.IF (WriteProperty is used in step 5) THEN

 RECEIVE BACnet-SimpleACK-PDU
76. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initialthe current Present_Value and new Status_Flags)
87. TRANSMIT BACnet-SimpleACK-PDU
98. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
109. RECEIVE BACnet-SimpleACK-PDU
1110. IF (Out_Of_Service was changed in step 5) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 341

[Change Clause 8.2.3, p. 189]

[Reviewer Note: Updated the 'Configuration Requirements'. Removed extraneous SimpleACKs that appear after WRITE
statements. Modified descriptive text for 'List of Values' properties. Add clarification to test that the last COVNotification
shall reflect the correct values.]

8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object's for Changes to
Present_Value Property in Objects without a COV_Increment
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Binary Input, Binary Output, and Binary Value objects that do not support COV_Increment.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed and a notification shall be
received. The Present_Value may be changed using the WriteProperty service or by another means such as changing the input
signal represented by a Binary Input object. For some implementations it may be necessary to write to the Out_Of_Service
property first to accomplish this task. For implementations where it is not possible to write to these properties at all the vendor
shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control or which has a writable Out_Of_Service.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = TRUE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initialReportedPV = the current Present_Value, and new current
 Status_Flags)
 TRANSMIT BACnet-SimpleACK-PDU
6. IF (Present_Value is now writable) THEN
 WRITE X, Present_Value = (any value that differs from "initial Present_Value" ReportedPV)
 ELSE
 MAKE (Present_Value = any value that differs from "initial Present_Value" ReportedPV)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

342 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value and new current Status_Flags)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

[Remove Clause 8.2.4, p. 190]

8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by
another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other
means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |
 MAKE (Status_Flags = any value that differs from "initial Status_Flags")
6. IF (WriteProperty is used in step 5) THEN
 RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 343

 'List of Values' = (the initial Present_Value and new Status_Flags)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service was changed in step 5) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

[Remove Clause 8.2.5, p. 191]

8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point,
or Life Safety Zone Object Present_Value Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone
objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed and a notification shall be
received. The Present_Value may be changed using the WriteProperty service or by another means such as changing the input
signal represented by the object. For some implementations it may be necessary to write to the Out_Of_Service property first
to accomplish this task. For implementations where it is not possible to write to these properties at all, the vendor shall provide
an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state Input, Multi-state Output, Multi-state Value, Life
Safety Point, and Life Safety Zone) DO {

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = TRUE
 RECEIVE BACnet-SimpleACK-PDU
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and the new Status_Flags)
 TRANSMIT BACnet-SimpleACK-PDU
6. IF (Present_Value is now writable) THEN
 WRITE X, Present_Value = (any value that differs from "initial value")

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

344 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE BACnet-SimpleACK-PDU
 ELSE
 MAKE (Present_Value = any value that differs from "initial value")
7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value and new Status_Flags)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service is writable) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

[Remove Clause 8.2.6, p. 193]

8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point,
and Life Safety Zone Object Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone
objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by
another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other
means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state input, Multi-state Output, Multi-state Value, Life
Safety Point, and Life Safety Zone) DO {

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |
 MAKE (Status_Flags = any value that differs from "initial Status_Flags")
6. IF (WriteProperty is used in step 5) THEN
 RECEIVE BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 345

7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value and new Status_Flags)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = X
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service was changed in step 5) THEN
 WRITE X, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

[Change and renumber Clause 8.2.7, p. 194]

[Reviewer Note: Added 'Configuration Requirements'. Corrected object reference in step 11. Updated wording for 'List of
Values' properties. Removed extraneous SimpleACKs after WRITE statements.]

8.2.78.2.4 Change of Value Notification from Loop Object Present_Value Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of a loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the
COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an amount greater
than the COV increment and a notification shall be received.

The Present_Value may be changed by placing the Loop Out_Of_Service and writing directly to the Present_Value. For
implementations where this option is not possible an alternative trigger mechanism shall be provided to accomplish this task,
such as changing the Setpoint or the Setpoint_Reference. All of these methods are equally acceptable.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select an
object where Present_Value is not expected to change outside the tester's control by more than COV_Increment, or which has
a writable Out_Of_Service.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and
 initial Controlled_Variable_Value)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

346 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = O1,
 'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
 'Object Identifier' = O1,
 'Property Identifier' = COV_Increment,
 'Property Value' = (a value "increment" that will be used below)
7. IF (Out_Of_Service is writable) THEN
 WRITE O1, Out_Of_Service = TRUE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initialReportedPV = the current Present_Value, new Status_Flags,
 initialcurrent Setpoint, and initialcurrent Controlled_Variable_Value)
 TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is now writable) THEN
 WRITE O1, Present_Value = (any value that differs from "initial Present_Value" ReportedPV by less than
 "increment")
 ELSE
 MAKE (Present_Value = any value that differs from "initial Present_Value" ReportedPV by less than "increment")
9. WAIT Notification Fail Time
10. CHECK (verify that no COV notification was transmitted)
11. IF (Present_Value is now writable) THEN
 WRITE O1, Present_Value = (any value that differs from "initial Present_Value"ReportedPV by an amount greater
 than "increment")
 ELSE
 MAKE (Present_Value = any value that differs from "initial Present_Value"ReportedPV by an amount greater than
 "increment")
12. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value, new Status_Flags, initialcurrent Setpoint, and
 initial currentControlled_Variable_Value)
13. TRANSMIT BACnet-SimpleACK-PDU
14. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = O1
15. RECEIVE BACnet-SimpleACK-PDU
16. IF (Out_Of_Service is writable) THEN
 WRITE LO1, Out_Of_Service = FALSE

[Remove Clause 8.2.8, p. 195]

8.2.8 Change of Value Notification from a Loop Object Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of a Loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status_-Flags property can be changed by using the WriteProperty service or
by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other
means, this test shall be skipped.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 347

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and
 initial Controlled_Variable_Value)
4. TRANSMIT BACnet-SimpleACK-PDU
5. WRITE O1, Out_Of_Service = TRUE | WRITE O1, Status_Flags = (a value that differs from "initial Status_Flags") |
 MAKE (Status_Flags = any value that differs from "initial Status_Flags")
6. IF (WriteProperty is used in step 5) THEN
 RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, new Status_Flags, initial Setpoint, and initial
 Controlled_Variable_Value)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = O1
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service was changed in step 5) THEN
 WRITE L, Out_Of_Service = FALSE
 RECEIVE BACnet-SimpleACK-PDU

[Renumber Clause 8.2.9, p. 196]

8.2.98.2.5 Missing Lifetime Test
Purpose: This test case verifies the special case of the SubscribeCOV where a missing Lifetime parameter shall imply an
indefinite Lifetime subscription.

Test Concept: A subscription for COV notification is established with the IUT. The subscribe message shall omit the Lifetime
parameter. The COV notification is received from the IUT and the 'Time Remaining' value is verified to be 0.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE
2. RECEIVE BACnet-SimpleACK-PDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

348 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = 0,
 'List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU

[Add new Clause 8.2.X9, p. 196]

8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value
Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Present_Value property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the
COV increment, and it is verified that no COV notification is received. The Present_Value property can be changed by using
the WriteProperty service or by another means. For some implementations, writing to the Out_Of_Service property will enable
the Present_Value property to be changed by the WriteProperty service. The object identifier of the Pulse Converter object
being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment or which
has a writable Out_Of_Service.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and
 Update_Time)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,
 'Object Identifier' = O1,
 'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
 'Object Identifier' = O1,
 'Property Identifier' = COV_Increment,
 'Property Value' = (a value "increment" that will be used below)
7. IF (Out_Of_Service is writable) THEN
 WRITE O1, Out_Of_Service = TRUE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 349

 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (ReportedPV = the current Present_Value, new Status_Flags, and current
Update_Time)
8. TRANSMIT BACnet-SimpleACK-PDU
9. IF (Present_Value is now writable) THEN
 WRITE O1, Present_Value = (any value that differs from ReportedPV by less than "increment")
 ELSE
 MAKE (Present_Value = any value that differs from ReportedPV by less than "increment")
10. WAIT Notification Fail Time
11. CHECK (verify that no COV notification was transmitted)
12. IF (Present_Value is now writable) THEN
 WRITE O1, Present_Value = (any value that differs from ReportedPV by an amount greater than "increment")
 ELSE
 MAKE (Present_Value = any value that differs from ReportedPV by an amount greater than "increment")

13. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value, new Status_Flags, and current Update_Time)
14. TRANSMIT BACnet-SimpleACK-PDU
15. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = O1
16. RECEIVE BACnet-SimpleACK-PDU
17. IF (Out_Of_Service was changed in step 7) THEN
 WRITE O1, Out_Of_Service = FALSE

[Add new Clause 8.2.X10, p. 196]

8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags
Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Status_Flags property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed, and a
notification shall be received. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write Out_Of_Service or change the Status_Flags by any other means, this test shall
be skipped. The object identifier of the Pulse Converter object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment.
COV_Period is configured high enough that is does not trigger many COV notifications during the execution of the test.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

350 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and
 Update_Time)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Status_Flags = any value that differs from initial Status_Flags)
6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the current Present_Value, new Status_Flags, and Update_Time)
7. TRANSMIT BACnet-SimpleACK-PDU
8. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Monitored Object Identifier' = O1
9. RECEIVE BACnet-SimpleACK-PDU
10. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE

[Add new Clause 8.2.X11, p. 196]

8.2.X11 Change of Value Notification from an Access Door object Present_Value, Status_Flags and
Door_Alarm_State property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Access Door objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Present_Value of the monitored object is changed, and a notification shall be
received. The Present_Value may be changed using the WriteProperty service or by another means. For some implementations
it may be necessary to write to the Out_Of_Service property first to accomplish this task. For implementations where it is not
possible to write to these properties at all, the vendor shall provide an alternative trigger mechanism to accomplish this task.
All these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control, or which has a writable Out_Of_Service.
If no object has a Door_Alarm_State property, then steps 9,10, and 11 shall be skipped. For implementations where it is not
possible to write Out_Of_Service or change the Status_Flags by any other means, steps 5,6, and 7 shall be skipped

Test Steps:

REPEAT X = (one supported object of type Access Door) DO {
1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any value > 0chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 351

 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and
 Door_Alarm_State if X has a Door_Alarm_State property)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = TRUE
 ELSE
 MAKE (Status_Flags = any value that differs from initial Status_Flags)

6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (ReportedPV=current Present_Value, new Status_Flags, and
 Door_Alarm_State if X has a Door_Alarm_State property)
7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is writable) THEN
 WRITE X,Present_Value = (any value that differs from ReportedPV)
 ELSE
 MAKE (Present_Value = any value that differs from ReportedPV)
9. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value, new Status_Flags, and Door_Alarm_State if X has a

Door_Alarm_State property)
10. TRANSMIT BACnet-SimpleACK-PDU
11. IF (Door_Alarm_State is now writable) THEN
 WRITE Door_Alarm_State = (any value that differs from its initial Door_Alarm_State)
 ELSE
 MAKE (Door_Alarm_State = any value that differs from its initial Door_Alarm_State)
12. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same value used in Step 1),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value, new Status_Flags, and Door_Alarm_State)
13. TRANSMIT BACnet-SimpleACK-PDU

14. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (the same value used in the SubscribeCOV-Request),
 'Monitored Object Identifier' = X
15. RECEIVE BACnet-SimpleACK-PDU
16. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE

[Add new Clause 8.2.X12, p. 196]

8.2.X12 Change of Value Notification from an Access Point object
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags and Access_Event_Time properties of Access Point objects.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

352 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Access_Event_Time and Status_Flags of the monitored object is changed,
and a notification shall be received. The properties may be changed using the WriteProperty service or by another means. For
some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all, the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable. For implementations where it is not possible
to write Out_Of_Service or change the Status_Flags by any other means, steps 5,6, and 7 shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Access_Event, Status_Flags, Access_Event_Tag,
 Access_Event_Time, Access_Event_Credential and
 Access_Event_Authentication_Factor if X has an
 Access_Event_Authentication_Factor property)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
 WRITE X,Out_Of_Service = TRUE
 ELSE
 MAKE (Status_Flags = any value that differs from initial Status_Flags)
6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Access_Event, new Status_Flags, initial Access_Event_Tag,
 Access_Event_Time, Access_Event_Credential and
 Access_Event_Authentication_Factor if X has a Access_Event_Authentication_Factor
 property)
7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Access_Event_Time is now writable) THEN
 WRITE Access_Event_Time = (any value that differs from initial Access_Event_Time)
 ELSE
 MAKE (Access_Event_Time = any value that differs from initial Access_Event_Time)
9. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new values of Access_Event, Access_Event_Tag, Access_Event_Time,
 Access_Event_Credential, and Access_Event_Authentication_Factor if X has
 Access_Event_Authentication_Factor property)
10. TRANSMIT BACnet-SimpleACK-PDU
11. TRANSMIT SubscribeCOV-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 353

 'Subscriber Process Identifier' = PI,
 'Monitored Object Identifier' = X
12. RECEIVE BACnet-SimpleACK-PDU
13. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
14. CHECK (verify that no notification message has been transmitted)

[Add new Clause 8.2.X13, p. 196]

8.2.X13 Change of Value Notification from a Credential Data Input object
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags and Update_Time properties of Credential Data Input objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test. The Status_Flags and Update_Time properties of the monitored object is changed,
and a notification shall be received. The properties may be changed using the WriteProperty service or by another means. For
some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all, the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable. For implementations where it is not possible
to write Out_Of_Service or change the Status_Flags by any other means, steps 5,6, and 7 shall be skipped

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any value > 0chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and

Update_Time (most recent update time when the Present_Value was
updated))

4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = TRUE
ELSE

MAKE (Status_Flags = any value that differs from initial Status_Flags)

6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the initial Present_Value, new Status_Flags, and Update_Time
 (most recent update time when the Present_Value was updated))
7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is now writable) THEN
 WRITE X, Present_Value = (any value that differs from initial Present_Value)
 ELSE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

354 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 MAKE (Present_Value = any value that differs from initial Present_Value)
9. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (the new Present_Value, new Status_Flags, and Update_Time
 (most recent update time when the Present_Value was updated))

10. TRANSMIT BACnet-SimpleACK-PDU
11. Verify Update_Time received in step 7.
12. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PI,
 'Monitored Object Identifier' = X
13. RECEIVE BACnet-SimpleACK-PDU
14. IF (Out_Of_Service is writable) THEN
 WRITE Out_Of_Service = FALSE
15. CHECK (verify that no notification message has been transmitted)

[Add new Clause 8.2.X17, p. 196]

8.2.X17 Change of Value Notification of Staging Object Present_Value Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property in Staging objects that support COV_Increment.

Test Concept: A CPV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the COV increment,
and it is verified that no COV notification is received. The Present_Value is then changed by an amount greater than the COV
increment, and a notification shall be received.

Configuration Requirements: Select a Staging object where Present_Value is not expected to change outside the tester's control.
The object is configured such that the change in Present_Value required to change stages is larger than COV_Increment. If the
IUT cannot be configured with such a Staging object, this test shall be skipped.

Test Steps:

1. READ PV1 = Present_Value
2. READ SF1 = Status_Flags
3. READ PS1 = Present_Stage

-- subscribe for COV and receive initial notification
4. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
5. RECEIVE BACnet-SimpleACK-PDU
6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (PV1, SF1, PS1)
7. TRANSMIT BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 355

-- change Present_Value by less than COV_Increment, and not enough to change the stage
8. WRITE X, Present_Value = (PV2: a value that differs from PV1 by less than COV_Increment and which is in
 the range for the current stage)
9. WAIT Notification Fail Time
10. CHECK (verify that no COV notification was transmitted)

-- change Present_Value by more than COV_Increment, but not enough to change the stage
11. WRITE X, Present_Value = (PV3: a value that differs from PV1 by an amount greater than COV_Increment
 and which is in the range for the current stage)
12. BEFORE NotificationFailTime
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (PV3, SF1, PS1)
13. TRANSMIT BACnet-SimpleACK-PDU

-- cleanup the subscription
14. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PID1,
 'Monitored Object Identifier' = X
15. RECEIVE BACnet-SimpleACK-PDU

[Add new Clause 8.2.X18, p. 196]

8.2.X18 Change of Value Notification from a Staging Object Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Staging objects.

Test Concept: A COV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Status_Flags property of the monitored object is then changed, and a notification shall be
received. The value of the Status_Flags property can be changed by using the WriteProperty service or by another means. For
implementations where it is not possible to write Out_Of_Service or change the Status_Flags by any other means, this test shall
be skipped.

Configuration Requirements: Select a Staging object where Present_Value is not expected to change outside the tester's control.

Test Steps:

1. VERIFY Out_Of_Service = FALSE
2. READ PV1 = Present_Value
3. READ SF1 = Status_Flags
4. READ PS1 = Present_Stage

-- subscribe for COV and receive initial notification
5. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
6. RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

356 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'List of Values' = (PV1, SF1, PS1)
8. TRANSMIT BACnet-SimpleACK-PDU

-- change Status_Flags and receive notification
9. IF Out_Of_Service is writable THEN
 WRITE X, Out_Of_Service = TRUE
 SF2 = (SF1 with the Out_Of_Service bit changed to 1)
 ELSE
 MAKE (Status_Flags = SF2, any value other than SF1)
10. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (PV1, SF2, PS1)
11. TRANSMIT BACnet-SimpleACK-PDU

-- cleanup the subscription and Out_Of_Service
12. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PID1,
 'Monitored Object Identifier' = X
13. RECEIVE BACnet-SimpleACK-PDU
14. IF (Out_Of_Service was changed via writing) THEN
 WRITE X, Out_Of_Service = FALSE

[Add new Clause 8.2.X19, p. 196]

8.2.X19 Change of Value Notification from a Staging Object Present_Stage Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Stage property of Staging objects.

Test Concept: A COV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Present_Stage property of the monitored object is then changed, and a notification shall be
received.

Configuration Requirements: Select a Staging object, O1, where Present_Value is not expected to change outside the tester's
control. The object shall be configured with Present_Value having a value, PV1, which is less then COV_Increment away from
a value, PV2, which will change the current stage to a new stage, PS2. If no Staging object can be configured with a
COV_increment larger than the resolution of Present_Value, this test shall be skipped.

Test Steps:

1. VERIFY Present_Value = PV1
2. VERIFY Present_Stage = PS2
3. READ SF1 = Status_Flags
4. CHECK(The difference between PV1 and PV2 is less than COV_Increment)

-- subscribe for COV and receive initial notification
5. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),
 'Monitored Object Identifier' = O1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
6. RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 357

 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (PV1, SF1, PS1)
8. TRANSMIT BACnet-SimpleACK-PDU

-- change Present_Value and receive notification
9. WRITE X, Present_Value = PV2
10. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (PV2, SF1, PS2)
11. TRANSMIT BACnet-SimpleACK-PDU

-- cleanup the subscription
12. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PID1,
 'Monitored Object Identifier' = O1
13. RECEIVE BACnet-SimpleACK-PDU

8.3 UnconfirmedCOVNotification Service Initiation Tests

[Change Clause 8.3.1, p. 196]

[Reviewer Note: Modified test for covering more primitive value objects and the Lighting Output Object. Added clarification
to test that the last COVNotification shall reflect the correct values.]

8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for changes to
Present_Value Property in Objects with a COV_Increment
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of Analog Input, Analog Output, and Analog Value, objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.1 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

[Change Clause 8.3.2, p. 197]

[Reviewer Note: Modified test for covering more primitive value objects.]

8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for Changes to
Status_Flags Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Analog Input, Analog Output, and Analog Valueobjects.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

358 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps: The steps for this test case are identical to the test steps in 8.2.2 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Change Clause 8.3.3, p. 197]

[Reviewer Note: Modified test for covering more primitive value objects. Added clarification to test that the last
COVNotification shall reflect the correct values.]

8.3.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object's for Changes
to Present_Value Property in Objects without a COV_Increment
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of Binary Input, Binary Output, and Binary Value objects of objects that do not support
COV_Increment.

Test Steps: The steps for this test case are identical to the test steps in 8.2.3 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

[Remove Clause 8.3.4, p. 197]

8.3.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags
Property

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Binary Input, Binary Output, and Binary Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.4 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Remove Clause 8.3.5, p. 197]

8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point,
and Life Safety Zone Object Present_Value Property

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone
objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.5 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Remove Clause 8.3.6, p. 197]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 359

8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point,
and Life SafetyZone Object Status_Flags Property

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone
objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.6 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Change and renumber Clause 8.3.7, p. 198]

[Reviewer Note: Add clarification to test that the last COVNotification shall reflect the correct values.]

8.3.78.3.4 Change of Value Notification from Loop Object Present_Value Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of a Loop object.

Test Steps: The steps for this test case are identical to the test steps in 8.2.7 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

[Remove Clause 8.3.8, p. 198]

8.3.8 Change of Value Notification from a Loop Object Status_Flags Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of a Loop object.

Test Steps: The steps for this test case are identical to the test steps in 8.2.8 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Change and renumber Clause 8.3.9, p. 198]

[Reviewer Note: Added Process ID Requirement and Abort Conditionality to test.]

8.3.98.3.5 Unsubscribed Change of Value Notifications

Unsubscribed COV notifications differ from subscribed COV notifications that use the
UnconfirmedCOVNotification service in two respects. First, no subscription is required. Second, the 'Subscriber
Process Identifier' parameter usually has a value of zero.

BACnet Reference Clauses: 13.7.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

360 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests when no subscription
for the COV notification has been made.

Test Concept: The IUT is configured to send unsubscribed COV notifications. The TD then waits for the
notification. Given that there is no defined trigger, the vendor shall inform the tester how to make the IUT
generate the notifications if they are not sent periodically.

Test Steps:

1. MAKE (the IUT send an unsubscribed COV notification)
2. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (any valid object identifier),
 'Time Remaining' = 0,
 'List of Values' = (any valid properties and values from the monitored object)

[Change and renumber Clause 8.3.10, p. 198]

[Reviewer Note: BTL-CR-0437 pointed out that test 8.3.10 does not work for devices that don't have a Local_Time property
and use a sequence number in Restart Notifications.]

8.3.108.3.6 Device Restart Notifications
Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its
Restart_Notification_Recipients property when it resets.

Test Concept: The IUT is configured to send restart notifications and is then reset. The TD checks for the restart notifications.

Device restart notifications differ from subscribed COV notifications that use the UnconfirmedCOVNotification service in two
respects. First, subscription is made through the Restart_Notification_Recipients property instead of SubscribeCOV. Second,
the 'Subscriber Process Identifier' parameter always has a value of zero.

Configuration Requirements: For each Recipient of the Restart_Notification_Recipients property in the IUT which is of the
device form, there shall be a device on the network that will answer Who-Is requests so that the IUT can determine addressing
information before sending the restart notification.

Notes to tester: Not all IUTs can accurately differentiate between the types of restart reasons and thus no requirements are
placed on the value returned in the restart notification(s) step 4. The test shall pass regardless of the order in which the restart
notifications are sent to the recipients. IUT generates the UnconfirmedCOVNotification-Requests in step 4. The value of T2
shall be the same for each notification sent out in step 4. If the Restart_Notification_Recipients list has multiple recipients,
then the Time_Of_Device_Restart value is expected to be the same in all notifications resulting from the same restart.

Notes to Tester: Not all IUTs can accurately differentiate between the types of restart reasons, and thus, no requirements are
placed on the value returned in the restart notification(s). The test shall pass regardless of the order in which the restart
notifications are sent to the recipients. If the Restart_Notification_Recipients list has multiple recipients, then the
Time_Of_Device_Restart value is expected to be the same in all notifications resulting from the same restart.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 361

1. IF (Restart_Notification_Recipients is writable) THEN
 WRITE(Restart_Notification_Recipients = any non-empty list of Recipients)
 ELSE
 MAKE (Restart_Notification_Recipients contain any non-empty list of Recipients)
2. READ T1 = Local_Time
32. MAKE(the IUT reset)
43. REPEAT X = (each entry in the Restart_Notification_Recipients) DO {
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = X,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the IUT Device Identifier),
 'Time Remaining' = 0,
 'List of Values' = (System_Status=OPERATIONAL,
 Time_Of_Device_Restart = (T2),
 Last_Restart_Reason=(any valid restart reason, R))
 }
54. VERIFY Time_Of_Device_Restart = T2
6. CHECK (T1 ~= T2)
75. VERIFY Last_Restart_Reason = R
6. IF (T2 is not a sequence number) THEN
 VERIFY Local_Time ~= T2
 ELSE
 MAKE(the IUT reset)
 REPEAT X = (each entry in the Restart_Notification_Recipients) DO {
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = X,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the IUT Device Identifier),
 'Time Remaining' = 0,
 'List of Values' = (System_Status=OPERATIONAL,
 Time_Of_Device_Restart = (T3),

Last_Restart_Reason=(any valid restart reason, R))
 CHECK (T3 > T2)

Note to tester: Not all IUTs can accurately differentiate between the types of restart reasons and thus no requirements are placed
on the value returned in step 4. The test shall pass regardless of the order in which the IUT generates the
UnconfirmedCOVNotification-Requests in step 4. The value of T2 shall be the same for each notification sent out in step 4.

[Add new Clause 8.3.X1, p. 199]

8.3.X1 COVU_Recipients Notifications
Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its COVU_Recipients
property based on COVU_Period.

Test Concept: The IUT contains a Global Group object, O1, that is configured to periodically send
UnconfirmedCOVNotification using COVU_Period and COVU_Recipients. The TD checks for these notifications.

Configuration Requirements: COVU_Recipients property shall be non-empty and contain at least one device and one address
based recipient. The COVU_Period shall be non-zero.

Notes to Tester: The test shall pass regardless of the order in which the IUT generates the UnconfirmedCOVNotification-
Requests in each step.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

362 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. REPEAT X = (each entry in the COVU_Recipients) DO {
 BEFORE COVU_Period + Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = X,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = 0,
 'List of Values' = (Member_Status_Flags,
 Elements of Present_Value)
 IF (X is the first entry in the COVU_Recipients) THEN
 READ T1 = Local_Time
 }
2. READ T1 = Local_Time
3. REPEAT X = (each entry in the COVU_Recipients) DO {
 BEFORE COVU_Period + Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 DESTINATION = X,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = 0,
 'List of Values' = (Member_Status_Flags,
 Elements of Present_Value)
 IF (X is the first entry in the COVU_Recipients) THEN
 READ T2 = Local_Time
 }
4. CHECK (T2 - T1 ~= COVU_Period)

[Add new Clause 8.3.X12, p. 199]

8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value
Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Present_Value property.

Test Concept: This test is the same as 8.2.X9 except that the SubscribeCOV service request in step 1 shall have a value of
FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be
UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the
unconfirmed services.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

[Add new Clause 8.3.X13, p. 199]

8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags
Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Status_Flags property.

Test Concept: This test is the same as 8.2.X10 except that the SubscribeCOV service request in step 1 shall have a value of
FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be
UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the
unconfirmed services.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 363

[Add new Clause 8.3.X14, p. 199]

8.3.X14 Change of Value Notification from an Access Door object Present_Value, Status_Flags and Door_Alarm_State
property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value, Status_Flag and Door_Alarm_State property of Access Door objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X11 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services.

[Add new Clause 8.3.X15, p. 199]

8.3.X15 Change of Value Notification from an Access Point object
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flag and Access_Event_Time properties of Access Point objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X12 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services.

[Add new Clause 8.3.X16, p. 199]

8.3.X16 Change of Value Notification from a Credential Data Input object
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags and Update_Time properties of Credential Data Input objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X13 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services.

[Add new Clause 8.3.X17, p. 199]

8.3.X17 Change of Value Notification of Staging Object Present_Value Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of Staging objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X17 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Add new Clause 8.3.X18, p. 199]

8.3.X18 Change of Value Notification of Staging Object Status_Flags Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Staging objects.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

364 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps: The steps for this test case are identical to the test steps in 8.2.X18 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

[Add new Clause 8.3.X19, p. 199]

8.3.X19 Change of Value Notification of Staging Object Present_Stage Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Stage property of Staging objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X18 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.4 ConfirmedEventNotification Service Initiation Tests

[Change Clause 8.4.4, p. 205]

[Reviewer Note: Corrected the Status_Flags values expected.]

8.4.4 COMMAND_FAILURE Tests (ConfirmedEventNotification)
Purpose: To verify the correct operation of the COMMAND_FAILURE algorithm.

Test Concept: pFeedbackValue shall be decoupled from the input signal that is normally used to verify the output. Initially
pMonitoredValue and pFeedbackValue are in agreement. pMonitoredValue is changed and an event notification should be
transmitted indicating a transition to an OFFNORMAL state. pFeedbackValue is changed to again to agree with
pMonitoredValue. A second event notification is transmitted indicating a return to a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE.
The event-generating object shall be in a NORMAL state at the start of the test. pFeedbackValue shall be decoupled from the
input signal that is normally used to verify the output so that it can be independently manipulated.

Notes to Tester: The time stamps indicated by "*" in steps 9 and 16 can have a value that indicates an unspecified time or a
time that precedes the timestamp in step 5.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY Status_Flags = (FALSE, FALSE, FALSE, FALSE)(FALSE, FALSE, ?, ?)
3. IF (pMonitoredValue is writable) THEN
 WRITE Present_Value = (a different value)
 ELSE
 MAKE (Present_Value take on a different value)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 365

 'Event Object Identifier' = (the object being tested),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
 'Event Type' = COMMAND_FAILURE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pFeedbackValue
6. TRANSMIT BACnet-SimpleACK-PDU
7. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
8. VERIFY pCurrentState = OFFNORMAL
9. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)
10. IF (pFeedbackValue is writable) THEN
 WRITE pFeedbackValue = (a value consistent with pMonitoredValue)
 ELSE
 MAKE (pFeedbackValue take on a value consistent with pMonitoredValue)
11. WAIT (pTimeDelay)
12. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object being tested),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = COMMAND_FAILURE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = NORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pFeedbackValue
13. TRANSMIT BACnet-SimpleACK-PDU
14. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
15. VERIFY pCurrentState = NORMAL
16. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 VERIFY Event_Time_Stamps = (the timestamp in step 5, *, the timestamp in step 12)

Notes to Tester: The time stamps indicated by "*" in steps 9 and 16 can have a value that indicates an unspecified time or a
time that precedes the timestamp in step 5.

8.4.8 CHANGE_OF_LIFE_SAFETY Tests (ConfirmedEventNotification)

[Change Clause 8.4.8.7, p. 220]

[Reviewer Note: Modify the test case as per BTL-CR-0477, when IUT does not support Mode changes which maintain the
current Event_State.]

8.4.8.7 Mode Transition Tests when Event State is Maintained
Purpose: To verify the correct operation of the CHANGE_OF_LIFE_SAFETY event algorithm for objects transitioning
between the NORMAL, OFFNORMAL and LIFE_SAFETY_ALARM event states when a mode change occurs. Tests are
conducted when a mode change occurs, but the event state does not change. Tests are also conducted when a mode change

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

366 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

occurs simultaneously with an event state change. In this latter case, the test verifies that the notification is immediate rather
than waiting for the time delay.

Test Concept: The object begins the test in a NORMAL state. The Mode is changed. After the time delay expires, the object
should transmit an event notification message. This operation is tested in the OFFNORMAL and LIFE_SAFETY_ALARM
states as well.

The test is then repeated by changing the Mode property and simultaneously selecting a pMonitoredValue designated in
pAlarmValues. The object should immediately enter the OFFNORMAL state and transmit an event notification message.
pMonitoredValue is then changed to a value corresponding to a NORMAL state, and the Mode is simultaneously written. The
object should immediately enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL, and TO-NORMAL transitions. The 'Issue_Confirmed_Notifications' parameter shall have a value of
TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

Test Steps:

1. VERIFY Event_Detection_Enable = TRUE
2. CHECK (pCurrentState = NORMAL)
3. MAKE (pMonitoredValue have a value that corresponds to a NORMAL state)
4. IF (IUT supports another pMode value which maintains the NORMAL state) THEN {
4 MAKE (pMode = different value that maintains pCurrentState as NORMAL)
5 WAIT (pTimeDelayNormal)
6 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
tested),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = CHANGE_OF_LIFE_SAFETY,
 'Message Text' = (S1: optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = NORMAL,
 'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
7 TRANSMIT BACnet-SimpleACK-PDU
8 IF (Protocol_Revision is present AND Protocol_Revision ≥ 13) THEN
 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
9 VERIFY pCurrentState = NORMAL
10 IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 VERIFY Event_Time_Stamps = (*, *, T1)
11 IF (Event_Message_Texts property exists) THEN
 VERIFY Event_Message_Texts = (*, *, S1)
}
5. 12MAKE (pMonitoredValue have a value that corresponds to an OFFNORMAL state)
6. VERIFY pCurrentState = OFFNORMAL
7. IF (IUT supports another pMode value which maintains the OFFNORMAL state) THEN {
13 MAKE (pMode = different value that maintains pCurrentState as OFFNORMAL)
14 WAIT (pTimeDelay)
15 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
 tested),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 367

 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
 'Event Type' = CHANGE_OF_LIFE_SAFETY,
 'Message Text' = (S2: optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
16 TRANSMIT BACnet-SimpleACK-PDU
17 IF (Protocol_Revision is present AND Protocol_Revision ≥ 13) THEN
 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
18. VERIFY pCurrentState = OFFNORMAL
19. IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 VERIFY Event_Time_Stamps = (T2, *, *)
20. IF (Event_Message_Texts property exists) THEN
 VERIFY Event_Message_Texts = (S2, *, *)
}
8. 21.MAKE (pMonitoredValue have a value that corresponds to a LIFE_SAFETY_ALARM state)
9. IF (IUT supports another pMode value which maintains the LIFE_SAFETY_ALARM state) THEN {
22. MAKE (pMode = different value that maintains pCurrentState = LIFE_SAFETY_ALARM)
23. WAIT (pTimeDelay)
24. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
tested),
 'Time Stamp' = (T3: any valid time stamp),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured to correspond to a TO-NORMAL transition),
 'Event Type' = CHANGE_OF_LIFE_SAFETY,
 'Message Text' = (S3: optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
25. TRANSMIT BACnet-SimpleACK-PDU
26. IF (Protocol_Revision is present AND Protocol_Revision ≥ 13) THEN
 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
27. VERIFY pCurrentState = OFFNORMAL
28. IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 VERIFY Event_Time_Stamps = (T3, *, *)
29. IF (Event_Message_Texts property exists) THEN
 VERIFY Event_Message_Texts = (S3, *, *)
}

[Change Clause 8.4.9, p. 229]

[Reviewer Note: Added clarifying statement in Test Concept. Added Notes to Tester. Added step numbers back for clarity.]

8.4.9 EXTENDED Test (ConfirmedEventNotification)
Purpose: To verify the correct generation EXTENDED event notifications.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

368 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: The event generating object is made to transition to any state by any means necessary. The resulting
ConfirmedEventNotification message is received and verified. The object begins the test in a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for
whichever transition shall be used for the test. The 'Issue_Confirmed_Notifications' parameter shall have a value of TRUE. D1
and D2 are vendor specific delays (either of them or both may be zero).

Notes to Tester: The time stamps indicated by "*" can have any valid value.

Test Steps:

1. IF (the object generates TO-OFFNORMAL transitions) THEN {
2. READ CS1 = pCurrentState
3. MAKE (an OFFNORMAL condition exist)
4. WAIT D1
5. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event generating object),
 'Time Stamp' = (TS1: the current local time),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured for TO_OFFNORMAL),
 'Event Type' = EXTENDED,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = CS1,
 'To State' = (CS2: any offnormal valid event state),
 'Event Values' = ((pVendorId: any valid vendor id),
 (pEventType: any valid event-type),
 (a list of 0 or more valid parameters as defined by the Vendor)
)

6. TRANSMIT BACnet-SimpleACK-PDU
7. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (TRUE, FALSE,?,?)
8. VERIFY pCurrentState = CS2
9. IF (Protocol_Revision is present AND Protocol_Revision >= 1) THEN
 VERIFY Event_Time_Stamps = (TS1, *, *)
}
10. IF (the object generates TO_NORMAL transitions) THEN
11. READ CS1 = pCurrentState
12. MAKE (a NORMAL condition exist)
 WAIT D2
13. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the intrinsic reporting object being tested),
 'Time Stamp' = (TS2: the current local time),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured TO-NORMAL),
 'Event Type' = EXTENDED,
 'Notify Type' = EVENT | ALARM,
 'Message Text' = (optional, any valid message text),
 'AckRequired' = TRUE | FALSE,
 'From State' = CS1,
 'To State' = NORMAL,
 'Event Values' = ((pVendorId: any valid vendor id),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 369

 (pEventType: any valid event-type),
 (a list of 0 or more valid parameters as defined by the Vendor)
)
14. TRANSMIT BACnet-SimpleACK-PDU
15. IF (Protocol_Revision is present AND Protocol_Revision >= 13) THEN
 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
16. VERIFY pCurrentState = NORMAL
17. IF (Protocol_Revision is present AND Protocol_Revision >= 1) THEN
 VERIFY Event_Time_Stamps = (*, *, TS2)
}

8.4.17 CHANGE_OF_RELIABILITY (ConfirmedEventNotification Tests)

[Change Clause 8.4.17.1, p. 238]

[Reviewer Note: Test name changed.]

8.4.17.1 CHANGE_OF_RELIABILITY with No Fault the NONE fault Algorithm (ConfirmedEventNotifications)
Purpose: To verify the correct operation of the None fault algorithm

Test Concept: The Test concept corresponds to 8.5.17.1

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.1, except that the 'Issue Confirmed
Notifications' parameter shall have a value of TRUE.

Test Steps: The steps for this test case are identical to the test steps in 8.5.17.1, except that the UnconfirmedEventNotification
requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.1, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

[Remove Clause 8.4.17.7, p. 239]

[Reviewer Note: Test 8.4.17.7 was replaced by tests 8.4.17.7.1, 8.4.17.7.2 and 8.4.17.7.3.]

8.4.17.7 CHANGE_OF_RELIABILITY for Event Enrollment Fault Condition Precedence
(ConfirmedEventNotifications)
Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the Event Enrollment object,
then faults in the monitored object, and finally faults detected by the configured Fault algorithm.
Test Concept: The test concept corresponds to 8.5.17.7

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.7, except that the 'Issue Confirmed
Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.7, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.7, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

[Add new Clause 8.4.17.7, p. 239]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

370 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Reviewer Note: This new Clause 8.4.17.7 and its subclauses 8.4.17.7.1, 8.4.17.7.2, and 8.4.17.7.3 replace the original Clause
8.4.17.7.]

8.4.17.7 Event Enrollment Fault Condition Precedence Tests

8.4.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults
over faults in the monitored object.

Test Concept: The test concept corresponds to 8.5.17.7.1

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.7.1, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.7.1, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.7.1, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the monitored object over
faults detected by fault algorithm.

Test Concept: The test concept corresponds to 8.5.17.7.2

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.7.2, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.7.2, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.7.2, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.7.3 Internal Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults
over faults detected by fault algorithm.

Test Concept: The test concept corresponds to 8.5.17.7.3

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.7.3, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.7.3, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the
notifications.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 371

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.7.3, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

[Add new Clause 8.4.17.X1, p. 240]

8.4.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (ConfirmedEventNotification)

8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification)

Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from
NORMAL to FAULT event states.

Test Concept: The test concept corresponds to 8.5.17.X1.1.

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.1, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.1, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.1, except that the event
notifications shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification)

Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from
FAULT to FAULT event states.

Test Concept: The test concept corresponds to 8.5.17.X1.2.

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.2, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.2, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests, and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.2, except that the event
notifications shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.X1.3 CHANGE_OF_RELIABILITY with the FAULT_OUT_OF_RANGE Algorithm

(ConfirmedEventNotification)

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_OUT_OF_RANGE algorithm. Ensure
that no other fault conditions exist in the object. Set pMonitoredValue to outside the range of values considered to be normal
for the object. Verify the correct transition is generated. The fault condition is then removed. It is verified that O1 generates
the correct notifications.

Test Configuration: O1 is configured to detect and report faults, to have no fault conditions present. The
Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL
state at the start of the test.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

372 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value less than pMinimumNormalValue | a value greater than
 pMaximumNormalValue)
 ELSE
 MAKE (pMonitoredValue = a value less than pMinimumNormalValue | a value greater than
 pMaximumNormalValue)
4. BEFORE Notification Fail Time,
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object O1 being tested),
 'Priority' = (the value configured to correspond to a TO_FAULT transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (pCurrentReliability, pStatusFlags, (A list of valid values for
 properties required to be reported for O1, and 0 or more other
 properties of O1))
5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY pCurrentReliability = UNDER_RANGE | OVER_RANGE
7. VERIFY pCurrentState = FAULT
8. VERIFY pStatusFlags = (TRUE, TRUE,?,?)
9. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = (a value greater than or equal to pMinimumNormalValue, and pMonitoredValue
 is less than or equal to pMaximumNormalValue)
 ELSE
 MAKE (pMonitoredValue = a value, greater than or equal to pMinimumNormalValue, and pMonitoredValue
 is less than or equal to pMaximumNormalValue)
10. BEFORE Notification Fail Time,
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the class corresponding to the object O1 being tested),
 'Priority' = (the value configured to correspond to a TO_FAULT transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (pCurrentReliability, pStatusFlags, (A list of valid values for
 properties required to be reported for O1, and 0 or more other
 properties of O1))
11. TRANSMIT BACnet-SimpleACK-PDU
12. VERIFY pCurrentReliability = NO_FAULT_DETECTED
13. VERIFY pCurrentState = NORMAL
14. VERIFY pStatusFlags = (FALSE, FALSE,?, ?)

[Add new Clause 8.4.X10, p. 241]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 373

[Reviewer Note: Added testing for CHANGE_OF_DISCRETE_VALUE algorithm.]

8.4.X10 CHANGE_OF_DISCRETE_VALUE Test (ConfirmedEventNotification)
Purpose: To verify correct operation of the CHANGE_OF_DISCRETE_VALUE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of CHANGE_OF_DISCRETE_VALUE.

Test Concept: pMonitoredValue is changed to a value different from the initial value. After pTimeDelay (pTimeDelay is the
value for Time_Delay specified in the EventParameters), a TO-NORMAL transition occurs and a ConfirmedEventNotification
is generated by the IUTl.

Configuration Requirements: An Event_Enrollment, EE1 is configured with an Object_Property_Reference, (O1, P1), such
that P1 is of one of the following datatypes: BOOLEAN, Unsigned, Integer, Enumerated, CharacterString, Octet String, Date,
Time, BACnetObjectIdentifier, or BACnetDateTime. Event_Enable is configured with a value of (T,T,T) and
Event_Algorithm_Inhibit = FALSE. The Event_Parameters are configured with an Event Algorithm of
CHANGE_OF_DISCRETE_VALUE and a value for Time_Delay that is within the allowable range for the IUT. The
configured notification class is configured to send confirmed notifications to the TD. EE1 shall have an Event_State of
NORMAL at the start of the test.

Test Steps:

1. VERIFY pCurrentState = Normal
2. MAKE (the referenced property has a value x: x differs from the initial value)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured to correspond to TO-NORMAL),
 'Event Type' = CHANGE_OF_DISCRETE_VALUE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'Ack Required' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = NORMAL,
 'Event Values' = (x, Status_Flags of O1)
5. TRANSMIT BACnet-SimpleAck-PDU
6. VERIFY pCurrentState = Normal

[Add new Clause 8.4.X11, p. 241]

[Reviewer Note: Added testing for ACCESS_EVENT algorithm.]

8.4.X11 ACCESS_EVENT Test (ConfirmedEventNotification)
Purpose: To verify the correct operation of the ACCESS_EVENT event algorithm.

Test Concept: The object, O1, begins the test in a NORMAL state. An access event, of a type listed in pAccessEvents is made
to occur. It is verified that the IUT sends a confirmed notification of type ACCESS_EVENT. A second access event, of a type
not listed in pAccessEvents, is made to occur, if such is supported by the IUT. It is verified that no notification is generated. A
third access event, of a type listed in pAccessEvents is made to occur. It is verified that the IUT sends a confirmed notification
of type ACCESS_EVENT.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for TO-
NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating object

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

374 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

shall be in a NORMAL state at the start of the test. pAccessEvents shall be configured with at least 1 access event type that can
be made to occur. If possible, at least access event type that can be made to occur shall not be included in pAccessEvents.

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include
this parameter in the notification messages. The time stamps indicated by "*" can have a value that indicates an unspecified
time or a time that precedes the timestamp of the first received notification.

Test Steps:

-- Cause an access-event to occur that should be reported
1. VERIFY O1, Event_State = NORMAL
2. MAKE(an access event occur which is listed in pAccessEvents)
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the configured process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (Tnormal1: the current local time),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured for a TO-NORMAL transition),
 'Event Type' = ACCESS_EVENT,
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = NORMAL,
 'Event Values' = { pMonitoredValue, pStatusFlags, pAccessEventTag,
 pAccessEventType, pAccessCredential
 -- and optionally pAuthenticationFactor
 }
4. TRANSMIT BACnet-SimpleACK-PDU
5. VERIFY O1, Status_Flags = (FALSE, FALSE,?,?)
6. VERIFY O1, Event_State = NORMAL
7. VERIFY O1, Event_Time_Stamps = (*, *, Tnormal1)

-- Cause an access-event to occur that should not be reported
8. IF (the IUT can detect access events which are not in pAccessEvents) THEN {
 MAKE(an access event occur which is not listed in pAccessEvents)
 CHECK(no notification is generated)
 }
9. VERIFY O1, Status_Flags = (FALSE, FALSE,?,?)
10. VERIFY O1, Event_State = NORMAL
11. VERIFY O1, Event_Time_Stamps = (*, *, Tnormal1)

-- Cause an access-event to occur that should be reported
12. MAKE(an access event occur which is listed in pAccessEvents, and if possible different from the first
 access event)
13. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the configured process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (Tnormal2: the current local time),
 'Notification Class' = (the configured notification class),
 'Priority' = (the value configured for a TO-NORMAL transition),
 'Event Type' = ACCESS_EVENT,
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = NORMAL,
 'Event Values' = { pMonitoredValue, pStatusFlags, pAccessEventTag,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 375

 pAccessEventType, pAccessCredential
 -- and optionally pAuthenticationFactor
 }
14. TRANSMIT BACnet-SimpleACK-PDU
15. VERIFY O1, Status_Flags = (FALSE, FALSE,?,?)
16. VERIFY O1, Event_State = NORMAL
17. VERIFY O1, Event_Time_Stamps = (*, *, Tnormal2)

[Add new Clause 8.4.X18, p. 241]

[Reviewer Note: Added testing for CHANGE_OF_TIMER algorithm.]

8.4.X18 CHANGE_OF_TIMER ConfirmedNotification Tests

8.4.X18.X1 CHANGE_OF_TIMER ConfirmedEventNotification Test
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support
an Event_Type of CHANGE_OF_TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed, typically by putting the
Timer into operation where it conducts its usual operations, such that pMonitoredValue becomes equal to any of the values
contained in pAlarmValues. After pTimeDelay time later in that same value, the object shall enter the OFFNORMAL state and
transmit an event notification message. The pMonitoredValue is then changed such it is no longer equal to any of the values
contained in pAlarmValues. After pTimeDelayNormal time later in that same value, the object shall enter the NORMAL state
and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the
configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall contain
recipients. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps:

1. VERIFY Event_State = NORMAL
2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured in transition),
 'Event Type' = CHANGE_OF_TIMER,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional
notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one is
available)

5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY Status_Flags = {TRUE, FALSE, ?, ?}
7. VERIFY Event_State = OFFNORMAL
8. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues)
9. WAIT (pTimeDelayNormal)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

376 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

10. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured in transition),
 'Event Type' = CHANGE_OF_TIMER,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = NORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional
notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one is
available)
11. TRANSMIT BACnet-SimpleACK-PDU
12. VERIFY Status_Flags = {FALSE, FALSE, ?, ?}
13. VERIFY Event_State = NORMAL

8.4.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm when pUpdateTime changes while the
object is already OFFNORMAL, and the new state is also one of the pAlarmValues. This test applies to objects that support an
Event_Type of CHANGE_OF_TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue
equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in pAlarmValues,
it is observed to transmit another event notification message. Finally, the pMonitoredValue becomes a value that is not equal
to any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the object shall enter the
NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the
configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall contain
recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues cannot be
configured with two different values to which pMonitored will become equal, then this test shall be skipped.

Test Steps:
1. VERIFY Event_State = NORMAL
2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured in transition),
 'Event Type' = CHANGE_OF_TIMER,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 377

 'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional
notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one is
available)

5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY Status_Flags = {TRUE, FALSE, ?, ?}
7. VERIFY Event_State = OFFNORMAL
8. MAKE (pUpdateTime change, usually by pMonitoredValue becoming a different value, but ensure it is again equal to any
of the values contained in pAlarmValues)
9. BEFORE Notification Fail Time -- Note: no pTimeDelay here
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured in transition),
 'Event Type' = CHANGE_OF_TIMER,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional
notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one is
available)

10. TRANSMIT BACnet-SimpleACK-PDU
11. VERIFY Status_Flags = {TRUE, FALSE, ?, ?}
12. VERIFY Event_State = OFFNORMAL
13. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues)
14. WAIT (pTimeDelayNormal)
15. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1
 'Time Stamp' = (the current local datetime or time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured in transition),
 'Event Type' = CHANGE_OF_TIMER,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = NORMAL,
 'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional
notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one is
available)
16. TRANSMIT BACnet-SimpleACK-PDU
17. VERIFY Status_Flags = {FALSE, FALSE, ?, ?}
18. VERIFY Event_State = NORMAL

8.5 UnconfirmedEventNotification Service Initiation Tests

[Change Clause 8.5.17, p. 247]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

378 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8.5.17 CHANGE_OF_RELIABILITY Tests (UnconfirmedEventNotification Tests)

[Change Clause 8.5.17.1, p. 247]

[Reviewer Note: Changed title to use the No Fault vs NON algorithm. Fixed Status_Flags values in steps 4 and 8.]

8.5.17.1 CHANGE_OF_RELIABILITY with No NONE faultFault Algorithm (UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the NONE fault algorithm. To verify the correct operation of an object that supports
first stage reliability evaluation and does not apply a standardized fault algorithm.

Test Concept: Select an object, O1 that supports first stage reliability evaluation and does not apply a standardized fault
algorithm. Ensure that no other fault conditions exist for the object. Create a fault condition. Verify the transition to fault is
generated with Reliability set to R1. Remove the fault condition and verify the object transitions out of fault.

Test Configuration: O1 is configured to detect and report faults using unconfirmed event notifications. O1 is configured to have
no fault conditions present and the Event_State is NORMAL.

Notes to Tester: The mechanism to enter the no fault state is a local matter.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY Event_State = NORMAL
3. MAKE(O1 enter a fault condition)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (R1 any valid BACnetReliability,

 (?T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1)
)
5. VERIFY pCurrentReliability = R1
6. VERIFY Event_State = FAULT
7. MAKE(O1clear the fault condition)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 379

 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (?F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1)
)
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY Event_State = NORMAL

Notes to Tester: The mechanism to enter the NONE fault algorithm is a local matter.

[Change Clause 8.5.17.2, p. 248]

[Reviewer Note: Added steps to verify the pCurrentState after each transition change.]

8.5.17.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm
(UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the FAULT_CHARACTERSTRING fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_CHARACTERSTRING algorithm,
and no other fault conditions exist for the object. pMonitoredValue is changed to a fault string and back to a non-fault string.
It is verified that O1 generates the correct transitions.

Test Configuration: O1 is configured to detect and report faults, to have no fault conditions present, and to be in the NORMAL
state. FVSET is the set of character strings defined as fault values for O1. ONVSET is the set of character strings defined as
offnormal values for O1. FV1 contain a substring that exists in FVSET. If the empty string is included in the FVSET, then FV1
should be the empty string. NFV1 is a string value that does not contain substrings from FVSET or ONVSET. The 'Issue
Confirmed Notifications' parameter shall have a value of FALSE.

Notes to Tester: Note that a string is considered a substring of itself. Values required and allowed for O1 are described in
Standard 135 as "Properties Reported in CHANGE_OF_RELIABILITY Notifications" (Table 13-5) along with supporting
paragraphs.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = FV1
 ELSE
 MAKE (pMonitoredValue = FV1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MULTI_STATE_FAULT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

380 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 (T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MULTI_STATE_FAULT
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = NFV1
 ELSE
 MAKE (pMonitoredValue = NFV1)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

Notes to Tester: Note that a string is considered a substring of itself. Values required and allowed for O1 are described in
standard 135 as "Properties Reported in CHANGE_OF_RELIABILITY Notifications" (Table 13-5 in 135-2016) along with
supporting paragraphs.

[Change Clause 8.5.17.3, p. 249]

[Reviewer Note: Added missing verification of pCurrentState after each transition and fixed Status_Flags value in step 8.]

8.5.17.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm (UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the FAULT_EXTENDED fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_EXTENDED algorithm, and either
pMonitoredValue is configured. Ensure that no other fault conditions exist for the object. In object O1, a condition is created
that is detected as a fault by the FAULT_EXTENDED algorithm configured. The fault condition is then removed. It is verified
that O1 generates the correct notifications.

Test Configuration: O1 is configured to detect and report faults. O1 is configured to have no fault conditions present and has
an Event_State of NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (a fault condition exist)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 381

 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = ((R1: any valid reliability value),
 (T, T, ?, ?),
 (a vendor specified set of values))
5. VERIFY pCurrentReliability = R1
6. VERIFY pCurrentState = FAULT
7. MAKE (remove the fault condition)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (?F, F, ?, ?),
 (a vendor specified set of values))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

[Change Clause 8.5.17.4, p. 250]

[Reviewer Note: Added verification of pCurrentState after each transition.]

8.5.17.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm
(UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the FAULT_LIFE_SAFETY fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_LIFE_SAFETY algorithm. Ensure that
no other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a FAULT_LIFE_SAFETY
fault condition. Verify the correct transition is generated. The fault condition is removed by setting pMonitoredValue to NV1,
a value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially
configured to have no fault conditions present and has an Event_State of NORMAL. FV1 is a value for pMonitoredValue
which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition. The
'Issue Confirmed Notification' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

382 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = FV1
 ELSE
 MAKE (pMonitoredValue = FV1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MULTI_STATE_FAULT,
 (T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MULTI_STATE_FAULT
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = NV1
 ELSE
 MAKE (pMonitoredValue = NV1)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

[Change Clause 8.5.17.5, p. 251]

[Reviewer Note: Added verification of pCurrentState after each transition.]

8.5.17.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm (UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the FAULT_STATE fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATE algorithm. Ensure that no
other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a FAULT_STATE fault

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 383

condition. Verify the correct transition is generated. The fault condition is removed by setting pMonitoredValue to NV1, a
value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially
configured to have no fault conditions present, and an Event_State of NORMAL. FV1 is a value for pMonitoredValue which
indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition. The 'Issue
Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = FV1
 ELSE
 MAKE (pMonitoredValue = FV1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MULTI_STATE_FAULT,
 (T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MULTI_STATE_FAULT
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = NV1
 ELSE
 MAKE (pMonitoredValue = NV1)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

384 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Change Clause 8.5.17.6, p. 253]

[Reviewer Note: Added verification of pCurrentState after each transition.]

8.5.17.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm
(UnconfirmedEventNotifications)
Purpose: To verify the correct operation of the FAULT_STATUS_FLAGS fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATUS_FLAGS algorithm. Ensure
that no other fault conditions exist for the object. Set pMonitoredValue to FV1, a value which indicates a
FAULT_STATUS_FLAGS fault condition. Verify the correct transition is generated. The fault condition is removed by setting
pMonitoredValue to NV1, a value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially
configured to have no fault conditions present, and Event_State is NORMAL. FV1 is a value for pMonitoredValue which
indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition. The 'Issue
Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:
1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = FV1
 ELSE
 MAKE (pMonitoredValue = FV1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MEMBER_FAULT,
 (T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MEMBER_FAULT
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
 WRITE pMonitoredValue = NV1
 ELSE
 MAKE (pMonitoredValue = NV1)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 385

 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

[Remove Clause 8.5.17.7, p. 254]

[Reviewer Note: Test 8.5.17.7 was replaced by tests 8.5.17.7.1, 8.5.17.7.2 and 8.5.17.7.3.]

8.5.17.7 CHANGE_OF_RELIABILITY for Event Enrollment Fault Condition Precedence
(UnconfirmedEventNotifications)
Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the Event Enrollment object,
then faults in the monitored object, and finally faults detected by the configured Fault algorithm.

Test Concept: Select an Event Enrollment object, EE1, which monitors an object, O2, which can transition into FAULT. EE1
should be able to be put into a state where it has an internal fault (internal to the Event Enrollment object and unrelated to the
Reliability of the monitored object). Starting with both objects in a NORMAL state, causes a condition, which results in a fault
in O2. Verify that EE1 reports the fault. Make a condition exist that results in EE1 entering an internal fault. Verify that EE1
reports the new fault condition. Verify that a fault detectable by the fault algorithm does not generate an event. Clear EE1's the
internal fault condition and verify that EE1 reports O2's fault. Clear the condition causing O2’s fault and verify that EE1 reports
fault algorithm event. Clear the condition causing the fault algorithm and verify the return to NORMAL event occurs.

Configuration Requirements: EE1 is configured to detect and report faults and contains a fault algorithm. EE1 and O2 are each
initially configured to have no fault conditions present, and Event_State is NORMAL. The 'Issue Confirmed Notifications'
parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. VERIFY pCurrentReliability = NO_FAULT_DETECTED
3. MAKE (a condition exist which will cause O2 to detect a fault)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MONITORED_OBJECT_FAULT,
 (T, T, ?, ?),
 O2,
 (optional, the value of the monitored property),
 (optional, Reliability of O2),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

386 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 (optional, Status_Flags of O2),
 (0 or more other properties of O2))
5. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
6. MAKE (a condition exist which will cause EE1 to transition into internal fault)
7. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = FALSE,
 'From State' = FAULT,
 'To State' = FAULT,
 'Event Values' = ((R1: any value other than
 MONITORED_OBJECT_FAULT
 and NO_FAULT_DETECTED),
 (T, T, ?, ?),
 O2,
 (optional, the value of the monitored property),
 (optional, Reliability of O2),
 (optional, Status_Flags of O2),
 (0 or more other properties of O2))
8. VERIFY pCurrentReliability = R1
9. MAKE (a condition that results in a fault detectable by the configured fault algorithm with a reliability value, R2,
 different from R1)
10. CHECK (that the IUT does not send any notifications)
11. VERIFY pCurrentReliability = R1
12. MAKE (clear the condition that caused EE1 to enter into an internal fault)
11. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = FALSE,
 'From State' = FAULT,
 'To State' = FAULT,
 'Event Values' = (MONITORED_OBJECT_FAULT,
 (T, T, ?, ?),
 O2,
 (optional, the value of the monitored property),
 (optional, Reliability of O2),
 (optional, Status_Flags of O2)
 (0 or more other properties of O2))
12. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
13. MAKE (clear the condition that caused O2 to enter into fault)
14. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 387

 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = FALSE,
 'From State' = FAULT,
 'To State' = FAULT,
 'Event Values' = (R2,
 (T, T, ?, ?),
 O2,
 (optional, the value of the monitored property),
 NO_FAULT_DETECTED,
 (optional, Status_Flags of O2),
 (0 or more other properties of O2))
15. VERIFY pCurrentReliability = R2
16. MAKE (clear the condition for the fault algorithm)
17. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 ‘Message Text’ = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 O2,
 (the value of the monitored property),
 NO_FAULT_DETECTED,
 (optional, Status_Flags of O2),
 (0 or more other properties of O2))
19. VERIFY pCurrentReliability = NO_FAULT_DETECTED
20. VERIFY pCurrentState = NORMAL

Notes to Tester: If O2 is located in the IUT, then the IUT shall know and report the property values of O2 in the
CHANGE_OF_RELIABILITY notifications. If O2 is not located in the IUT, then more time must be allowed between making
or clearing a fault condition in O2 and the IUT detecting the change in O2’s Reliability (the Notification Fail Time allowance
does not start until after the IUT has acquired the information from O2).

[Add new Clause 8.5.17.7, p. 254]

[Reviewer Note: This new Clause 8.5.17.7 and its subclauses 8.5.17.7.1, 8.5.17.7.2, and 8.5.17.7.3 replace the original Clause
8.5.17.7.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

388 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8.5.17.7 Event Enrollment Fault Condition Precedence Tests

8.5.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults
over faults in the monitored object.

Test Concept: Select an Event Enrollment object, EE1, which can detect internal faults and which monitors an object O1 that
can detect faults. Test that an internal unreliable operational fault takes precedence over a monitored object fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE(a condition exist which will cause O1 to transition into fault)
4. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
5. VERIFY pCurrentState = FAULT
6. MAKE(a condition exist which will cause EE1 to transition into internal fault R1)
7. VERIFY pCurrentReliability = R1
8. MAKE(clear the condition that caused EE1 to enter into an internal fault)
9. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
10. MAKE(clear the condition that caused O1 to transition into fault)
11. VERIFY pCurrentReliability = NO_FAULT_DETECTED
12. VERIFY pCurrentState = NORMAL

8.5.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the monitored object over
faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object, EE1, which applies a fault algorithm and which monitors an object O1 that
can detect faults. Test that a monitored object fault takes precedence over a standard fault algorithm fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)
4. VERIFY pCurrentReliability = R1
5. VERIFY pCurrentState = FAULT
6. MAKE(a condition exist which will cause O1 to transition into fault)
7. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
8. MAKE(clear the condition that caused O1 to transition into fault)
9. VERIFY pCurrentReliability = R1
10. MAKE(clear the condition for the fault algorithm)
11. VERIFY pCurrentReliability = NO_FAULT_DETECTED
12. VERIFY pCurrentState = NORMAL

8.5.17.7.3 Internal Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults
over faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object, EE1, which can detect internal faults and which applies a fault algorithm.
Test that an internal unreliable operational fault takes precedence over a standard fault algorithm fault.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 389

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)
4. VERIFY pCurrentReliability = R1
5. VERIFY pCurrentState = FAULT
6. MAKE(a condition exist which will cause EE1 to transition into internal fault R2, different from R1)
7. VERIFY pCurrentReliability = R2
8. MAKE(clear the condition that caused EE1 to enter into an internal fault)
9. VERIFY pCurrentReliability = R1
10. MAKE(clear the condition for the fault algorithm)
11. VERIFY pCurrentReliability = NO_FAULT_DETECTED
12. VERIFY pCurrentState = NORMAL

[Change Clause 8.5.17.8, p. 256]

[Reviewer Note: Added verify of pCurrentState after each transition.]

8.5.17.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault
(UnconfirmedEventNotifications)
Purpose: To verify the proper operation of the Event Enrollment object’s fault detection when the monitored object enters the
fault state.

Test Concept: Select an Event Enrollment object EE1 that monitors an object M1 that can transition into FAULT. Starting with
both objects in a NORMAL state, cause a condition which results in a fault in M1. Verify EE1 reports the fault. Clear the
condition and verify EE1 reports the return to NORMAL.

Test Configuration: EE1 is configured to process faults in M1 and to report those using unconfirmed event notifications. EE1
and M1 are each initially configured to have no fault conditions present, and Event_State is NORMAL. The 'Issue Confirmed
Notifications' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (M1 enter any fault state)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (MONITORED_OBJECT_FAULT,
 (T, T, ?, ?),
 M1,
 (optional, property value of M1),
 (optional, M1 Status_Flags, (?, T, ?, ?)),
 (0 or more other properties of M1))

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

390 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

5. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT
6. VERIFY pCurrentState = FAULT
7. MAKE (M1 clear fault state)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 M1,
 (optional, property value of M1),
 (optional, M1 Status_Flags, (?, F, ?, ?)),
 (0 or more other properties of M1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

[Change Clause 8.5.17.9, p. 258]

[Reviewer Note: Added verify of pCurrentState after each transition.]

8.5.17.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault (UnconfirmedEventNotifications)
Purpose: To verify the Event Enrollment object generates a fault event when the object enters into fault due to an internal
unreliable operation.

Test Concept: Select an Event Enrollment object EE1 that can be made to enter into fault due to an internal unreliable operation.
Starting EE1 in a NORMAL state, cause a condition which results in an internal fault. Verify that EE1 reports the fault. Clear
the condition and verify that EE1 reports the return to NORMAL.

Configuration Requirements: EE1 is configured to be able to enter a fault state and to report. EE1 is initially configured to have
no fault conditions present, and Event_State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value
of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (EE1 enter any internal fault state)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 391

 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = ((R1: any value other than
 MONITORED_OBJECT_FAULT
 and NO_FAULT_DETECTED),
 (T, T, ?, ?),
 (M1, any valid monitored object),
 (optional, property value of M1),
 (optional, M1 Status_Flags, (?, F, ?, ?)),
 (0 or more other properties of M1)
5. VERIFY pCurrentReliability = R1
6. VERIFY pCurrentState = FAULT
7. MAKE (EE1 clear fault state)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 M1,
 (optional, property value of M1),
 (optional, M1 Status_Flags, (?, F, ?, ?)),
 (0 or more other properties of M1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

[Change Clause 8.5.17.10, p. 259]

[Reviewer Note: Fixed the Status_Flags in step 7. Added verify of pCurrentState after each transition.]

8.5.17.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL (UnconfirmedEventNotifications)
Purpose: To verify that objects go to the NORMAL state after leaving the FAULT state, then transition to OFFNORMAL if
the condition still exists.

Test Concept: Select a fault detecting object O1 which is able to detect OFFNORMAL conditions. Make O1 transition to an
OFFNORMAL state and then transition to FAULT. Remove the condition causing the FAULT and verify O1 transitions from
FAULT to NORMAL, then verify that the object transitions from NORMAL to the original OFFNORMAL state.

Configuration Requirements: O1 is configured to detect and report unconfirmed events and faults. O1 is configured to have no
fault conditions present, and Event_State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value of
FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

392 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. MAKE(O1transition to an off normal state)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = (ET1, any valid off normal event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = (property-values appropriate for O1)
5. VERIFY pCurrentState = OFFNORMAL
6. MAKE(O1 enter a fault state)
7. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = OFFNORMAL,
 'To State' = FAULT,
 'Event Values' = ((R1 any valid BACnetReliability),
 (?T, T, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
8. MAKE(O1 clear the fault condition)
9. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
10. VERIFY pCurrentReliability = NO_FAULT_DETECTED
11. VERIFY pCurrentState = NORMAL
12. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request
 'Process Identifier' = (any valid process identifier),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 393

 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (the current local time or sequence number),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = ET1,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = OFFNORMAL,
 'Event Values' = (property-values appropriate for O1)
11. VERIFY pCurrentReliability = NO_FAULT_DETECTED
12. VERIFY pCurrentState = OFFNORMAL

[Add new Clause 8.5.17.X1, p. 261]

8.5.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (UnconfirmedEventNotification)

8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification)

Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from
NORMAL to FAULT event states.

Test Concept: Select a fault detecting object, O1, which is configured to use the FAULT_LISTED algorithm. Ensure that no
fault conditions exist in the object. Set pMonitoredList to FV1, a non-empty list of supported faults. Verify the correct transition
is generated. The fault condition is removed by setting pMonitoredList to an empty list. Verify the correct transition is
generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is
initially configured to have no fault conditions present and has an Event_State of NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredList is writable) THEN
 WRITE pMonitoredList = FV1
 ELSE
 MAKE (pMonitoredList = FV1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process Identifier),
 'Initiating Device Identifier' = IUT
 'Event Object Identifier' = O1
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (FAULT_LISTED,
 (T, T, ? ?),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

394 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = FAULTS_LISTED
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredList is writable) THEN
 WRITE pMonitoredList = (an empty list)
 ELSE
 MAKE (pMonitoredList = (an empty list)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process Identifier),
 'Initiating Device Identifier' = IUT
 'Event Object Identifier' = O1
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ? ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification)

Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from
FAULT to FAULT event states.

Test Concept: Select a fault detecting object, O1, which is configured to use the FAULT_LISTED algorithm. Ensure that a
fault condition, FV1, exists in the object. Set pMonitoredList to FV2, a non-empty list different from FV1. Verify the correct
transition is generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is
initially configured to have a fault by having pMonitoredList contain a non-empty list, FV1, and has an Event_State of FAULT.

Test Steps:

1. VERIFY pCurrentReliability = FAULT_LISTED
2. VERIFY pCurrentState = FAULT
3. IF (pMonitoredList is writable) THEN
 WRITE pMonitoredList = FV2
 ELSE
 MAKE (pMonitoredList = FV2)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process Identifier),
 'Initiating Device Identifier' = IUT
 'Event Object Identifier' = O1
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 395

 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = FAULT,
 'Event Values' = (FAULT_LISTED,
 (T, T, ? ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = FAULTS_LISTED
6. VERIFY pCurrentState = FAULT

8.5.17.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault (UnconfirmedEventNotifications)

Purpose: To verify that fault conditions due to first stage faults are detected and reported.

Test Concept: An object in the IUT, O1, which can detect at least one first stage fault is selected. One of O1’s detectable first
stage faults, R1, is selected for the test. O1 begins the test in the NORMAL state with pCurrentReliability equal to
NO_FAULT_DETECTED. The first stage fault condition, R1, is made to exist and it is verified that the pCurrentReliability
changes to R1. It is verified that O1 generates the appropriate event notification. The fault condition is removed, and it is
verified that the pCurrentReliability returns to NO_FAULT_DETECTED and the appropriate event notification message is
generated.

Configuration Requirements: O1 is configured to detect faults and to report. O1 is initially configured to have no fault
conditions present, and Event_State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (pCurrentReliability = R1)
4. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = FAULT,
 'Event Values' = (R1,
 (T, T, ?, ?),
 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = R1
6. VERIFY pCurrentState = FAULT
7. MAKE (pCurrentReliability = NO_FAULT_DETECTED)
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = O1,
 'Time Stamp' = (any current time stamp),
 'Notification Class' = (the notification class configured for O1),
 'Priority' = (the value configured for the transition),
 'Event Type' = CHANGE_OF_RELIABILITY,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

396 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message Text' = (optional, any valid message text),
 'Notify Type' = EVENT | ALARM,
 'AckRequired' = TRUE | FALSE,
 'From State' = FAULT,
 'To State' = NORMAL,
 'Event Values' = (NO_FAULT_DETECTED,
 (F, F, ?, ?),
 (A list of valid values for properties required to be reported
 for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT_DETECTED
10. VERIFY pCurrentState = NORMAL

8.5.17.X1.3 CHANGE_OF_RELIABILITY with the FAULT_OUT_OF_RANGE Algorithm

(UnconfirmedEventNotification)

Purpose: To verify the correct operation of the FAULT_OUT_OF_RANGE event algorithm.

Test Concept: Select a fault detecting object, O1, which is configured to use the FAULT_OUT_OF_RANGE algorithm. Ensure
that no other fault conditions exist in the object. Set pMonitoredValue to outside the range of values considered to be normal
for the object. Verify the correct transition is generated. The fault condition is then removed. It is verified that O1 generates
the correct notifications.

Test Configuration: O1 is configured to detect and report faults, to have no fault conditions present. The
Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL
state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.17.X1.3, except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests, and the TD does not acknowledge receiving
the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.17.X1.3, except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall be
either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X10 CHANGE_OF_DISCRETE_VALUE Test (UnconfirmedEventNotification)
Purpose: To verify correct operation of the CHANGE_OF_DISCRETE_VALUE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of CHANGE_OF_DISCRETE_VALUE.

Test Concept: pMonitoredValue is changed to a value different from the initial value. After pTimeDelayNormal (pTimeDelay
is the value for Time_Delay specified in the EventParameters), a TO-NORMAL transition occurs and a
UnconfirmedEventNotification is generated by the IUTl.

Configuration Requirements: An Event_Enrollment, EE1 is configured with an Object_Property_Reference, (O1, P1), such
that P1 is of one of the following datatypes: BOOLEAN, Unsigned, Integer, Enumerated, CharacterString, Octet String, Date,
Time, BACnetObjectIdentifier, or BACnetDateTime. Event_Enable is configured with a value of (T,T,T) and
Event_Algorithm_Inhibit = FALSE. The Event_Parameters are configured with an Event Algorithm of
CHANGE_OF_DISCRETE_VALUE and a value for Time_Delay that is within the allowable range for the IUT. The
configured notification class is configured to send unconfirmed notifications to the TD. EE1 shall have an Event_State of
NORMAL at the start of the test.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. MAKE (the referenced property has a value x: x differs from the initial value)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 397

 RECEIVE UnconfirmedEventNotification
 'Process Identifier' = (any valid process ID),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = EE1,
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for EE1),
 'Priority' = (the value configured to correspond to TO-NORMAL),
 'Event Type' = CHANGE_OF_DISCRETE_VALUE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'Ack Required' = TRUE | FALSE,
 'From State' = NORMAL,
 'To State' = NORMAL,
 'Event Values' = (x, Status_Flags of O1)
5. VERIFY pCurrentState = NORMAL

[Add new Clause 8.5.X11, p. 261]

[Reviewer Note: Added testing for ACCESS_EVENT algorithm.]

8.5.X11 ACCESS_EVENT Test (UnconfirmedEventNotification)
Purpose: To verify the correct operation of the ACCESS_EVENT event algorithm.

Test Concept: The object, O1, begins the test in a NORMAL state. An access event, of a type listed in pAccessEvents is made
to occur. It is verified that the IUT sends a confirmed notification of type ACCESS_EVENT. A second access event, of a type
not listed in pAccessEvents, is made to occur, if such is supported by the IUT. It is verified that no notification is generated. A
third access event, of a type listed in pAccessEvents is made to occur. It is verified that the IUT sends a confirmed notification
of type ACCESS_EVENT.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for TO-
NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating object
shall be in a NORMAL state at the start of the test. pAccessEvents shall be configured with at least 1 access event type that can
be made to occur. If possible, at least access event type that can be made to occur shall not be included in pAccessEvents.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X11 except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X11 except that the event notification requests
are UnconfirmedEventNotification requests, and the TD does not acknowledge receiving the notifications.

[Add new Clause 8.5.X18, p. 261]

[Reviewer Note: Add testing for CHANGE_OF_TIMER algorithm.]

8.5.X18 CHANGE_OF_TIMER Tests

8.5.X18.X1 CHANGE_OF_TIMER UnconfirmedEventNotification Test
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support
an Event_Type of CHANGE_OF_TIMER.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

398 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

configured Notification Class shall have a value of FALSE. The event-generating object shall be in a NORMAL state at the
start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X11, except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests, and the TD does not acknowledge receiving
the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X11, except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall be
either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal UnconfirmedEventNotification Test
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support
an Event_Type of CHANGE_OF_TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue is
equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in pAlarmValues,
it is observed to transmit another event notification message. Finally, the pMonitoredValue becomes a value that is not equal
to any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the object shall enter the
NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the
configured Notification Class shall have a value of FALSE. The Recipient_List of the configured Notification Class shall
contain recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues cannot
be configured with two different values to which pMonitored will become equal, then this test shall be skipped.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X2 except that the ConfirmedEventNotification
requests are UnconfirmedEventNotification requests, and the TD does not acknowledge receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X2, except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall be
either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.11 SubscribeCOVProperty Service Initiation Tests

[Change Clause 8.11.1, p. 267]

[Reviewer Note: Added test concept and variables to simplify test.]

8.11.1 Confirmed Notifications Subscription
Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for confirmed notifications to any valid
object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 399

 'Monitored Object Identifier' = (any valid object identifier)X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (any non-zero value)L,
 'Monitored Property Identifier' = (any valid property identifier)(the property Y to be monitored),
 'COV Increment' = (any valid valueany REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.11.2, p. 267]

[Reviewer Note: Added test concept and variables to simplify test.]

8.11.2 Unconfirmed Notifications Subscription
Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for unconfirmed notifications to any valid
object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any valid object identifier)X
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = (any non-zero value)L,
 'Monitored Property Identifier' = (any valid property identifier)(the property Y to be monitored),
 'COV Increment' = (any valid valudAany REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.11.3, p. 268]

[Reviewer Note: Added test concept and variables to simplify test.]

8.11.3 Canceling a Subscription
Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request to cancel a subscription to any valid
object, X.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any valid object identifier)X
 'Monitored Property Identifier' = (any valid property identifier)(the property Y to be monitored),
 'COV Increment' = (any valid valueany REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU

[Add new Clause 8.11.X1, p. 268]

[Reviewer Note: Added new tests to support DS-COVP-A testing.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

400 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8.11.X1 Change of Value Notification Tests

8.11.X1.1 Change of Value Notification
Purpose: To verify that the IUT can execute COVNotification requests from object types that provides a Property and
Status_Flags properties in COV notifications.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Monitored Property Identifier' = (the property Y to be monitored),
 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
 IF (the subscription was for confirmed notifications) THEN
 TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property Y subscribed to, and any other
 properties the IUT provides with it, such as Status_Flags)
 RECEIVE BACnet-SimpleACK-PDU
 ELSE
 TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property Y subscribed to, and any other
 properties the IUT provides with it, such as Status_Flags)
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying information on a
workstation screen are carried out)

8.11.X1.2 Change of Value Notifications with Invalid Process Identifier

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that does
not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:
1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L,
 'Monitored Property Identifier' = (the property Y to be monitored),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 401

 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (a process identifier different from the one used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property Y subscribed to, and any other
 properties the IUT provides with it, such as Status_Flags)

5. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (UNKNOWN_SUBSCRIPTION) |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Test Concept: A subscription for COV notifications is established and then cancelled or allowed to expire. A
ConfirmedCOVNotification is then sent to the IUT to verify it returns the appropriate error or a Somple-Ack.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L,
 'Monitored Property Identifier' = (the property Y to be monitored),
 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
 TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property Y subscribed to, and any other
 properties the IUT provides with it, such as Status_Flags)
 RECEIVE BACnet-SimpleACK-PDU
5. MAKE (the IUT stop resubscribing, if it resubscribes automatically)
6. IF (the IUT can cancel the subscription) THEN
 RECEIVE SubscribeCOVProperty – Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Monitored Object Identifier' = X
 'Monitored Property Identifier' = Y
 'COV Increment' = (Any REAL value –optional)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

402 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 ELSE
 WAIT (a value two times Lifetime)
7. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property Y subscribed to, and any other
 properties the IUT provides with it, such as Status_Flags)
8. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (UNKNOWN_SUBSCRIPTION) |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L,
 'Monitored Property Identifier' = (the property Y to be monitored),
 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = (any object Y supporting COV notification except X),
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (any value)
5. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (UNKNOWN_SUBSCRIPTION) |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 403

8.11.X1.5 Change of Value Notifications with Invalid Monitored property

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L,
 'Monitored Property Identifier' = (the property Y to be monitored),
 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (any property supporting COV notification except Y),
5. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 RECEIVE
 BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (UNKNOWN_SUBSCRIPTION) |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE
 BACnet-Error-PDU,
 'Error Clas's = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

8.11.X4 Requests 8 Hour Lifetimes

Purpose: To verify that the IUT correctly generates subscription requests with lifetimes less than or equal to 8 hours. Either
confirmed or unconfirmed notifications may be used, but at least one of these options shall be supported by the IUT.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime between 1 and 28800),
 'Monitored Property Identifier' = (the property Y to be monitored),
 'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

404 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8.18 ReadProperty Service Initiation Tests

[Add new Clause 8.18.X1, p. 273]

[Reviewer Note: There is no appropriate test for reading and presenting large list property values as required by DM-SP-VM-
A.]

8.18.X1 Reading and Presenting Large List Properties
Purpose: This test case verifies that the IUT is capable of reading and presenting large list properties using ReadRange. It is a
generic test used to test data presentation requirements.

Configuration: For this test, the tester shall choose a list property, P1, from an object, O1. The TD shall be configured to not
support segmentation. The value P1 shall be too large to read via ReadProperty or ReadPropertyMultiple.

Notes to Tester: The value presented by the IUT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion, etc.

Notes to Tester: If the IUT has not already determined that the value cannot be read using ReadProperty or
ReadPropertyMultiple, the IUT may initiate a ReadProperty or ReadPropertyMultiple. If this occurs, the IUT shall pass the test
only if it automatically falls back to using ReadRange upon receipt of the correct BACnetReject-PDU from the TD, indicating
that the response is too large.

Test Steps:

1. MAKE (the IUT read P1)
2. WHILE (the complete list has not been read)
 RECEIVE ReadRange-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Range' = (any valid value for P1)
 TRANSMIT BACnet-ComplexACK-PDU,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Result Flags' = (values consistent with the request),
 'Item Count' = (values consistent with the request),
 'Item Data' = (values consistent with the request)
3. CHECK (that the IUT presents a list of values that is consistent with the values received in step 2)

8.20 ReadPropertyMultiple Service Initiation Tests

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails

[Change Clause 8.20.5.1, p. 275]

[Reviewer Note: Modified test to allow multiple objects in addition to single objects. Notes to Tester added to permit a
behavior that allows the IUT to omit RP requests for properties which are not essential to the operation being performed.]

8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service
Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty
when the IUT determines the TD does not support the ReadPropertyMultiple service.

Test Concept: The IUT is configured in a manner that would normally cause it to access one or more properties in the TD via
the ReadPropertyMultiple service. Prior to sending a ReadPropertyMultiple request, however, the IUT determines that the TD

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 405

does not support the ReadPropertyMultiple service. The IUT instead attempts to access the TD's property values via the
ReadProperty service (it is assumed that the IUT will make this determination by reading the TD's
Protocol_Services_Supported property, but this test specifically does not attempt to verify this behavior).

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT is
configured such that it is capable of accessing one or more properties of a single or multiple objects in the TD via the
ReadProperty and ReadPropertyMultiple services. If the IUT cannot be configured in this way, then this test shall be omitted.

Notes to Tester: In step 3, observing a ReadProperty of the properties from Step 1 is what is expected, but it is acceptable if
fewer properties are read with ReadProperty, if those which are omitted are not essential to the operation being performed.

Test Steps:

1. MAKE (a condition in the IUT that would normally cause it to send a ReadPropertyMultiple request to the TD to
 access one or more propertyies values of a single object)
2. WAIT (a time interval specified by the vendor as sufficient for the IUT to determine that the TD does not support the
 ReadPropertyMultiple service)
3. REPEAT X = (the properties that the IUT is to read) DO {
 RECEIVE ReadProperty-Request,
 'Object Identifier' = (object identifier referenced by X),
 'Property Identifier' = (property identifier referenced by X)
 TRANSMIT ReadProperty-Ack,
 'Object Identifier' = (object identifier referenced by X),
 'Property Identifier' = (property identifier referenced by X),
 'Property Value' = (any valid value)

[Change Clause 8.20.5.2, p. 276]

[Reviewer Note: Modified test to allow multiple objects in addition to single objects. Notes to Tester added to permit a
behavior that allows the IUT to omit RP requests for properties which are not essential to the operation being performed.]

8.20.5.2 Fallback to ReadProperty on Reject - UNRECOGNIZED_SERVICE Response

BACnet Reference Clauses: 15.5 and 15.7

Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty
when the TD returns a Reject-PDU and a Reject Reason of UNRECOGNIZED_SERVICE.

Test Concept: The IUT is configured to send the TD a ReadPropertyMultiple request to access one or more properties of one
or more objects. The TD responds with a Reject-PDU and a Reject Reason of UNRECOGNIZED_SERVICE. With no
additional configuration, the IUT sends one or more ReadProperty requests to the TD, where each ReadProperty request
specifies an individual property from the original ReadPropertyMultiple request covering all the properties from the original
ReadPropertyMultiple request.

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT is
configured such that it attempts to acquire values from the TD using the ReadPropertyMultiple service without first
interrogating the TD’s Protocol_Services_Supported property. If the IUT cannot be configured in this way then this test shall
be omitted.

Notes to Tester: In step 4, observing a ReadProperty of the properties from Step 1 is what is expected, but it is acceptable if
fewer properties are read with ReadProperty, if those which are omitted are not essential to the operation being performed.

Test Steps:

1. MAKE (the IUT send a ReadPropertyMultiple-Request for a list of properties L)
2. RECEIVE ReadPropertyMultiple-Request,
 -- the following is repeated for each object O referenced in L
 'Object Identifier' = (Oobject indentifier of the specified object),
 'List of Property References' = (one or more properties of O as specified in L the specified object)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

406 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. TRANSMIT BACnet-Reject-PDU,
 'Reject Reason' = UNRECOGNIZED_SERVICE
4. REPEAT X = (the properties from L in the order the IUT chooses Step 1) DO {
 RECEIVE ReadProperty-Request,
 'Object Identifier' = (object identifier referenced by X),
 'Property Identifier' = (property identifier referenced by X)
 TRANSMIT ReadProperty-Ack,
 'Object Identifier' = (object identifier referenced by X),
 'Property Identifier' = (property identifier referenced by X),
 'Property Value' = (any valid value)
 }

8.21 ReadRange Service Initiation Tests

[Change Clause 8.21.1, p. 276]

[Reviewer Note: Modified to comply with Addendum 135-2008u-3.]

8.21.1 Reading Values with no Specified Range
Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values to
be returned.

Test Steps:

1. RECEIVE ReadRange-Request,
 'Object Identifier' = (O, any Trend Log object),
 'Property Identifier' = Log_Buffer(P, any list property the IUT can read)
2. TRANSMIT ReadRange-ACK
 'Object Identifier' = O,
 'Property Identifier' = P,
 ‘Result Flags’ = (TRUE, (bLast), (NOT bLast)),
 ‘Item Count’ = (C: any valid value)
 ‘Item Data’ = (C valid records for the requested property)
3. CHECK(that the IUT performs the vendor specified action)

[Change Clause 8.21.3, p. 277]

[Reviewer Note: Modified to comply with Addendum 135-2008u-3.]

8.21.3 Reading a Range of Values by Position
Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be
returned by position.

Test Steps:

1. RECEIVE ReadRange-Request,
 'Object Identifier' = (O, any Trend Log object),
 'Property Identifier' = Log_Buffer(P, any list property),
 'Reference Index' = (any Unsigned value),
 'Count' = (C1, any INTEGER value)
2. TRANSMIT ReadRange-ACK
 'Object Identifier' = O,
 'Property Identifier' = P,
 ‘Result Flags’ = ((TRUE if the first was requested, FALSE otherwise), ?, ?),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 407

 ‘Item Count’ = (C2: any valid value <= |C|)
 ‘Item Data’ = (C2 valid records for the requested property)
3. CHECK(that the IUT performs the vendor specified action)

[Change Clause 8.21.9, p. 280]

[Reviewer Note: Modified the name of the test and improved the wording of the Purpose. Added 's' to Notes to Tester.]

8.21.9 Presents Log Records Containing a Specific Datatype
Purpose: To verify that the IUT can initiate one or more ReadRange requests that access and present a tester-specified portion
of log records having a specific datatype, using any valid range. It is a generic test used to test data presentation requirements.

Test Concept: Run test in Clause 135.1-2019 - 8.21.8 and verify that the data presentation meets the criteria specified by the
BIBB being tested.

NoteNotes to Tester: The values presented by the IUT may differ from the values transmitted on the wire due to rounding,
truncation, formatting, language, conversion, etc.

NoteNotes to Tester: The IUT is not required to display records containing log-status values.

8.22 WriteProperty Service Initiation Tests

[Add new Clause 8.22.X1, p. 282]

[Reviewer Note: There is no appropriate test for modifying large list property values as required by DM-SP-VM-A.]

8.22.X1 Accepting Input and Modifying Large List Properties
Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify large list properties where
AddListElement and RemoveListElement will be required. It is a generic test used to test data-input requirements.

Configuration: For this test, the tester shall choose a list property, P1, from an object, O1. The TD shall be configured to not
support segmentation. The list property shall be configured with a value such that it cannot be read or written without the use
of ReadRange and AddListElement/RemoveListElement.

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion, etc.

Notes to Tester: If the IUT has not already determined that the value cannot be transmitted using WriteProperty or
WritePropertyMultiple, the IUT may initiate a WriteProperty or WritePropertyMultiple. If this occurs, the IUT shall pass the
test only if it automatically falls back to using AddListElement and RemoveListElement upon receipt of the correct
BACnetReject-PDU from the TD, indicating that the write request is too large.

Test Steps:

-- test adding elements into the list
1. MAKE (the IUT accept 1 or more new entries, {E1..En} for P1 from the user)
2. RECEIVE AddListElement-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1
 'List Of Elements' = (E1, .., En)
3. TRANSMIT BACnet-SimpleACK-PDU

-- test removing elements from the list

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

408 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

4. MAKE (the IUT delete 1 or more entries, {E1..Ex} for P1 from the user)
5. RECEIVE RemoveListElement-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1
 'List Of Elements' = (E1, .., Ex)
6. TRANSMIT BACnet-SimpleACK-PDU

[Add new Clause 8.22.X4, p. 282]

8.22.X4 Writing Array Properties as a Whole Array
Purpose: This test verifies that the IUT is writing the entire array to the TD without the use of the array index.

Configuration Requirements: For this test, the tester shall choose a property, P1, from an object, O1. The TD shall be configured
to not support execution of WritePropertyMultiple.

The WriteProperty request initiated by IUT shall contain array of elements in P1, which shall fit in the APDU and segment
limitations of the IUT.

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that the TD does not support execution of WritePropertyMultiple, the
IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall pass the test only if it automatically falls back to using
WriteProperty upon receipt of the correct BACnetReject-PDU from the TD, indicating that WritePropertyMultiple is not
supported.

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the
range 1-16, excluding 6.

Test Steps:

1. MAKE (the IUT accept a new value for P1 including all elements of the array from the user)
2. RECEIVE WriteProperty-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (the value provided to the IUT for P1)
3. TRANSMIT BACnet-SimpleACK-PDU

8.24 DeviceCommunicationControl Service Initiation Tests

[Change Clause 8.24.1, p. 285]

[Reviewer Note: Modified to include the responding ACK.]

8.24.1 Indefinite Duration, Disable, No Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
cease for an indefinite time duration and do not convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Enable/Disable' = DISABLE,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 409

2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.24.2, p. 285]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.24.2 Indefinite Duration, Disable, Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
cease for an indefinite time duration and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Enable/Disable' = DISABLE,
 'Password' = (a password of at least 5 characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.24.3, p. 285]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.24.3 Time Duration, Disable, Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
cease for a specific time duration and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Time Duration' = (any unsigned value > 0),
 'Enable/Disable' = DISABLE,
 'Password' = (a password of at least 5 characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.24.4, p. 285]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.24.4 Enable, Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
resume and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Enable/Disable' = ENABLE,
 'Password' = (a password of at least 5 characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

410 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Change Clause 8.24.5, p. 285]

[Reviewer Note: This test was modified to include the responding ACK.]

8.24.5 Enable, No Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
resume and do not convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Enable/Disable' = ENABLE,
2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.24.6, p. 286]

[Reviewer Note: This test was modified to include the responding ACK.]

8.24.6 Time Duration, Disable, No Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
cease for a specific time duration and do not convey a password. If the IUT does not support the “no password” option, this
test shall not be performed.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Time Duration' = (any unsigned value > 0),
 'Enable/Disable' = DISABLE
2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.24.7, p. 286]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.24.7 Time Duration, Disable-Initiation, Password
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should
cease for a specific time duration and that convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
 'Time Duration' = (any unsigned value in the range from 1 to 65535),
 'Enable/Disable' = DISABLE
 'Password' = (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.27 ReinitializeDevice Service Initiation Tests

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 411

[Change Clause 8.27.2, p. 287]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.27.2 COLDSTART with a Password
Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a COLDSTART should be
performed and convey a password.

Test Steps:

1. RECEIVE ReinitializeDevice-Request,
 'Reinitialized State of Device' = COLDSTART,
 'Password' =(a password of at least 5 characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 8.27.4, p. 287]

[Reviewer Note: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.]

8.27.4 WARMSTART with a Password
Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a WARMSTART should be
performed and convey a password.

Test Steps:

1. RECEIVE ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
 'Password' =(a password of at least 5 characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.32 Who-Has Service Initiation Tests

[Change Clause 8.32.1, p. 290]

[Reviewer Note: Modified to allow the IUT to send and receive a unicast response (per Addendum 135-2012ar-5, Protocol
Revision 15). Added Notes to Tester.]

8.32.1 Object Identifier Selection with no Device Instance Range
Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with no device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST
 SOURCE = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

412 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Who-Has-Request,
 'Object Identifier' = Object1 (any object identifier)
2. TRANSMIT
 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
 SOURCE = TD,
 I-Have-Request,
 'Device Identifier' = (the TD’s Device object)
 'Object Identifier' = Object1
3 CHECK (for any vendor-defined observable actions)

[Change Clause 8.32.2, p. 290]

[Reviewer Note: Modified to allow the IUT to send and receive a unicast response (per Addendum 135-2012ar-5, Protocol
Revision 15). Added Notes to Tester.]

8.32.2 Object Name Selection with no Device Instance Range
Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with no device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
 SOURCE = IUT,
 Who-Has-Request,
 'Object Name' = V1 (any CharacterString)
2. TRANSMIT
 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
 SOURCE = TD,
 I-Have-Request,
 'Device Identifier' = (the TD’s Device object)
 'Object Name' = V1
3. CHECK (for any vendor-defined observable actions)

[Change Clause 8.32.3, p. 290]

[Reviewer Note: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and 16.10.1.1.1.
The test incorrectly set the low limit to 1. The allowance for Unicast I-Have is added.]

8.32.3 Object Identifier Selection with a Device Instance Range
Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with a device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: Device instance range should be selected to cover TD’s device object identifier. If there is no vendor-defined
observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
 SOURCE = IUT,
 Who-Has-Request,
 'Device Instance Range Low Limit' = (any integer X: 10 <= X <= 'Device Instance Range High Limit'),
 'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <= Y <= 4,194,303),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 413

 'Object Identifier' = Object1 (any object identifier)
2. TRANSMIT
 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
 SOURCE = TD,
 I-Have-Request,
 'Device Identifier' = (the TD’s Device object)
 'Object Identifier' = Object1
3. CHECK (for any vendor-defined observable actions)

[Change Clause 8.32.4, p. 291]

[Reviewer Note: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and 16.10.1.1.1.
The test incorrectly set the low limit to 1. The allowance for Unicast I-Have is added.]

8.32.4 Object Name Selection with a Device Instance Range
Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with a device instance range.
If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: Device instance range should be selected to cover TD’s device object identifier. If there is no vendor-defined
observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
 SOURCE = IUT,
 Who-Has-Request,
 'Device Instance Range Low Limit' = (any integer X: 10 <= X <= 'Device Instance Range High Limit'),
 'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <= Y <= 4,194,303),
 'Object Name' = V1 (any CharacterString)
2. TRANSMIT
 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
 SOURCE = TD,
 I-Have-Request,
 'Device Identifier' = (the TD’s Device object)
 'Object Name' = V1
3. CHECK (for any vendor-defined observable actions)

8.34 Who-Is Service Initiation Tests

[Change Clause 8.34.2, p. 291]

[Reviewer Note: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and 16.10.1.1.1.
The test incorrectly set the low limit to 1.]

8.34.2 Who-Is Request with a Device Instance Range
Purpose: To verify that the IUT can initiate Who-Is service requests with a device instance range. If the IUT cannot be caused
to issue a Who-Is request of this form, then this test shall be omitted.

Test Steps:
1. RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
 SOURCE = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

414 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Who-Is-Request,
 'Device Instance Range Low Limit' = (any integer X: 10 <= X <= 'Device Instance Range High Limit'),
 'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <= Y <= 4,194,303)

[Add new Clause 8.X2, p. 300]

8.X2 WriteGroup Service Initiation Tests
This clause defines the tests necessary to demonstrate support for initiating WriteGroup service requests.

8.X2.1 Broadcasting to a Group of Channel Objects
Purpose: Verify that the IUT can initiate a WriteGroup request to an arbitrary group with an arbitrary channel number.

Test Concept: Make the IUT perform a WriteGroup request to a tester selected group and channel. Verify that the request is
generated.

Test Steps:

1. MAKE(the IUT initiate a WriteGroup request to group G and Channel C)
2. RECEIVE WriteGroup-Request
 DESTINATION = GLOBAL_BROADCAST | LOCAL_BROADCAST |
 REMOTE_BROADCAST | TD,
 'Group Number' = G,
 'Write Priority' = (any valid value),
 'Change List' = (a valid list of 1 or more changes which impact channel C),
 'Inhibit Delay' = (absent or TRUE or FALSE)

[Add new Clause 8.X12, p. 300]

8.X12 SubscribeCOVPropertyMultiple Service Initiation Tests
This clause defines the tests necessary to demonstrate support for initiating SubscribeCOVPropertyMultiple service requests.

8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests

8.X12.1.1 Confirmed Notifications Subscription
Purpose: To verify the client can subscribe to confirmed notifications using the SubscribeCOVPropertyMultiple service.

Test Concept: The IUT is made to subscribe for confirmed notifications.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleAck-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 415

8.X12.1.2 Unconfirmed Notifications Subscription
Purpose: To verify the client can subscribe to unconfirmed notifications using the SubscribeCOVPropertyMultiple service.

Test Concept: The IUT is made to subscribe for unconfirmed notifications.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.3 Requests 8 Hour Lifetimes
Purpose: To verify that the IUT is able to provide a lifetime which is less than or equal to 8 hours for any
SubscribeCOVPropertyMultiple request it generates.

Test Concept: The tester selects any of the possible COVM subscriptions that the IUT is able to generate, and it is configured
to use a lifetime less than or equal to 8 hours. The IUT is made to send the subscription, and the lifetime is verified to be less
than or equal to 8 hours.

Test Steps:

1. MAKE (the IUT send the selected SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any value <= 28800),
 'Max Notification Delay' = (any valid delay between 1 and 3600),
 'List of COV Subscription Specifications' = (a valid list of COV Specifications)
3. TRANSMIT BACnet-SimpleACK-PDU

8.X12.1.4 Subscribe to Timestamped Notifications
Purpose: To verify the client can subscribe to timestamped notifications using the SubscribeCOVPropertyMultiple service.

Test Concept: A subscription for timestamped COVM notifications is established with Lifetime L for property P1 of Object
O1. L shall be less than 8 hours but large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (any valid list with at least 1 entry where 'Timestamped' is TRUE)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.5 Subscribe to Two Properties in a Single Object
Purpose: To verify that the IUT can subscribe to 2 or more properties from a single object.

Test Concept: A subscription for COVM notifications is established for properties from a single object.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

416 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (a valid list of 2 or more properties from a single object)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Request
Purpose: To verify the client can subscribe to properties from multiple objects.

Test Concept: A subscription for notifications is established for properties from 2 or more objects.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (PID: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (PROPS: any valid list of properties from 2 or more objects)
4. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.7 Change of Value Multiple Notification
Purpose: To verify that the IUT accepts COVM notifications for properties which it subscribed to.

Test Concept: A subscription for COVM notifications is established, a notification is sent to the IUT, and the vendor defined
actions are verified.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (L: any valid lifetime),
 'Max Notification Delay' = (any valid delay between 1 and 3600),
 'List of COV Subscription Specifications' = (PROPS: any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleACK-PDU
4. IF (the subscription was for confirmed notifications) THEN
 TRANSMIT ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (any value ~=L),
 'Timestamp' = (any valid value, or absent if subscribed to non-timestamped
 notifications),
 'List of COV Notifications' = (values appropriate to each entry in PROPS)
 RECEIVE BACnet-SimpleACK-PDU
 ELSE
 TRANSMIT UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (any valid value, or absent if subscribed to non-timestamped

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 417

 notifications),
 'List of COV Notifications' = (values appropriate to each entry in PROPS)
5. CHECK (verify that any appropriate functions defined by the manufacturer, such as displaying information on a
workstation screen are carried out)

8.X12.1.8 Canceling a Subscription
Purpose: To verify the client can cancel a COVM subscription.

Test Concept: A subscription for COVM notifications is established with a lifetime L, which is long enough to complete the
test. The client is made to cancel the subscription by sending a SubscribeCOVPropertyMultiple request with Lifetime, and Max
Notification Delay absent.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid delay between 1 and 3600),
 'List of COV Subscription Specifications' = (PROPS: a valid list of COV Subscription Specifications)
3. TRANSMIT BACnet-SimpleAck-PDU
4. IF confirmed notifications were subscribed for THEN
 TRANSMIT ConfirmedCOVNotificationMultiple-Request
 'Subscriber Process Identifier' = PID,
 'Initiating Device Identifier' = (TD's device identifier),
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (a valid value, or absent if Time Of Change was not requested
 in the subscription)
 'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS)
 RECEIVE BACnet-SimpleAck-PDU
 ELSE
 TRANSMIT UnconfirmedCOVNotificationMultiple-Request
 'Subscriber Process Identifier' = PID,
 'Initiating Device Identifier' = (TD's device identifier),
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (a valid value, or absent if Time Of Change was not requested
 in the subscription)
 'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS)
5. MAKE (the IUT cancel the subscription)
6. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (the process identifier used in step 2),
 'Issue Confirmed Notifications' = (the same value used in step 2),
 -- 'Lifetime' = (absent)
 -- 'Max Notification Delay' = (absent)
 'List of COV Subscription Specifications' = (PROPS, or an empty list)
7. TRANSMIT BACnet-SimpleAck-PDU

8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Tests

8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired
Purpose: To verify that an appropriate error is returned if a COVM notification arrives after the subscription time period has
expired.

Test Concept: A subscription for COVM notifications is established and then cancelled or allowed to expire. A
ConfirmedCOVNotificationMultiple is then sent to the IUT to verify it returns either the appropriate error or a SimpleACK.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

418 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (L: any valid lifetime),
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (PROPS: any valid list of COV subscriptions)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (any appropriate value or absent if it is not a timestamped subscription)
 'List of COV Notifications' = (values appropriate to the properties in PROPS)
5. RECEIVE BACnet-SimpleACK-PDU
6. IF (the IUT can cancel the subscription) THEN
 MAKE (the IUT cancel the subscription),
 RECEIVE SubscribeCOVPropertyMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (absent)
 'Max Notification Delay' = (absent)
 'List of COV Subscription Specifications' = (PROPS or an empty list)
 ELSE
 WAIT (2 * L seconds)
7. TRANSMIT ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (any appropriate value or absent if it is not a timestamped subscription)
 'List of COV Notifications' = (values appropriate to the properties in PROPS)
8. RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = UNKNOWN_SUBSCRIPTION |
 (BACnet-SimpleAck-PDU)

8.X12.2.2 Unknown Subscription
Purpose: To verify that an appropriate response is returned if a COVM notification arrives that contains arguments or
parameters which do not match any current subscriptions.

Test Concept: The TD sends a ConfirmedCOVNotificationMultiple-Request which does not correspond to any existing
subscriptions. Verify that the IUT responds with either an error message or a SimpleACK.

Configuration Requirements: At the start of the test, the IUT shall have no outstanding COVM subscriptions with TD using
process identifier ID2.

Test Steps:
1. TRANSMIT ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID2,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (any valid value),
 'List of COV Notifications' = (any valid list of property notifications)
2. RECEIVE
 (BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (UNKNOWN_SUBSCRIPTION)) |

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 419

 (BACnet-SimpleACK-PDU)

[Add new Clause 8.X41, p. 300]

8.X41 AuditLogQuery Initiation Tests
This clause defines the tests necessary to demonstrate support for initiating AuditLogQuery service requests.

8.X41.1 Reading a Range of Items Using Any Valid Query
Purpose: To verify that the IUT can initiate one or more AuditLogQuery requests that access a tester-specified portion of an
audit log, using any valid range.

Test Concept: The TD contains an Audit Log object that has a logical set of log records, S1. The tester selects a portion of S1
to be returned and causes the IUT to request those records using any valid range. The test then verifies that the IUT can
display the records in a manner consistent with those that the TD returns.

Configuration Requirements: The TD contains an audit log object, L1, which has a set of records, S1. The IUT is configured
to display the returned set of log records.

Test Steps:

1. MAKE (L1 contain the set of records S1)
2. MAKE (the IUT request a range of samples from L1) {
3. WHILE (not all records from the tester-selected range have been returned)
 RECEIVE AuditLogQuery-Request,
 'Audit Log' = (L1),
 'Query Parameters' = (any valid query),
 'Start at Sequence Number' = (an appropriate sequence number) -- or absent
 'Requested Count' = (any valid range)
 TRANSMIT AuditLogQuery-ACK,
 'AuditLog' = (L1),
 'Records' = (a set of records appropriate for this response),
 'NoMoreItems' = (an appropriate value for this response)
}
4. CHECK (the records returned in step 3 include the tester-selected range)
5. MAKE (the IUT display the tester-selected range)
6. CHECK (the records displayed in step 5 are consistent with the records returned in step 3)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

420 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-9 Add new and correct existing Application Service Execution Tests

Rationale

Errors have been identified in a number of application service execution tests in ANSI/ASHRAE Standard 135.1-
2019.
In addition, the test coverage is increased by the addition of new tests.

[Change Clause 9, p. 301]

9. APPLICATION SERVICE EXECUTION TESTS
The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service procedure
for the specified application service. BACnet devices shall be tested for the proper execution of each application service for
which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options and
features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are exchanged
between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular option or feature
is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test groups.

Under some circumstances an IUT may be unable to demonstrate conformance to a particular test case because the test applies
to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For example, a device
may support the File Access services but restrict files to stream access only. Such a device would have no way to demonstrate
that it could implement the record access features of the File Access services. When this type of situation occurs the IUT shall
be considered to be in conformance with BACnet provided the PICS documentation clearly indicates the restriction. Failure to
document the restriction shall constitute nonconformance to the BACnet standard. All features and optional parameters for
BACnet application services shall be supported unless a conflict arises because of unsupported objects or unsupported optional
properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify that
the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests verify correct
handling for various error cases that may occur. Negative tests include inappropriate service parameters, but they do not include
cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle malformed PDUs are defined
in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within the
constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might make. The
EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the configuration of the
object database. Any discrepancies between the BACnet functionality or the value of properties in the object database as defined
in the EPICS, and the values returned in messages defined for a test case constitutes a failure of the test. For example, if a test
step involved reading a property of an object in the database the returned value must match the value provided in the EPICS.
defined in the EPICS and the functionality demonstrated by the device during testing shall constitute a failure. For example, it
is considered a failure if a test step involves writing to a property and the EPICS indicates the property is writable, but the
device returns an error indicating 'write access denied'.

9.1 AcknowledgeAlarm Service Execution Tests

9.1.1 Positive AcknowledgeAlarm Service Execution Tests

[Change Clause 9.1.1.1, p. 301]

[Reviewer Note: Made changes to allow cases where only one Recipient_List entry is supported. Made changes to include
non-supported transitions.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 421

9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the 'Time of
Acknowledgment' Parameter

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device all other recipients in the
Recipient_List. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT
notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the alarm
notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 12 shall be the same address used
in step 5. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol
revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are
expected for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with one
recipient in the Recipient_List property of the issuing Notification_class object, skip all steps related to receipt of the second
notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (pTimeDelayD1)
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number received in step 3),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

422 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE,
TRUE)(appropriate bit FALSE, the others TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event
 notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (the time stamp conveyed in the notification),
 'Time of Acknowledgment' = (the TD’s current time using a Time format)
9. RECEIVE BACnet-Simple-ACK-PDU
10. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (the event type included in step 3),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (the 'To State' used in step 3)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (the event type included in step 3),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
 'To State' = (the 'To State' used in step 3)
11. TRANSMIT BACnet-SimpleACK-PDU
12. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number received in step 10),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (the event type included in step 3),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (the 'To State' used in step 3)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 423

 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number received in step 10),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (the event type included in step 3),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
13. TRANSMIT BACnet-SimpleACK-PDU
14. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 12 shall be the same address used in
step 5. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision
1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected
for a specific event, the order that the IUT transmits them in is irrelevant.

[Change Clause 9.1.1.4, p. 305]

[Reviewer Note: Made changes to include not supported transitions.]

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the 'Time of
Acknowledgment' Parameter
Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the alarm
and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm has been
acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the alarm
notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used in
step 3. The destination address used for the acknowledgment notification in step 9 shall be the same address used in step 4.
Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision 1.
Implementations that precede this version will not include this parameter. When multiple event notifications are expected for
a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with one recipient in
the Recipient_List property of the issuing Notification_class object, omit steps 4 and 9.

Test Steps:
1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (pTimeDelayD1)
3. BEFORE Notification Fail Time
 RECEIVE,
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

424 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate event state),
 'Event Values' = (the values appropriate to the event type)
4. IF (the notification in step 3 was not a broadcast) THEN
 RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number received in step 3),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate event state),
 'Event Values' = (the values appropriate to the event type)
5. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions =
(FALSE,TRUE,TRUE)(appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (any valid time stamp),
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgment' = (the TD’s current time using a Time format)
7. RECEIVE BACnet-Simple-ACK-PDU BACnet-SimpleACK-PDU
8. IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (the 'To State' used in step 3 or 4)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 425

 'Time Stamp' = (the current time or sequence number),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
9. IF (the notification in step 8 was not broadcast) THEN
 IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number from the notification in step 8),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (the 'To State' used in step 3 or 4)
 ELSE
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (the timestamp or sequence number from the notification in step 8),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used in
step 3. The destination address used for the acknowledgment notification in step 9 shall be the same address used in step 4.
Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision 1.
Implementations that precede this version will not include this parameter. When multiple event notifications are expected for
a specific event, the order that the IUT transmits them in is irrelevant.

[Change Clause 9.1.1.10, p. 313]

[Reviewer Note: Made changes to include not supported transitions.]

9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications
Purpose: To verify the successful re-acknowledgment of an event signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and the IUT notifies the TD and one other device. The TD acknowledges the event and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all recipients that the event has been
acknowledged. The TD then acknowledges the event again, and the IUT again notifies all recipients. This behavior was not
defined before Protocol_Revision 7 and so this test shall only be performed if Protocol_Revision is present (i.e.,
Protocol_Revision ≥ 7).

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

426 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends confirmed notifications. The Acked_Transitions property shall have the value B'111', indicating that all
transitions have been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be
recipients of the event notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and
from FAULT state) depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in steps 12 and 19 shall be the same address
used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 5, 6, 12, 13, 19, and 20.

Test Steps:

1. MAKE (a change that triggers the detection of an event in the IUT)
2. WAIT (pTimeDelayD1)
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1: any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (S1: any appropriate offnormal event state),
 'Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T1),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate offnormal event state),
 'Event Values' = (the values appropriate to the event type)
6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)
(appropriate bit FALSE, the others TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (any valid time stamp),
 'Acknowledgment Source' = (any valid value)
 'Time of Acknowledgment' = (any of the forms specified for this parameter)
9. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
10. BEFORE Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 427

 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T12: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
11. TRANSMIT BACnet-SimpleACK-PDU
12. RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T12),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
13. TRANSMIT BACnet-SimpleACK-PDU
14. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE, TRUE, TRUE)
15. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (any valid time stamp),
 'Acknowledgment Source' = (any valid value)
 'Time of Acknowledgment' = (any of the forms specified for this parameter)
16. RECEIVE BACnet-SimpleACK-PDU
17. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T23: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
18. TRANSMIT BACnet-SimpleACK-PDU
19. RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T23),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

428 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
20. TRANSMIT BACnet-SimpleACK-PDU
21. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in steps 12 and 19 shall be the same address
used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 5, 6, 12, 13, 19, and 20.

[Change Clause 9.1.1.11, p. 315]

[Reviewer Note: Made changes to include not supported transitions.]

9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications
Purpose: To verify the successful re-acknowledgment of an event signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and the IUT notifies the TD and one other device. The TD acknowledges the event and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all recipients that the event has been
acknowledged. The TD then acknowledges the event again, and the IUT again notifies all recipients. This behavior was not
defined before Protocol_Revision 7 and so this test shall only be performed if Protocol_Revision is present (i.e.,
Protocol_Revision ≥ 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends unconfirmed notifications. The Acked_Transitions property shall have the value B'111', indicating that
all transitions have been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall
be recipients of the event notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to
and from FAULT state) depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in steps 9 and 14 shall be the same address
used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 4, 9, and 14.

Test Steps:

1. MAKE (a change that triggers the detection of an offnormal event in the IUT)
2. WAIT (pTimeDelayD1)
3. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1: any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (S1: any appropriate offnormal event state),
 'Event Values' = (the values appropriate to the event type)
4. RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 429

 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T1),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for this event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (any appropriate offnormal event state),
 'Event Values' = (the values appropriate to the event type)
5. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE,
TRUE)(appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (any valid time stamp),
 'Acknowledgment Source' = (any valid value)
 'Time of Acknowledgment' = (any of the forms specified for this parameter)
7. RECEIVE BACnet-SimpleACK-PDU
8. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
9. RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T2),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE, TRUE, TRUE)
11. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (the time stamp conveyed in the notification),
 'Acknowledgment Source' = (any valid value)
 'Time of Acknowledgment' = (any of the forms specified for this parameter)
12. RECEIVE BACnet-SimpleACK-PDU
13. BEFORE Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

430 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T3: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
14. RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the event-initiating object),
 'Time Stamp' = (T3),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event),
 'Event Type' = (E1),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1)
15. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in steps 9 and 14 shall be the same address
used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 4, 9, and 14.

[Change Clause 9.1.2.1, p. 320]

[Reviewer Note: Made changes to include not supported transitions.]

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Time Stamp' is Too Old
Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most
recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the alarm
using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other
devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and verifies that
the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the alarm
notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 5, 6, 15, and 16.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (pTimeDelayD1)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 431

3. BEFORE Notification Fail Time
 RECEIVE ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (E1: any valid event type),
 'Message Type' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for the event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (S1: any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T1),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (E2: any valid event type),
 'Message Type' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for the event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (S2: any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)
6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions =
(FALSE,TRUE,TRUE)(appropriate bit FALSE, the others TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (any valid time stamp),
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgment' = (the current time using a Time format)
9. RECEIVE BACnet-Error-PDU
 Error Class = SERVICES,
 Error Code = INVALID_TIME_STAMP
10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)
11. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the process identifier configured for this event),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (the time stamp conveyed in the notification),
 'Time of Acknowledgment' = (the current time using a Time format)
12. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
13. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

432 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Type' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1 or S2)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Type' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
14. TRANSMIT BACnet-SimpleACK-PDU
15. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1 or S2)
 ELSE
 RECEIVE
 DESTINATION = (a device other than the TD),
 SOURCE = IUT,
 ConfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Type' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
16. TRANSMIT BACnet-SimpleACK-PDU
17. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used in
step 3. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 5, 6, 15, and 16.

[Change Clause 9.1.2.5, p. 324]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 433

[Reviewer Note: Made changes to include not supported transitions.]

9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Time Stamp' is Too
Old
Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most
recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the alarm
using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other
devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and verifies that
the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the alarm
notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. The destination address used for the acknowledgment notification in step 12 shall be the same address used in step
4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant. If
the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit
steps 4 and 12.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT pTimeDelayD1
3. BEFORE Notification Fail Time
 RECEIVE UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T1: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for the event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),
 'To State' = (S1: any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)
4. IF (the notification in step 3 was not a broadcast) THEN
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T1),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = (the notify type configured for the event),
 'AckRequired' = TRUE,
 'From State' = NORMAL(any appropriate event state),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

434 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'To State' = (S2: any appropriate non-normal event state),
 'Event Values' = (the values appropriate to the event type)
5. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions =
(FALSE,TRUE,TRUE)(appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (a time stamp older than the one conveyed in the notification),
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgment' = (the TD’s current time using a Time format)
7. RECEIVE BACnet-Error-PDU
 Error Class = SERVICES,
 Error Code = INVALID_TIME_STAMP
8. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)
9. TRANSMIT AcknowledgeAlarm-Request,
 'Acknowledging Process Identifier' = (the process identifier configured for this event),
 'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
 'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
 'Time Stamp' = (the time stamp conveyed in the notification),
 'Acknowledgement Source' = (any valid value),
 'Time of Acknowledgment' = (the TD’s current time using a Time format)
10. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
11. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1 or S2)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2: any valid time stamp),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
12. IF (the notification in step 11 was not broadcast) THEN
 IF (Protocol_Revision is present AND Protocol_Revision ≥ 1) THEN
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 435

 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION,
 'To State' = (S1 or S2)
 ELSE
 RECEIVE
 DESTINATION = (at least one device other than the TD),
 SOURCE = IUT,
 UnconfirmedEventNotification-Request,
 'Process Identifier' = (the process identifier configured for this event),
 'Initiating Device Identifier' = IUT,
 'Event Object Identifier' = (the object detecting the alarm),
 'Time Stamp' = (T2),
 'Notification Class' = (the notification class configured for this event),
 'Priority' = (the priority configured for this event type),
 'Event Type' = (any valid event type),
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ACK_NOTIFICATION
13. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used in
step 3. The destination address used for the acknowledgment notification in step 12 shall be the same address used in step 4.
When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant. If
the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit
steps 4 and 12.

9.2 ConfirmedCOVNotification Service Execution Tests

9.2.1 Positive ConfirmedCOVNotification Service Execution Tests

[Change Clause 9.2.1.1, p. 328]

[Reviewer Note: The existing test did not account for other properties which are expected for certain object types.]

9.2.1.1 Change of Value Notifications
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from object types that provide the
Present_Value and Status_Flags properties in COV notifications.

Test Concept: The IUT is made to subscribe for COV from an object of the type being tested. The TD then sends a COV
notification to the IUT and verifies that the IUT exhibits any actions identified by the vendor.

Test Steps:

1. RECEIVE SubscribeCOV,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

436 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Subscriber Process Identifier' = (the process identifier used in step 2),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (Present_Value and , Status_Flags, and additional properties
 appropriate to object type X)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

[Add new Clause 9.2.1.X5, p. 329]

9.2.1.X5 ConfirmedCOVNotification from Access Door Object
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from Access Door objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier value > 0),
 'Monitored Object Identifier' = (any Access Door object, X),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and
 Door_Alarm_State if X has a Door_Alarm_State property)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

[Add new Clause 9.2.1.X6, p. 329]

9.2.1.X6 ConfirmedCOVNotification from Access Point Object
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from Access Point objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
 'Monitored Object Identifier' = (X: any Access Point object),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (any valid set of values)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 437

[Add new Clause 9.2.1.X7, p. 329]

9.2.1.X7 ConfirmedCOVNotification from Credential Data Input Object
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from Credential Data Input objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
 'Monitored Object Identifier' = (X: any Credential Data Input object),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (any valid set of values)

4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

9.2.2 Negative ConfirmedCOVNotification Service Execution Tests

[Change Clause 9.2.2.1, p. 329]

[Reviewer Note: Corrected tests per BTL-CR-0299 and added Configuration Requirements section.]

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired
Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier, P1),
 'Monitored Object Identifier' = (any object X of a type that supports COV notification),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value no greater than one minuteany valid Lifetime)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1, P1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any amount of time greater than 0),
 'List of Values' = (a list of values appropriate to object X)
4. IF (the IUT can cancel the subscription) THEN
 RECEIVE SubscribeCOV – Request,
 'Subscriber Process Identifier' = (PI),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

438 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Monitored Object Identifier' = X
 ELSE
 MAKE (the IUT stop resubscribing, if it resubscribes automatically)
53. WAIT (a value two times at least Lifetime, but sufficient to ensure the subscription has expired)
64. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 2P1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any amount of time greater than 0),
 'List of Values' = (a list of values appropriate to object X)
75. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = UNKNOWN_SUBSCRIPTION |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

[Change Clause 9.2.2.2, p. 330]

[Reviewer Note: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.]

9.2.2.2 Change of Value Notifications with Invalid Process Identifier
Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that does
not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object X of a type that supports COV notification),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value no greater than one minuteany valid Lifetime)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (a process identifier different from the one used in step 21),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (any amount of time greater than 0),
 'List of Values' = (a list of values appropriate to object X)
4. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = UNKNOWN_SUBSCRIPTION |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 439

[Change Clause 9.2.2.4, p. 331]

[Reviewer Note: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.]

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier
Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Notes to Tester: If possible, select an object Y for which IUT supports COV Subscription.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object X of a type that supports COV notification),
 'Issue Confirmed Notifications ' = TRUE,
 'Lifetime' = (a value no greater than one minuteany valid Lifetime)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 21),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = (any object Y in the IUT supporting COV notification except X, and for which
IUT does not already have an active subscription),
 'Time Remaining' = (any amount of time greater than 0),
 'List of Values' = (a list of values appropriate to object Y)
4. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = UNKNOWN_SUBSCRIPTION |
 (BACnet-SimpleACK-PDU)
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = (any valid error code for class SERVICES) |
 (BACnet-SimpleACK-PDU)

9.3 UnconfirmedCOVNotification Service Execution Tests

[Add new Clause 9.3.X6, p. 333]

9.3.X6 UnconfirmedCOVNotification from Access Door Object
Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from Access Door objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier value > 0),
 'Monitored Object Identifier' = (any Access Door object, X),
 'Issue Confirmed Notifications ' = FALSE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

440 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 1),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (the initial Present_Value, initial Status_Flags, and
 Door_Alarm_State if X has a Door_Alarm_State property)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

[Add new Clause 9.3.X7, p. 333]

9.3.X7 UnconfirmedCOVNotification from Access Point Object
Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from Access Point objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
 'Monitored Object Identifier' = (X: any Access Door object),
 'Issue Confirmed Notifications ' = FALSE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),

'List of Values' = (any valid set of values)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

[Add new Clause 9.3.X8, p. 333]

9.3.X8 UnconfirmedCOVNotification from Credential Data Input Object
Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from Credential Data Input objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
 'Monitored Object Identifier' = (X: any Access Door object),
 'Issue Confirmed Notifications ' = FALSE,
 'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PI,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining in the subscription),
 'List of Values' = (any valid set of values)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
 information on a workstation screen are carried out)

[Change Clause 9.3.2, p. 332]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 441

[Reviewer Note: The existing test did not account for other properties which are expected for certain object types.]

9.3.2 Change of Value Notifications
Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from objects that provide the
Present_Value and Status_Flags properties in COV notifications.

Test Concept: The IUT is made to subscribes for COV from an object of the type being tested. The TD then sends a COV
notification to the IUT and verifies that the IUT exhibits any actions identified by the vendor.

Test Steps:
1. RECEIVE SubscribeCOV,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X,
 'Issue Confirmed Notifications ' = FALSE,
 'Lifetime' = (a value greater than 1 minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the process identifier used in step 2),
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = X,
 'Time Remaining' = (the time remaining for the subscription),
 'List of Values' = (Present_Value, and Status_Flags, and additional properties
 appropriate to object type X)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.4 ConfirmedEventNotification Service Execution Tests

[Add new Clause 9.4.X2, p. 336]

[Reviewer Note: Added a test for receiving a BACnetPropertyStates value which is encoded using an extended-value.]

9.4.X2 Decoding BACnetPropertyStates in 'Event Values'
Purpose: To verify that the IUT is correctly accepting 'Event Values', which contain BACnetPropertyStates values across the
full value range of context tags, ensuring proper decoding of the various forms of the production.

Test Concept: Send 3 ConfirmedEventNotifications to the IUT conveying a CHANGE_OF_STATE event. After each
notification verify that the IUT accepts and processes the notification. The first notification is sent with a new-state, NS1,
having a context tag value in the range 0 .. 62. The second notification is sent with a new-state, NS2, having a context tag value
in the range 64 .. 253 (a vendor proprietary discrete datatype). The third notification is sent with a new-state, NS3, having a
context tag value 254 (a standard discrete datatype) or greater and encoded with a context tag of 63 (the extended-value choice)
using the special encoding rules defined in the comment at the end of the BACnetPropertyStates production in Clause 21.

Test Steps:

-- new-state with a tag value in the range 15 .. 62
1. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

442 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS1, (T,F,?,?))
2. RECEIVE BACnet-SimpleACK-PDU
3. CHECK (that the IUT has utilized the value conveyed, correctly decoded)

-- new-state with a tag value in the range 64 .. 253
4. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),
 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS2, (T,F,?,?))
5. RECEIVE BACnet-SimpleACK-PDU
6. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
 the event notification, if there are utilized the value conveyed, correctly decoded)

-- new-state with a tag value greater than 254,
7. TRANSMIT ConfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),
 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS3, (T,F,?,?))
8. RECEIVE BACnet-SimpleACK-PDU
9. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
 the event notification, if there are any)

9.5 UnconfirmedEventNotification Service Execution Tests

[Add new Clause 9.5.X2, p. 337]

[Reviewer Note: Added a test for receiving a BACnetPropertyStates value which is encoded using an extended-value.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 443

9.5.X2 Decoding BACnetPropertyStates in 'Event Values'
Purpose: To verify that the IUT is correctly accepting 'Event Values', which contain BACnetPropertyStates values across the
full value range of context tags, ensuring proper decoding of the various forms of the production.

Test Concept: Send 3 UnconfirmedEventNotifications to the IUT conveying a CHANGE_OF_STATE event. After each
notification verify that the IUT accepts and processes the notification. The first notification is sent with a new-state, NS1,
having a context tag value in the range 0 .. 62. The second notification is sent with a new-state, NS2, having a context tag value
in the range 64 .. 253 (a vendor proprietary discrete datatype). The third notification is sent with a new-state, NS3, having a
context tag value 254 (a standard discrete datatype) or greater and encoded with a context tag of 63 (the extended-value choice)
using the special encoding rules defined in the comment at the end of the BACnetPropertyStates production in Clause 21.

Test Steps:

-- new-state with a tag value in the range 15 .. 62
1. TRANSMIT UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),
 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS1, (T,F,?,?))
2. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
 the event notification, if there are any)

-- new-state with a tag value in the range 64 .. 253
3. TRANSMIT UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),
 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,
 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS2, (T,F,?,?))
4. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
 the event notification, if there are any)

-- new-state with a tag value greater than 254,
5. TRANSMIT UnconfirmedEventNotification-Request,
 'Process Identifier' = (any valid process identifier),
 'Initiating Device Identifier' = TD,
 'Event Object Identifier' = (any valid value),
 'Time Stamp' = (any valid time stamp),
 'Notification Class' = (any valid value),
 'Priority' = (any valid value),
 'Event Type' = CHANGE_OF_STATE,
 'Message Text' = (optional, any valid message text),
 'Notify Type' = ALARM | EVENT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

444 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'AckRequired' = TRUE | FALSE,
 'From State' = (any valid normal or offnormal value),
 'To State' = (any valid normal or offnormal value),
 'Event Values' = (NS3, (T,F,?,?))
9. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
 the event notification, if there are any)

9.9 LifeSafetyOperation Service Execution Test

[Add new Clause 9.9.1, p. 345]

9.9.1 Positive LifeSafetyOperation Execution Tests

[Change and renumber Clause 9.9.1, p. 345]

[Reviewer Note: Modified to not rely on Event_State so it can be applied to objects which do not support event reporting.]

9.9.19.9.1.1 Reset Single Object Execution Tests
BACnet Reference Clause: 13.13.

Purpose: To verify that the IUT correctly resets a latched life safety object when executing can correctly execute a
LifeSafetyOperation service request to a single directed at the Life Safety Object life safety object.

Test Concept: A Life Safety life safety object, which latches its Present_Value, is toggled between a NORMAL and
OFFNORMAL state normal and non-normal BACnetLifeSafetyState. The STATUS object's Present_Value should latch in the
OFFNORMAL non-normal state until the LifeSafetyOperation service request is transmitted executed. This is repeated for
each LifeSafetyOperation request type supported by the device. This test may be omitted when the device does not support
latching.

Configuration Requirements: The IUT must support a Life Safety Object that supports alarming. This object is configured into
the NORMAL state, driven to the OFFNORMAL state and returned to the NORMAL state by adjusting its Present_Value. The
STATUS should remain latched in the OFFNORMAL or FAULT state until the reset is issued. This test must be repeated for
each reset function supported. The Life-Safety object starts the test with its Present_Value in a normal state as interpreted by
the life safety object. This test shall be skipped if the device does not support latching.

Test Steps:

1. REPEAT X = (All supported enumerations that reset the object) DO {
2. MAKE (the selected object enter enters a latched non-normal state where enumeration X will reset the object)
3. VERIFY Present_Value = (S1: a non-NORMAL state)
4. VERIFY Tracking_Value = S1
5. MAKE (Event-State = NORMALremove the non-normal condition)
6. VERIFY Present_Value = S1
7. VERIFY Tracking_Value = (S2: a NORMAL state)
 IF (enumeration value creates an Event_State = FAULT) THEN
 CHECK (Event_State = FAULT)
 ELSE
 CHECK (Event_State = OFFNORMAL)
67. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid identifier),
 'Requesting Source' = (any valid character string),
 'Request' = X, (any valid LifeSafetyOperation request),
 'Object Identifier' = (the selected object)
78. RECEIVE BACnet-SimpleACK-PDU
88. VERIFY (Object), STATUS Present_Value = S2 NORMAL)
 }

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 445

[Change and renumber Clause 9.9.2, p. 345]

[Reviewer Note: The test is generalized to work for any number of objects. The test is written to not rely on Event_State so it
can be applied to objects which do not support event reporting.]

9.9.29.9.1.2 Reset Multiple Object Execution Tests
BACnet Reference Clause: 13.13.

Purpose: To verify that the IUT correctly resets multiple latched life safety objects when executing can correctly execute a
LifeSafetyOperation service request to multiple Life Safety objects not directed at a specified life safety object.

Test Concept: Two Multiple Life Safety objects, O1 … On, are toggled between a NORMAL and an OFFNORMAL state
normal and non-normal BACnetLifeSafetyState. The STATUS objects' Present_Value properties should latch in the
OFFNORMAL non-normal state until the LifeSafetyOperation service request is transmitted executed. This is repeated for
each LifeSafetyOperation request type supported by the device. This test may be omitted when the device does not support
latching.

Configuration Requirements: The IUT must support a Life Safety Object that supports alarming and have at least two objects
that can be latched. This object is configured into the NORMAL state, driven to the OFFNORMAL state or FAULT and
returned to the NORMAL state by adjusting its Present_Value. The STATUS should remain latched in the OFFNORMAL state
until the reset is issued. This test must be repeated for each reset function supported. The Life-Safety objects start the test with
their Present_Value properties in a normal state as interpreted by the life safety objects. This test shall be skipped if the device
does not support latching Life Safety objects. If the IUT supports a single latching life safety object, apply this test to the single
object.

Test Steps:

1. REPEAT X = (All supported enumerations that reset the objects object) DO {
2. MAKE (the selected objects enter a latched non-normal state states where enumeration X will reset the
 objects)
3. REPEAT Oi = (each selected life safety object) {
 VERIFY Oi, Present_Value = (Si: a non-normal value)
 VERIFY Oi, Tracking_Value = Si
 }
4. MAKE (Event-State = NORMALremove the non-normal conditions for both objects)
5. REPEAT Oi = (each selected life safety object) {
 VERIFY Oi, Present_Value = Si
 VERIFY Oi, Tracking_Value = TVi
 }
 IF (enumeration value creates an Event_State = FAULT) THEN
 CHECK (Event_State = FAULT)
 ELSE
 CHECK (Event_State = OFFNORMAL)
6. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid identifier),
 'Requesting Source' = (any valid character string),
 'Request' = X, (any valid LifeSafetyOperation request),
7. RECEIVE BACnet-SimpleACK-PDU
7. VERIFY (Object), STATUS = NORMAL
8. REPEAT Oi = (each selected life safety object) {
 VERIFY Oi, Present_Value = TVi
 }
}

[Change and renumber Clause 9.9.3, p. 346]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

446 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Reviewer Note: The test is generalized to work for any number of objects. The test is written to not rely on Event_State so it
can be applied to objects which do not support event reporting.]

9.9.39.9.1.3 Silencing/Unsilencing Execution Tests

BACnet Reference Clause: 13.13.

Purpose: To verify that the IUT can correctly execute a LifeSafetyOperation service request to silence and unsilence an
alarming device.

Test Concept: An audible device and/or visual device is attached to the IUT and is sounding/flashing because a life safety
object has entered a non-normal state and the property Silenced is UNSILENCED. A LifeSafetyOperation service request is
transmitted to silence the sounder/strobe. Then, the life safety object remains in the non-normal state with Silenced equal to
SILENCED. A LifeSafetyOperation service request is transmitted to unsilence the sounder/strobe (reactivate it), and it is
verified that the object is unsilenced.

There are different allowable BACnetSilencedState values based on the silence operation performed and the setup of the IUT.
In the below tables, N/A marks an operation that is inappropriate for the test with the corresponding IUT setup.

Only Sounder Attached

Silence Operation Allowable Silenced

State

 Unsilenced Operation Allowable Silenced

State

SILENCE ALL_SILENCED,

AUDIBLE_SILENCED,

proprietary

 UNSILENCE UNSILENCED,

proprietary

SILENCE_AUDIBLE ALL_SILENCED,

AUDIBLE_SILENCED,

proprietary

 UNSILENCE_AUDIBLE UNSILENCED,

proprietary

SILENCE_VISUAL N/A UNSILENCE_VISUAL N/A

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 447

Only Strobe Attached

Silence Operation Allowable Silenced

State

 Unsilenced Operation Allowable Silenced

State

SILENCE ALL_SILENCED,

VISUAL_SILENCED,

proprietary

 UNSILENCE UNSILENCED,

proprietary

SILENCE_AUDIBLE N/A UNSILENCE_AUDIBLE N/A

SILENCE_VISUAL ALL_SILENCED,

VISUAL_SILENCED,

proprietary

 UNSILENCE_VISUAL UNSILENCED,

proprietary

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

448 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Sounder And Strobe Attached

Silence Operation Allowable Silenced

State

 Unsilenced Operation Allowable Silenced

State

SILENCE ALL_SILENCED,

proprietary

 UNSILENCE UNSILENCED,

proprietary

SILENCE_AUDIBLE AUDIBLE_SILENCED,

proprietary

 UNSILENCE_AUDIBLE

(all silenced)

SILENCED_VISUAL,

proprietary

 UNSILENCE_AUDIBLE

(audible silenced,

visual active)

UNSILENCED,

proprietary

 UNSILENCE_AUDIBLE

(audible active, visual

silenced)

N/A

SILENCE_VISUAL VISUAL_SILENCED,

proprietary

 UNSILENCE_VISUAL

(all silenced)

SILENCED_AUDIBLE,

proprietary

 UNSILENCE_VISUAL

(audible silenced,

visual active)

N/A

 UNSILENCE_VISUAL

(audible active, visual

silenced)

UNSILENCED,

proprietary

Configuration Requirements: The IUT must be fitted with needed audible and visual equipment.

Notes to Tester: Source object needs to get silence only for configured objects.

Test Steps:

1. REPEAT X = (All supported enumerations that silence the object) DO {
2. MAKE (the selected object enter a state where enumeration X will silence the sounder/strobecommence alerts)
3. VERIFY Silenced = (Unsilenced or a proprietary value with a similar semantic)
5. MAKE (Event_State = NORMAL)
64. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid identifier),
 'Requesting Source' = (any valid character string),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 449

 'Request' = X, (any valid LifeSafetyOperation request),
 'Object Identifier' = (absent or the selected object)
75. RECEIVE BACnet-SimpleACK-PDU
86. CHECK (that the sounder/strobe is inactive)
97. VERIFY Silenced = (an allowable silenced state based on the IUT setup and operation request X)
108. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid identifier),
 'Requesting Source' = (any valid character string),
 'Request' = (any valid LifeSafetyOperation request),
 'Object Identifier' = (the selected object)
9. RECEIVE BACnet-SimpleACK-PDU
10. CHECK (the sounder / strobe active again, as appropriate to the operation)
11. VERIFY Silenced = (the appropriate state based on the operation and IUT condition)
 }

[Add new Clause 9.9.2, p. 345]

[Reviewer Note: The original 9.9.2 test was renumbered to 9.9.1.2.]

9.9.2 Negative LifeSafetyOperation Execution Tests

9.9.2.1 LifeSafetyOperation for an Object Which Does Not Exist
Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation targets a non-existent object.

Test Concept: Send a LifeSafetyOperation request to the IUT targeting an object that does not exist in the IUT.

Test Steps:

1. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid value),
 'Requesting Source' = (any valid value),
 'Request' = (any valid LifeSafetyOperation request supported by the device),
 'Object Identifier' = (any object not contained in the IUT's database)
2. RECEIVE BACnet-Error PDU,

 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT'

9.9.2.2 LifeSafetyOperation which is Invalid given the Object's Current State
Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation's Request value is invalid given the object's
current state.

Test Concept: Send a LifeSafetyOperation request, with a Request value that is not valid for the current state, to the IUT.

Configuration Requirements: The life safety object, O1, being tested is placed into a state where Request R, a valid
LifeSafetyOperation value which the life safety object would accept in other states, is currently invalid. If there is no such state,
request value pair that satisfies this requirement, this test shall be skipped.

Test Steps:

1. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid value),
 'Requesting Source' = (any valid value),
 'Request' = (R: a request value which is invalid given the life safety object's
 current state),
 'Object Identifier' = O1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

450 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. RECEIVE BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = INVALID_OPERATION_IN_THIS_STATE

9.9.2.3 LifeSafetyOperation On An Object Which Does Not Support It
Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation's is received that targets an object that does not
support it.

Test Concept: Send a LifeSafetyOperation request, with an Object Identifier referencing an object in the IUT which does not
support life safety operations.

Test Steps:

1. TRANSMIT LifeSafetyOperation-Request,
 'Requesting Process Identifier' = (any valid value),
 'Requesting Source' = (any valid value),
 'Request' = (any valid value normally supported by the IUT),
 'Object Identifier' = (an object in the IUT which does not support life safety operations)
2. RECEIVE BACnet-Error PDU,

 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

9.10 SubscribeCOV Service Execution Tests

9.10.1 Positive SubscribeCOV Service Execution Tests

[Change Clause 9.10.1.7, p. 349]

[Reviewer Note: Updates description of 'Time Remaining' and adds validation that this value counts down as expected.]

9.10.1.7 Finite Lifetime Subscriptions
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with a temporary
lifetime. Either confirmed or unconfirmed notifications may be used, but at least one of these options must be supported by the
IUT.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (a value between 60 seconds and 300 seconds)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (A value approximately equal to, but not greater than, the requested
 subscription lifetime)
 'List of Values' = (values appropriate to the object type of the monitored object)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 451

 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (A value approximately equal to, but not greater than, the requested
 subscription lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object)
4. MAKE (a change to the monitored object that should causes a COV notification)
5. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
 subscription lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
 subscription lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value of that triggered the notification)
6. WAIT (a time that should change the ‘Time Remaining’ and which is less than the lifetime of the subscription)
7. MAKE (a change to the monitored object that causes a COV notification)
8. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (a value greater than 0 and less than the TR),
 'List of Values' = (values appropriate to the object type of the monitored object)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (a value greater than 0 and less than TR),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value that triggered the notification)
79. WAIT (the lifetime of the subscription)
810. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
911. CHECK (verify that the IUT did not transmit a COV notification message)

[Change Clause 9.10.1.8, p. 350]

[Reviewer Note: Modified as per purpose, BACnet Clause 13.14.2, and updated the language as per BACnet 135.1, Clause
6.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

452 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.10.1.8 Updating Existing Subscriptions
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to update the lifetime of a subscription. Either
confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

Test Concept: A subscription for COV notifications is made for 60 seconds. Before that subscription has expired a second
subscription is made for 300 seconds. When the notification is sent in response to the second subscription the lifetime is checked
to verify that it is greater than 60 but less than 300 seconds.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (PID1, any valid process identifier),
 'Monitored Object Identifier' = (O1, any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = 60
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (60 or less than 60),
 'List of Values' = (values appropriate to the object type of the monitored object)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (~60, but not greater than 60),
 'List of Values' = (values appropriate to the object type of the monitored object)
4. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PID1(any valid process identifier),
 'Monitored Object Identifier' = O1(any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (T1, a value between 180 and 300 seconds)
5. RECEIVE BACnet-SimpleACK-PDU
6. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (~T1, but not greater than T1the requested subscription lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (~T1, but not greater than T1the requested subscription lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 453

[Add new Clause 9.10.1.X1, p. 353]

9.10.1.X1 Ensuring 5 Concurrent COV Subscribers
Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

Test Concept: Have the TD subscribe with 5 different process identifiers, V1 through V5, and then check to ensure that 5
notifications are sent when the monitored object changes.

Notes to Tester: The notification in step 3 can be received in any order by the TD.

Test Steps

1. REPEAT (X=V1 to V5) DO {
 TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = X,
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid value that will allow the subscription to outlast the test)
 RECEIVE BACnet-SimpleACK-PDU
 IF (if confirmed notifications were requested) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (any valid value),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (any valid value),
 'List of Values' = (the initial Present_Value and initial Status_Flags)
 }
2. MAKE (Present_Value = any value that differs from "initial Present_Value" such that a COV notification would be

 generated)
3. REPEAT (X=V1 to V5) DO {
 IF (if confirmed notifications were requested) THEN
 RECEIVE ConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 ‘Time Remaining' = (any valid value),
 'List of Values' = (the new Present_Value and Status_Flags)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 RECEIVE UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (any valid value),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

454 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'List of Values' = (the new Present_Value and Status_Flags)
 }

9.10.2 Negative SubscribeCOV Service Execution Tests

[Change Clause 9.10.2.1, p. 353]

[Reviewer Note: Added configuration requirements.]

9.10.2.1 The Monitored Object Does Not Support COV Notification
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored
object does not support COV notifications.

Configuration Requirements: This test shall only be executed if IUT contains objects which will not accept a COV subscription.
If every object in IUT will accept a COV subscription, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object that does not support COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60
2. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 RECEIVE BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 ELSE
 RECEIVE
 (BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |
 (BACnet-Error PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED | OTHER) |
 (BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY)

[Add new Clause 9.10.2.X1, p. 354]

[Reviewer Note: 135-2008h-5 allows for a SimpleAck or a specific error code to return if a subscription does not exist.]

9.10.2.X1 The Monitored Object Does Not Exist
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored
object does not exist.

Notes to Tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that currently
do not exist would support COV notification if they did, then the IUT may return an error code of
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED instead of UNKNOWN_OBJECT.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 455

 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object of a type that supports COV and an instance which does not exist
 in the IUT),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60
2. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
 RECEIVE BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT
 ELSE
 RECEIVE BACnet-Error PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED | OTHER
 | (BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT)

[Add new Clause 9.10.2.X2, p. 354]

[Reviewer Note: 135-2008h-5 allows for a SimpleAck or a specific error code to return if there is no space for a
subscription.]

9.10.2.X2 There Is No Space For A Subscription
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no
space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of
resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept is
less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns
 an Error-PDU) {
1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = PID,
 'Monitored Object Identifier' = (any object of that supports COV),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 6000
2. RECEIVE BACnet-SimpleACK-PDU |
 (BACnet-Error-PDU,
 'Error Class' = RESOURCES,
 'Error Code' = NO_SPACE_TO_ADD_LIST_ELEMENT)
3. READ ACS = (Active_COV_Subscriptions)
4. IF (a BACnet-Simple-AckBACnet-SimpleACK-PDU was received in step 2) THEN
 CHECK (that the subscription is in ACS)
 ELSE
 CHECK (that the subscription is not in ACS)
}

[Add new Clause 9.10.2.X3, p. 354]

[Reviewer Note: 135-2008h-5 defines COV notification service Error returns.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

456 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.10.2.X3 The Lifetime Parameter is Out of Range
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime
parameter is out of range.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object in the IUT that supports COV),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (a value less than the maximum unsigned value supported by the IUT, but large enough to
produce a Result(-) result by the IUT)
2. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER
 | (RECEIVE BACnet-Reject-PDU,
 Reject Reason = PARAMETER_OUT_OF_RANGE)

[Add new Clause 9.10.X3, p. 354]

9.10.X3 Positive Unsubscribed COVNotification Execution Tests

9.10.X3.1 Unsubscribed COVNotification Execution Test
Purpose: To verify that the IUT executes UnconfirmedCOVNotification service requests, with 'Process Identifier' equal to 0.

Test Concept: Using any received and supported unsubscribed UnconfirmedCOVNotification, observe the effect of its
execution.

Test Steps:

1. TRANSMIT UnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = 0,
 'Initiating Device Identifier' = TD,
 'Monitored Object Identifier' = (any object present in TD),
 'Time Remaining' = 0,
 'List of Values' = (any valid set of values)
3. CHECK (for any vendor-defined observable actions)

9.11 SubscribeCOVProperty Service Execution Tests

9.11.1 Positive SubscribeCOVProperty Service Execution Tests

[Change Clause 9.11.1.1, p. 354]

[Reviewer Note: Removed the allowance for devices which do not support both confirmed and unconfirmed notifications.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 457

9.11.1.1 Confirmed COV Notifications
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription for confirmed
COV notifications. An implementation that supports COV reporting cannot respond with an error for both this test and the test
in 9.11.1.2.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (any value > 0 if automatic cancellation is supported, otherwise 0),
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 IF (the IUT supports confirmed notifications) THEN
 'RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (any value > 0 if automatic cancellation is supported, otherwise 0),
 'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
 with it, such as Status-Flags)
 ELSE
 RECEIVE BACnet-Error PDU,
 Error Class = SERVICES,
 Error Code = SERVICE_REQUEST_DENIED | OTHER
4. TRANSMIT BACnet-SimpleACK-PDU

[Change Clause 9.11.1.2, p. 355]

[Reviewer Note: Removed the allowance for devices which do not support both confirmed and unconfirmed notifications.]

9.11.1.2 Unconfirmed COV Notifications
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription for
Unconfirmed COV notifications. An implementation that supports COV reporting cannot respond with an error for both this
test and the test in 9.11.1.1.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = (any value > 0 if automatic cancellation is supported, otherwise 0),
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 IF (the IUT supports unconfirmed notifications) THEN
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = (any value > 0 if automatic cancellation is supported, otherwise 0),
 'List of Values' = (values appropriate to the property subscribed to, and any other properties
 the IUT provides with it, such as Status-Flags)
 ELSE
 RECEIVE BACnet-Error PDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

458 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Error Class = SERVICES,
 Error Code = SERVICE_REQUEST_DENIED | OTHER

[Change Clause 9.11.1.4, p. 356]

[Reviewer Note: Added Configuration Requirements and check at end of test to remove the Notes to Tester requirement.]

9.11.1.4 Canceling COV Subscriptions
Dependencies: Indefinite lifetime COV subscriptions, 9.11.1.1.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to cancel a COV subscription. This test
cancels the subscription made in 9.11.1.1.

Configuration Requirements: This test should be executed after test 9.11.1.1, while the subscription created in that test still
exists in the IUT.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (the process identifier used in test 9.11.1.1),
 'Monitored Object Identifier' = (the same object used in test 9.11.1.1),
 'Monitored Property Identifier' = (the same property used in test 9.11.1.1)
2. RECEIVE BACnet-SimpleACK-PDU
3. WAIT Notification Fail Time
4. MAKE (a change to the monitored object that would cause a COV notification if there were an active
 subscription)
5. CHECK(the IUT does not transmit a COV notification)

Notes to Tester: The IUT shall not transmit a COV notification message.

[Change Clause 9.11.1.5, p. 357]

[Reviewer Note: Added missing verification that the IUT did not send a COV notification, and removed superfluous Notes to
Tester.]

9.11.1.5 Canceling Expired or Non-Existing Subscriptions
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to cancel a subscription that no longer
exists.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any unused process identifier or an identifier from a previously
 terminated subscription),
 'Monitored Object Identifier' = (any unused object or an object from a previously
 terminated subscription),
 'Monitored Property Identifier' = (any unused property or a property from a previously terminated
 subscription)
2. RECEIVE BACnet-SimpleACK-PDU
3. WAIT Notification Fail Time
4. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
5. CHECK(the IUT did not issue a COV notification)

Notes to Tester: The IUT shall not transmit a COV notification message. An error message is not an acceptable response.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 459

[Change Clause 9.11.1.7, p. 357]

[Reviewer Note: Updated description of 'Time Remaining' and adds validation that this value counts down as expected.
Corrected the typo error at step 9 and updated the language as per BACnet 135.1, Clause 6.]

9.11.1.7 Finite Lifetime Subscriptions
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription with a
temporary lifetime. Either confirmed or unconfirmed notifications may be used, but at least one of these options must
besupported by the IUT.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (PID1, any valid process identifier),
 'Monitored Object Identifier' = (O1, any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (T1, anya value between 60 seconds and 300 seconds),
 'Monitored Property Identifier' = (P1, any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (the requested subscription lifetime A value approximately equal to, but not greater
 than T1),
 'List of Values' = (values appropriate to the property subscribed to, and any other
 properties the IUT provides with it, such as Status-Flags)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' ~= (the requested lifetime) = (A value approximately equal to, but no greater than T1),
 'List of Values' = (values appropriate to the property subscribed to, and any other
 properties the IUT provides with it, such as Status-Flags)
4. WAIT a period longer than the resolution of the IUT’s COV subscription lifetime timer
54. MAKE (a change to the monitored object that should causes a COV notification)
5. BEFORE Notification Fail Time
6. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (T2: a value greater than 0 and less than the requested subscription lifetime),
 'List of Values' = (values appropriate to the property subscribed to, and any other
 properties the IUT provides with it, such as Status-Flags)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

460 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (T2: a value greater than 0 and less than the requested subscription
 lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value that triggered the notification)
6. WAIT (the lifetime of the subscription),
7. WAIT a period longer than the resolution of the IUT’s COV subscription lifetime timer
8. MAKE (a change to the monitored object that causes a COV notification)
9. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (a value greater than 0 and less than the T2),
 'List of Values' = (values appropriate to the object type of the monitored object)
 ELSE
 BEFORE Notification Fail Time
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1,
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1,
 'Time Remaining' = (a value greater than 0 and less than the T2),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value that triggered the notification)
610. WAIT (the lifetime of the subscription)
711. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
12. CHECK (verify that the IUT did not transmit a COV notification message)

Notes to Tester: The IUT shall not transmit a COV notification message addressed to the TD after step 6.

[Change Clause 9.11.1.8, p. 358]

[Reviewer Note: Modified as per purpose, BACnet Clause 13.14.2, and updated the language as per BACnet 135.1, Clause 6.]

9.11.1.8 Updating Existing Subscriptions
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to update the lifetime of a subscription.
Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

Test Concept: A subscription for COV notifications is made for 60 seconds. Before that subscription has expired a second
subscription is made for 300 seconds. When the notification is sent in response to the second subscription, the lifetime is
checked to verify that it is greater than 60 but less than 300 seconds.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (PID1, any valid process identifier),
 'Monitored Object Identifier' = (O1, any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = 60
 'Monitored Property Identifier' = (P1, any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 461

 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (60 or less than 60),
 'List of Values' = (values appropriate to the object type and subscribed to property of the monitored object
including the changed value of that triggered the notification)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (60 or less than 60),
 'List of Values' = (values appropriate to the object type and subscribed to property of the monitored object
including the changed value of that triggered the notification)
4. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = PID1(any valid process identifier),
 'Monitored Object Identifier' = O1(any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (T1, a value between 180 and 300 seconds)
 'Monitored Property Identifier' = P1(any valid property supporting COV notifications)
5. RECEIVE BACnet-SimpleACK-PDU
6. BEFORE Notification Fail Time
6. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (~T1, but not greater than T1the requested subscription lifetime),
 'List of Values' = (values appropriate to the object type and subscribed to property of the monitored object
including the changed value of that triggered the notification)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = PID1(the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = O1(the same object used in the subscription),
 'Time Remaining' = (~T1, but not greater than T1the requested subscription lifetime),
 'List of Values' = (values appropriate to the object type and subscribed to property of the monitored object
including the changed value of that triggered the notification)

[Change Clause 9.11.1.9, p. 359]

[Reviewer Note: Modified to work with all numeric datatypes.]

9.11.1.9 Client-Supplied COV Increment
Purpose: To verify that the IUT correctly generates COV notifications when the client supplies the COV increment in the
SubscribeCOVProperty request. Either confirmed or unconfirmed notifications may be used but at least one of these options
must be supported by the IUT.

Test Concept: A subscription for COV notification is made for a property of numeric datatype REAL. The subscription request
specifies a COV increment. The monitored property is changed by an amount less than the increment, and the TD waits to
ensure that the IUT does not generate a notification. The monitored property is changed by an amount slightly more than is
required to cause a COV notification, and the TD waits for the notification.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

462 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Configuration Requirements: If the property being subscribed to has a related COV_Increment property in the object, then
the value of the COV_Increment property should be significantly different than the COV increment provided in the subscription
service. In devices where the 'COV Increment' is always less than the minimal change that the monitored property can make,
skip steps 4 and 5.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any value that will ensure no re-subscription is required to complete the test),
 'Monitored Property Identifier' = (any valid property supporting COV notifications),
 'COV Increment' = (any valid increment value)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 IF (the subscription was for confirmed notifications) THEN
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' ~= (the requested lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object including
 the value of monitored property)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' ~= (the requested lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the value of monitored property)
4. MAKE (the monitored property change by less than the COV increment)
5. CHECK (verify that the IUT did not transmit a notification message for the monitored property)
6. MAKE (the monitored property change by slightly more than COV Increment less the amount changed in step 54)
7. BEFORE Notification Fail Time
 IF (the subscription was for confirmed notifications) THEN
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = ?,
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value that triggered the notification)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' = ?,
 'List of Values' = (values appropriate to the object type of the monitored object
 including the changed value that triggered the notification)

[Add new Clause 9.11.1.X10, p. 360]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 463

9.11.1.X10 Accepts SubscribeCOVProperty-Requests with 8 Hour Lifetimes
Purpose: To verify that the IUT correctly accepts lifetimes of at least 8 hours.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = 28800
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 IF (the subscription was for confirmed notifications) THEN
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' ~= (the requested lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object including the value of
 monitored property)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 RECEIVE BACnetUnconfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = (the same object used in the subscription),
 'Time Remaining' ~= (the requested lifetime),
 'List of Values' = (values appropriate to the object type of the monitored object
 including the value of monitored property)
4. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (the same identifier used in Step 1),
 'Monitored Object Identifier' = (the same identifier used in the subscription),
 'Monitored Property Identifier' = (the same object used in the subscription)
5. RECEIVE BACnet-SimpleACK-PDU

[Add new Clause 9.11.1.X11, p. 360]

9.11.1.X11 Confirmed Change of Value Notification from Property Value
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Property
Value.

Test Concept: A property subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less
than 24 hours and large enough to complete the test. The Value of the monitored Property is changed, and a notification shall
be received. The subscribed property may be changed using the WriteProperty service or by another means. For
implementations where it is not possible to write to these properties at all, the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
 'Monitored Property Identifier' = Y (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

464 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
with it, such as Status-Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. MAKE (a change to the monitored object PROPERTY that causes a COV notification)
6. BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
with it, such as Status-Flags)
7. TRANSMIT BACnet-SimpleACK-PDU
8. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (the same identifier used in Step 1),
 'Monitored Object Identifier' = X
 'Monitored Property Identifier' = Y
9. RECEIVE BACnet-SimpleACK-PDU

[Add new Clause 9.11.1.X12, p. 360]

9.11.1.X12 Unconfirmed Change of Value Notification from Property Value
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the Property
Value.

Test Steps: The steps for this test case are identical to the test steps in 9.11.1.X11, except that the SubscribeCOVProperty
service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the
ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the
unconfirmed services.

[Add new Clause 9.11.1.X21, p. 360]

9.11.1.X21 Confirmed Change of Value Notification from Status_Flags Property
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags Property.

Test Concept: A property subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less
than 24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by
another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other
means, this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = X
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = L
 'Monitored Property Identifier' = Y (any valid property supporting COV notifications)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 465

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (values appropriate to the property subscribed to and initial
 Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. MAKE (Status_Flags = any value that differs from "initial Status_Flags")
6. BEFORE Notification Fail Time
 RECEIVE BACnetConfirmedCOVNotification-Request,
 'Subscriber Process Identifier' = (the same identifier used in the subscription),
 'Initiating Device Identifier' = IUT,
 'Monitored Object Identifier' = X
 'Time Remaining' = (any value appropriate for the Lifetime selected),
 'List of Values' = (initial values appropriate to the property subscribed to and new Status_Flags)
7. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (the same identifier used in Step 1),
 'Monitored Object Identifier' = X
 'Monitored Property Identifier' = Y
8. RECEIVE BACnet-SimpleACK-PDU

[Add new Clause 9.11.1.X22, p. 360]

9.11.1.X22 Unconfirmed Change of Value Notification from Status_Flags Property
Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags Property.

Test Steps: The steps for this test case are identical to the test steps in 9.11.1.X21 except that the SubscribeCOVProperty service
request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the
ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the
unconfirmed services. The MAC address used for the notification message shall be such that the TD is one of the recipients

9.11.2 Negative SubscribeCOVProperty Service Execution Tests

[Change Clause 9.11.2.1, p. 361]

[Reviewer Note: Added additional acceptable error responses.]

9.11.2.1 The Monitored Object Does Not Support COV Notification
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object does not support COV notifications.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object that does not support COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60,
 'Monitored Property Identifier' = (any property in the object)
2. IF (Protocol_Revision < 15) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

466 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 RECEIVE
 (BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED | OTHER) |
 (BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY)
 ELSE
 RECEIVE
 (BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY)

[Change Clause 9.11.2.2, p. 361]

[Reviewer Note: Changed description of Monitored Property Identifier to be chosen for this test.]

9.11.2.2 The Monitored Property Does Not Support COV Notification
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object supports COV notifications but not on the requested property.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object that supports COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60,
 'Monitored Property Identifier' = (any property of the chosen object that does not support COV notifications)
2. IF (Protocol_Revision < 15) THEN
 RECEIVE
 (BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED | OTHER) |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY)
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY

[Add new Clause 9.11.2.X11, p. 361]

9.11.2.X11 Monitored Object Does Not Exist
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object does not exist.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 467

 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (any object of a type that supports COV and an instance which does not exist in
 the IUT),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT

[Add new Clause 9.11.2.X12, p. 361]

9.11.2.X12 Monitored Property Does Not Exist
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored property does not exist.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 60
 'Monitored Property Identifier' = (any valid property supporting COV notifications which does not exist for
 specified object)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY

[Add new Clause 9.11.2.X13, p. 361]

9.11.2.X13 There Is No Space For Subscription
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when there
is no space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of
resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept is
less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns an Error-
PDU) {

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = PID,
 'Monitored Object Identifier' = (object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = 6000
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
 | (BACnet-Error-PDU,
 'Error Class' = RESOURCES,
 'Error Code' = NO_SPACE_TO_ADD_LIST_ELEMENT)
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

468 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Add new Clause 9.11.2.X14, p. 361]

9.11.2.X14 The Lifetime Parameter is Out of Range
Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
Lifetime parameter is out of range.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
 'Subscriber Process Identifier' = (any valid process identifier),
 'Monitored Object Identifier' = (object supporting COV notifications),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (a value larger than that supported by the IUT),
 'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. IF (Protocol_Revision is present and Protocol_Revision => 15) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER
 | (RECEIVE BACnet-Reject-PDU,
 Reject Reason = PARAMETER_OUT_OF_RANGE)

9.12 Atomic ReadFile Service Execution Tests

9.12.1 Positive AtomicReadFile Service Execution Tests

9.12.1.2 Reading Stream Based Files

[Change Clause 9.12.1.2.1, p. 364]

[Reviewer Note: Change to allow testing of files larger than that which can be returned in a single request.]

9.12.1.2.1 Reading an Entire Stream-Based File

Purpose: To verify that the IUT correctly responds to a request to read an entire file.

Test Concept: The test consists of reading the contents of the file using a sequence of AtomicReadFile requests and verifying
that the appropriate known file data is returned.

Configuration Requirements: The AtomicReadFile service execution tests require that the TD has knowledge of the exact
contents of a known file F1. The test procedures assume that the IUT is already configured with the known file data provided
by the manufacturer. In the test procedures "X" will designate the File object identifier and Z the 'File Start Position' initialized
at "0". When performing the AtomicReadFile services, a Maximum Requested Octet Count (MROC) shall be calculated before
starting the test. These values shall be used during the test. MROC shall be 16 less than the minimum of the TD’s
Max_APDU_Length_Accepted and the IUT’s maximum transmittable APDU length.

Test Steps:

1. TRANSMIT AtomicReadFile-Request,
 'File Identifier' = S,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 469

 'File Start Position' = 0,
 'Requested Octet Count' = (the number of octets in the test file)
2. RECEIVE AtomicReadFile-ACK,
 'End of File' = TRUE,
 'File Start Position' = 0,
 'File Data' = (the known contents of the test file)
1. VERIFY File_Access_Method = STREAM_ACCESS
2. WHILE (the last read resulted in an Ack with 'End Of File' == FALSE) DO {
 TRANSMIT AtomicReadFile-Request,
 'Object Identifier' = X,
 'File Start Position' = Z (the next unread octet),
 'Requested Octet Count' = MROC
 RECEIVE AtomicReadFile-ACK,
 'End Of File' = TRUE | FALSE,
 'File Start Position' = Z
 'File Data' = (the known contents of the test file of length MROC if 'End Of File' is
 FALSE or of length MROC or less if 'End Of File' is TRUE)
}
3. CHECK(that the returned file data is F1)

9.13 AtomicWriteFile Service Execution Tests

9.13.1 Positive AtomicWriteFile Service Execution Tests

9.13.1.2 Writing to Stream-Based Files

[Change Clause 9.13.1.2.1, p. 373]

[Reviewer Note: Modified to allow the entire file content to be written in all cases.]

9.13.1.2.1 Writing an Entire Stream-Based File

Purpose: To verify that the IUT correctly responds to a request to write an entire file.

Test Concept: The tests consist of modifying the contents of the files using the AtomicWriteFile service and verifying that the
appropriate changes to the file data took place

Configuration Requirements: The test data shall contain at least as many octets as the initial data for the file. The manufacturer
shall provide appropriate test data to write to these files or sufficient information to permit the tester to construct the test data.
The file objects shall be configured with initial data that differs from the test data. In the test procedures, "X" will designate
the File object identifier and Z the File Start Position' initialized at "1" at the beginning. When performing the AtomicWriteFile
services, a Maximum Write Data Length (MWDL) shall be calculated before starting the test. These values shall be used during
the test. MWDL shall be 21 less than the minimum of the TD’s maximum transmittable APDU length and the IUT’s
Max_APDU_Length_Accepted.

Test Steps:

1. TRANSMIT AtomicReadFile-Request,
 'File Identifier' = S,
 'File Start Position = 0,
 'Requested Octet Count' = (any number ≥ the number of octets in the test data)
2. RECEIVE AtomicReadFile-ACK,
 'End of File' = TRUE,
 'File Start Position' = 0,
 'File Record Data' = (the initial data)
3. TRANSMIT AtomicWriteFile-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

470 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'File Identifier' = S,
 'File Start Position = 0,
 'File Data' = (the test data)
4. RECEIVE AtomicWriteFile-ACK,
 'File Start Position' = 0
5. TRANSMIT AtomicReadFile-Request,
 'File Identifier' = S,
 'File Start Position' = 0,
 'Requested Octet Count' = (any number > the number of octets in the test data)
6. RECEIVE AtomicReadFile-ACK,
 'End of File' = TRUE,
 'File Start Position' = 0,
 'File Data' = (the test data)
7. VERIFY (R), Modification_Date = (the current date and time)
8. VERIFY (R), ARCHIVE = FALSE
9. VERIFY (R), Number_Of_Records = (the number of records in the test data)
1. VERIFY Read_Only = FALSE
2. WRITE Archive = TRUE
3. VERIFY File_Access_Method = STREAM ACCESS
4. IF (File_Size is not equal to the size of the test file) THEN
 WRITE File_Size = 0
5. REPEAT Z = (0 through the file size, in increments of MWDL) DO {
 TRANSMIT AtomicWriteFile-Request
 'File Identifier' = X
 'File Start Position' = Z
 'File Data' = (file contents, the number of octets being the lesser of (file size - Z) and MWDL)
 RECEIVE AtomicWriteFile-ACK
 'File Start Position' = Z

}
6. VERIFY File_Size = (file size of the test data)
7. VERIFY Modification_Date = (the current date and time)
8. VERIFY ARCHIVE = FALSE

[Change Clause 9.13.1.2.3, p. 374]

[Reviewer Note: Added configuration requirements, fixed purpose, and removed reliance on AtomicReadFile within the test
steps.]

9.13.1.2.3 Appending Data to the End of a File

Purpose: To verify that the IUT correctly responds to a request to write to the end of a file. If the IUT does not support files
that can not be modified except by replacing the entire file, and this restriction is clearly stated in the PICS, then this test may
be ignored.

Configuration Requirements: The manufacturer shall provide appropriate test data to write to these files or sufficient
information to permit the tester to construct the test data. The file objects shall be configured with initial data that differs from
the test data. In the test procedures, "X" will designate the File object identifier and when performing the AtomicWriteFile
services, a Maximum Write Data Length (MWDL) shall be calculated before starting the test. These values shall be used during
the test. MWDL shall be 21 less than the minimum of the TD’s maximum transmittable APDU length and the IUT’s
Max_APDU_Length_Accepted.

Test Steps:

1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = S,
 'Property Identifier' = File_Size
2. RECEIVE ReadProperty-ACK,
 'Object Identifier' = S,
 'Property Identifier' = File_Size,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 471

 'Property Value' = (the current size in octets, designated "InitialNumOctets" below)
3. TRANSMIT AtomicReadFile-Request,
 'File Identifier' = S,
 'File Start Position' = 0,
 'Requested Octet Count' = (any number > InitialNumOctets)
4. RECEIVE AtomicReadFile-ACK,
 'End of File' = TRUE,
 'File Start Position' = 0,
 'File Data' = (the initial data)

3. TRANSMIT AtomicWriteFile-Request,
 'File Identifier' = S,
 'File Start Position' = -1,
 'File Data' = (the test data, the number of octets being the lesser of (file size - Z) and
 MWDL)
4. RECEIVE AtomicWriteFile-ACK,
 'File Start Position' = InitialNumOctets,
7. TRANSMIT AtomicReadFile-Request,
 'File Identifier' = S,
 'File Start Position' = InitialNumOctets,
 'Requested Octet Count' = (the number of octets in the test data)
8. RECEIVE AtomicReadFile-ACK,
 'End of File' = TRUE,
 'File Start Position' = InitialNumOctets,
 'File Data' = (the test data)
5. VERIFY (R), Modification_Date = (the current date and time)
6. VERIFY (R), ARCHIVE = FALSE
7. VERIFY (R), File_Size = (the number of octets in the test data + InitialNumOctets)

9.14 AddListElement Service Execution Tests

9.14.2 Negative AddListElement Service Execution Tests

[Change Clause 9.14.2.2, p. 381]

[Reviewer Note: Added the additional error conditions that are now accepted. Added 'Note to Tester' that was missing in
135.1-2013.]

9.14.2.2 Adding a List Element With an Invalid Datatype
Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with an
invalid datatype to a list.

Notes to Tester: value selected for step 1 is 'inappropriate', not a value which is 'allowed', but not supported by this instance
of the property, i.e., it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example, in a CHOICE,
by this property in this object type, but not supported by this instance of the property.

Test Steps:

1. TRANSMIT AddListElement-Request,
 'Object Identifier' = L,
 'Property Identifier' = ListProp,
 'List of Elements' = (a single element with a datatype inappropriate for this property)
2. RECEIVE AddListElement-Error,
 'Error Class' = PROPERTY,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

472 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Code' = INVALID_DATATYPE,
 'First Failed Element' = 1 |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_TAG)

[Change Clause 9.14.2.2, p. 381]

[Reviewer Note: Updated test to include additional error codes. Added 'Notes to Tester' which was missing in 135.1-2013.]

9.14.2.3 An AddListElement Failure Part Way Through a List
Purpose: To verify the ability of the IUT to respond to an AddListElement service request to add multiple elements to a list
where one of the elements cannot be added. Upon failure, the AddListElement service should leave the list unchanged.

Notes to Tester: value selected for step 3 is 'inappropriate', not a value which is 'allowed', but not supported by this instance
of the property, i.e., it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example, in a CHOICE,
by this property in this object type, but not supported by this instance of the property.

Test Steps:

1. READ InitialList = (L), ListProp2
2. TRANSMIT AddListElement-Request,
 'Object Identifier' = L,
 'Property Identifier' = ListProp
 'List of Elements' = (two or more elements to be added to the list with the second element
 having an inappropriate datatype)
3. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE AddListElement-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE,
 'First Failed Element' = 2
 | (RECEIVE BACnet-Reject-PDU,
 Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)
 ELSE
 RECEIVE AddListElement-Error,
 'Error Class' = SERVICES,
 'Error Code' = INVALID_PARAMETER_DATATYPE
 'First Failed Element' = 2
 | (AddListElement-Error,
 'Error Clas's = PROPERTY,
 'Error Code' = INVALID_DATATYPE)
 'First Failed Element' = 2
 | (BACnet-Reject-PDU,
 Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)
4. VERIFY (L), ListProp = InitialList

9.15 RemoveListElement Service Execution Tests

9.15.2 Negative RemoveListElement Service Execution Tests

[Change Clause 9.15.2.2, p. 383]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 473

[Reviewer Note: The test specified an incorrect error code.]

9.15.2.2 A RemoveListElement Failure Part Way Through a List
Purpose: To verify the ability of the IUT to respond to a RemoveListElement service request to remove multiple elements from
a list where one of the elements cannot be removed. Upon failure, the RemoveListElement service should leave the list
unchanged.

Test Steps:

1. READ InitialList = (L), ListProp
2. TRANSMIT RemoveListElement-Request,
 'Object Identifier' = L,
 'Property Identifier' = ListProp
 'List of Elements' = (one element from InitialList, followed by an element of the correct
 datatype that is not in InitialList, followed by one or more elements from
 InitialList)
3. If (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE RemoveListElement-Error,
 'Error Class' = PROPERTY SERVICES,
 'Error Code' = INVALID_DATA+TYPELIST_ELEMENT_NOT_FOUND
 'First Failed Element' = 2
 ELSE
 RECEIVE RemoveListElement-Error
 Error Class = SERVICES | PROPERTY,
 Error Code = OTHER
 'First Failed Element' = 2
4. VERIFY (L), ListProp = InitialList

9.16 CreateObject Service Execution Tests

9.16.1 Positive CreateObject Service Execution Tests

[Change Clause 9.16.1.2, p. 384]

[Reviewer Note: Added clarification that the IUT can place a restriction on the instance used. This correction is not in any
SSPC proposal.]

9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values
Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier.

Test Steps:

1. TRANSMIT CreateObject-Request,
 'Object Specifier' = (any unique object identifier of a type that is creatable and an
 instance number that is creatable)
2. RECEIVE CreateObject-ACK,
 'Object Identifier' = (the object identifier specified in step 1)
3. VERIFY (the object identifier of the newly created object),
 (any required property of the specified object) = (any value of the correct datatype for the specified
 property)
4. VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

474 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Change Clause 9.16.1.4, p. 384]

[Reviewer Note: Added clarification that the IUT can place restrictions on the instance and initial values allowed for creation.
This change is not in any SSPC proposal.]

9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values
Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier and a list of initial property values is provided.

Test Steps:

1. TRANSMIT CreateObject-Request,
 'Object Specifier' = (any unique object identifier of a type that is creatable and an
 instance number that is creatable)
 'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
 accept)

2. RECEIVE CreateObject-ACK,
 'Object Identifier' = (the object identifier specified in step 1)
3. REPEAT X = (properties initialized in the CreateObject-Request) DO {
 VERIFY (the object identifier for the newly created object),
 X = (the value specified in the 'List Of Initial Values' parameter of the CreateObject-Request)
 }
4. VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

9.16.2 Negative CreateObject Service Execution Tests

[Change Clause 9.16.2.4, p. 386]

[Reviewer Note: Added Test Concept and Configuration Requirements.]

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values
Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object specifier
and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the 'List Of Initial Values' parameter
containing a value which is out of range. The TD then attempts to create an object with a value of an inappropriate datatype
in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property definition given by the BACnet
standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property definition,
but which is not supported for P1 by the IUT. For instance, Schedule_Default, which is defined to be of Any primitive datatype,
would not be used in this test along with BitString datatype, even where the IUT's Schedule object cannot be configured for
scheduling BitString values.

Test Steps:

1. READ X1 = Object_List
2. TRANSMIT CreateObject-Request,
 'Object TypeSpecifier' = (any creatable object type),
 'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
 accept initial values for, with one of the values being out of range)
3. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 475

 RECEIVE CreateObject-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
 ELSE
 RECEIVE CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE |
 OTHER
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
4. CHECK(Verify that the new object was not created)
5. TRANSMIT CreateObject-Request,
 'Object TypeSpecifier' = (object type of step 2),
 'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
 accept initial values for, with one of the values being an inappropriate datatype)
6. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 RECEIVE
 CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)
 ELSE
 RECEIVE CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE | INVALID_DATATYPE |
 OTHER
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)
7. READ X2 = Object_List
8. CHECK (X1=X2)

[Change Clause 9.16.2.5, p. 386]

[Reviewer Note: Added Test Concept and Configuration Requirements to clarify usage.]

9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values
Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object
specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the 'List Of Initial Values' parameter
containing a value which is out of range. The TD then attempts to create an object with a value of an inappropriate datatype
in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property definition given by the BACnet
standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property definition,
but which is not supported for P1 by the IUT. For instance, Schedule_Default, which is defined to be of Any primitive datatype,
would not be used in this test along with BitString datatype, even where the IUT's Schedule object cannot be configured for
scheduling BitString values.

Test Steps:

1. TRANSMIT CreateObject-Request,
 'Object IdentifierSpecifier' = (any unique object identifier of a type that is creatable and an
 instance number that is creatable),
 'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

476 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 accept initial values for, with one of the values being out of range)
2. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 RECEIVE CreateObject-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
 ELSE
 RECEIVE CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE | OTHER
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
3. CHECK(Verify that the new object was not created)
4. TRANSMIT CreateObject-Request,
 'Object Specifier' = (object identifier from step 1),
 'List Of Initial Values' = (a list of twoone or more properties and their initial values, that the
 IUT will accept initial values for, with one of the values being an
 inappropriate datatype)
5. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 RECEIVE
 CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_TAG)
 ELSE
 RECEIVE
 CreateObject-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE | INVALID_DATATYPE | OTHER
 'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offendingvalue) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)
6. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the 'Object Identifier' used in step 1),
 'Property Identifier' = Object_Name
7. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT
 ELSE
 RECEIVE BACnet-Error-PDU
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT | NO_OBJECTS_OF_SPECIFIED_TYPE | OTHER

[Change Clause 9.16.2.6, p. 387]

[Reviewer Note: Corrected parameter for service request.]

9.16.2.6 Attempting to Create an Object with an instance of 4194303
Purpose: This test case verifies the correct execution of the CreateObject service request when the 'Object Specifier' parameter
conveys an object identifier with an instance of 4194303. This test shall be performed only if the Protocol_Revision property
is present in the Device object and has a value greater than or equal to 4.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 477

1. TRANSMIT CreateObject-Request,
 'Object Identifier''Object Specifier' = (any object identifier representing a creatable object-type with
 an instance of 4194303)
2. RECEIVE BACnet-Reject-PDU,
 'Reject Reason' = PARAMETER_OUT_OF_RANGE

[Add new Clause 9.16.2.X1, p. 387]

9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)
Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an
object type that is not supported in the IUT.

Test Steps:

1. TRANSMIT CreateObject-Request,
 'Object Specifier' = (any unsupported object type)
2. IF (Protocol_Revision >= 10) THEN
 RECEIVE CreateObject-Error,
 'Error Class' = OBJECT,
 'Error Code' = UNSUPPORTED_OBJECT_TYPE
 'First Failed Element Number' = 0.
 ELSE
 RECEIVE CreateObject-Error,
 'Error Class' = (any valid error class),
 'Error Code' = (any valid error code)
 ‘First Failed Element Number’ = 0
3. VERIFY (the IUT's Device object),
 Object_List = (any object list that does not contain the object specified in step 1)

[Add new Clause 9.16.2.X2, p. 387]

9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)
Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an
object identifier for an object type that is not supported in the IUT.

Notes to Tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object
identifier in step 1.

Test Steps:

1. TRANSMIT CreateObject-Request,
 'Object Specifier' = (any object identifier having an unsupported object type)
2. IF (Protocol_Revision >= 10) THEN
 RECEIVE CreateObject-Error,
 'Error Class' = OBJECT,
 'Error Code' = UNSUPPORTED_OBJECT_TYPE
 'First Failed Element Number' = 0
 ELSE
 RECEIVE CreateObject-Error,
 'Error Class' = (any valid error class),
 'Error Code' = (any valid error code)
 ‘First Failed Element Number’ = 0
3. VERIFY (the IUT's Device object),
 Object_List = (any object list that does not contain the object specified in step 1)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

478 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.17 DeleteObject Service Execution Tests

9.17.2 Negative DeleteObject Service Execution Tests

[Change Clause 9.17.2.1, p. 388]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.17.2.1 Attempting to Delete an Object That is Not Deletable
Purpose: To verify the correct response to an attempt to delete an object that is not deletable.

Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:
1. READ V1 = Object_Name
2. TRANSMIT DeleteObject-Request,
 'Object Identifier' = X
3. RECEIVE BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = OBJECT_DELETION_NOT_PERMITTED
4. VERIFY (X), Object_Name = V1 (the Object_Name specified in the EPICS)
5. VERIFY (X), Object_List = (any object list that contains X)

9.18 ReadProperty Service Execution Tests

9.18.1 Positive ReadProperty Service Execution Tests

[Change Clause 9.18.1.2, p. 389]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.18.1.2 Reading a Single Element of an Array
Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array, and a single
element of the array is requested.

Test Steps:
1. READ V = (Device, X), Object_List ARRAY INDEX=1
2. CHECK (V is of type object-identifier)
1. VERIFY (Device, X),

Object_List = (the first element of the Object_List array as specified in the EPICS),
ARRAY INDEX = 1

Passing Result: The returned value should be of type object-identifier.

[Add new Clause 9.18.1.X1, p. 390]

[Reviewer Note: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. Added a test
to ensure that all data types are tested.]

9.18.1.X1 Reading Properties Based on Data Type
Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of the
supported base data types.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 479

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a property,
P1, shall be selected that is of the data type being tested and the object containing P1 is designated Object1 in the test
description.

Test Steps:
1. READ V = (Object1), P1
2. CHECK (V returns any valid value of the correct data type for property P1)

[Add new Clause 9.18.1.X3, p. 390]

9.18.1.X3 Respects max-segments-accepted bit pattern
Purpose: To verify that the IUT abides by the 'max-segments-accepted' parameter, when the size of the response does require
segmentation.

Configuration Requirements: Use a very small 50 octet 'max-APDU-length-accepted' size in the request. The BACnet-
Confirmed-Request-PDU shall be one where the response size will exceed 2 times 'max-APDU-length-accepted' and so require
at least three segments. If the largest response that the IUT can return is 100 or fewer octets, then this test shall be skipped.

Test Steps:

1. TRANSMIT BACnet-Confirmed-Request-PDU,
 'segmented-response-accepted' = TRUE
 'max-segments-accepted' = 2
2. RECEIVE BACnet-Abort-PDU,
 'Abort Reason' = BUFFER_OVERFLOW

Hints to Tester: An attempt to read the whole Object_List might suffice. Or a ReadRange or ReadPropertyMultiple or
AtomicReadFile request, if any of those services are executed.

[Add new Clause 9.18.1.X4, p. 390]

9.18.1.X4 Reading Array Properties at Different Array Indexes
Purpose: This test verifies the IUT can execute ReadProperty service requests on a single element in an array property.

Test Concept: This test will execute a ReadProperty service request to read a single element from the selected property by
specifying the array-index in the request. Another request is made to read an element of an array where the array index is out
of range.
Configuration Requirement: O1 is any object in the IUT database having array property P1 having size X.

Test Steps:

1. VERIFY P1 = X, ARRAY INDEX = 0
2. IF (X>0) THEN
 READ V = P1, ARRAY INDEX = 1
 CHECK (V is any valid value of the correct data type for property P1)
 READ V = P1, Array Index =X
 CHECK (V is any valid value of the correct data type for property P1)
3. TRANSMIT ReadProperty-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1
 'Property Array Index' = (X+1)
4. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

480 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Add new Clause 9.18.1.X5, p. 390]

9.18.1.X5 ReadProperty of the Network Port Object using the Unknown Instance
Purpose: Verify that the IUT selects the correct object when a Network Port is read using the special object instance 4194303.

Test Concept: Execute a ReadProperty service request specifying ‘Object Identifier’ = (Network Port, 4194303). Verify that
the responding BACnet-user selects the local Network Port object representing the network port through which the request was
received.

Configuration Requirements: Let X be the instance number of the Network Port object associated with the network port through
which the TD will communicate with the IUT.

Test Steps:

1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (Network Port, 4194303),
 'Property Identifier' = Object-Identifier
2. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (Network Port, X),
 'Property Identifier' = Object-Identifier,
 'Property Value' = (Network Port, X)
3. REPEAT P = (each property in the specified Network Port object) {
 TRANSMIT ReadProperty-Request through the same port as above,
 'Object Identifier' = (Network Port, 4194303),
 'Property Identifier' = P
 RECEIVE ReadProperty-ACK,
 'Object Identifier' = (Network Port, X),
 'Property Identifier' = P,
 'Property Value' = V
 VERIFY (Network Port, X), P = V
}

[Add new Clause 9.18.1.X8, p. 390]

9.18.1.X8 ReadProperty Service when Non-BACnet Device Offline
Purpose: To verify that the ReadProperty service executes successfully when a non-BACnet device is offline.

Test Concept: Object1 is an object which contains information from a non-BACnet device. The non-BACnet device is verified
to be online and recognized by the IUT. It is then made to go offline, and the IUT is made to recognize that the device is offline.
A property, P1, from Object1 which contains a dynamic value derived from the data in the non-BACnet device is read from
the IUT.

Test Steps:

1. CHECK (any vendor-specified indication, that the non-BACnet device is online)
2. MAKE (the non-BACnet device go offline)
3. MAKE (the IUT notice that the non-BACnet device is offline)
4. TRANSMIT ReadProperty Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1
5. RECEIVE ReadProperty-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (V, any valid value)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 481

9.20 ReadPropertyMultiple Service Execution Tests

9.20.1 Positive ReadPropertyMultiple Service Execution Tests

[Change Clause 9.20.1.1, p. 392]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.1 Reading a Single Property from a Single Object
Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is designated
as P1 in the test description.

Test Steps:
1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1 | Object2,
 'Property Identifier' = P1
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = (the object selected in step 1),
 'Property Identifier' = P1,
 'Property Value' = (any valid valuethe value of P1 specified in the EPICS)

[Change Clause 9.20.1.2, p. 393]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.2 Reading Multiple properties from a Single Object
Purpose: To verify the ability to read multiple properties from a single object.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1 | Object 2,
 'Property Identifier' = P1,
 'Property Identifier' = P2
-- ... (Two properties are required but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = (the object selected in step 1),
 'Property Identifier' = P1,
 'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
 'Property Identifier' = P2,
 'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

[Change Clause 9.20.1.3, p. 393]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.3 Reading a Single Property from Multiple Objects
Purpose: To verify the ability to read a single property from multiple objects.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

482 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Object Identifier' = Object2,
 'Property Identifier' = P2
-- … (Two properties are required but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
 'Object Identifier' = Object2,
 'Property Identifier' = P2,
 'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

[Change Clause 9.20.1.4, p. 393]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.4 Reading Multiple Properties from Multiple Objects
Purpose: To verify the ability to read multiple properties from multiple objects.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Identifier' = P2,
 'Property Identifier' = P3,
 'Object Identifier' = Object2,
 'Property Identifier' = P4,
 'Property Identifier' = P5,
 'Property Identifier' = P6
-- … (Two objects must be included but but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
 'Property Identifier' = P2,
 'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),
 'Property Identifier' = P3,
 'Property Value' = (any valid value for P3the value of P3 specified in the EPICS),
 'Object Identifier' = Object2,
 'Property Identifier' = P4,
 'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)
 'Property Identifier' = P5,
 'Property Value' = (any valid value for P5the value of P5 specified in the EPICS),
 'Property Identifier' = P6
 'Property Value' = (any valid value for P6the value of P6 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

[Change Clause 9.20.1.5, p. 394]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 483

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read
Access Specifications' contains a specification for an unsupported property.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Identifier' = P2,
 'Property Identifier' = (any property, P3, not supported in this object),
 'Property Identifier' = P4
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
 'Property Identifier' = P2,
 'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),
 'Property Identifier' = P3,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY,
 'Property Identifier' = P4,
 'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)

[Change Clause 9.20.1.6, p. 394]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access
Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Identifier' = P2,
 'Property Identifier' = (any property, P3, not supported in this object),
 'Property Identifier' = (any property, P4, not supported in this object),
 'Object Identifier' = (any non-existent object, Object2, which is of a type supported by the IUT),
 'Property Identifier' = P5,
 'Property Identifier' = P6
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
 'Property Identifier' = P2,
 'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),
 'Property Identifier' = P3,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY,
 'Property Identifier' = P4,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

484 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY,
 'Object Identifier' = Object2,
 'Property Identifier' = P5,
 'Error Class' = OBJECT,
 'Error Code' = (UNKNOWN_OBJECT),
 'Property Identifier' = P6,
 'Error Class' = OBJECT,
 'Error Code' = (UNKNOWN_OBJECT)

[Change Clause 9.20.1.7, p. 395]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.20.1.7 Reading ALL Properties
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier ALL. One instance of each object-type supported is tested.

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry
shall contain 'Error Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property. Property_List (371)
shall not appear in the List of Results.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {
 TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = ObjectX,
 'Property Identifier' = ALL
 RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = ObjectX,
 'List Of Results' = (a list of all standard properties
 documented for ObjectX in the EPICS plus all proprietary
 properties present in ObjectX, each with a valid
 value, excluding the Property_List property)
 REPEAT P = (each property supported by Object1) DO {
 'Property Identifier' = P,
 'Property Value' = (the value of P specified in the EPICS)
 }
}

Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet 15.7.3.1.2).
If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision <
7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain 'Error
Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property. Property_List (371) shall not appear
in the List of Results.

[Change Clause 9.20.1.8, p. 395]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added language to clarify the properties required to
be returned.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 485

9.20.1.8 Reading OPTIONAL Properties
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier OPTIONAL by returning all of the objects's optional properties. One instance of each object-type supported is tested.
The property identifier OPTIONAL means that only those standard properties present in the object that have a conformance
code "O" shall be returned.

Notes to Tester: If no optional properties are supported, then an empty 'List of Results' shall be returned for the specified
property. If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry
shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.

Test Steps:
1. REPEAT ObjectX = (one instance of each supported object type) DO {
 TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1ObjectX,
 'Property Identifier' = OPTIONAL
 RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1ObjectX,
 'List Of Results' = (a list of all standard properties with a conformance code
 of O documented for ObjectX in the EPICS, each with a valid
 value)
 REPEAT P = (each optional property supported by Object1ObjectX) DO {
 'Property Identifier' = P,
 'Property Value' = (any valid value for Pthe value of P specified in the EPICS)
 }
 }

Notes to Tester: If no optional properties are supported then an empty 'List of Results' shall be returned for the specified
property.

[Change Clause 9.20.1.9, p. 396]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added language to clarify the properties required to
be returned.]

9.20.1.9 Reading REQUIRED Properties
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier REQUIRED by returning all of the object’s required properties. One instance of each object-type supported is tested.
The property identifier REQUIRED means that only those standard properties having a conformance code of
"R" or "W" shall be returned.

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry
shall contain 'Error Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property. Property_List (371)
shall not appear in the List of Results.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {
 TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = ObjectX,
 'Property Identifier' = REQUIRED
 RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = ObjectX,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

486 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'List Of Results' = (a list of all standard properties with a conformance code
 of R or W documented for ObjectX in the EPICS, each with a
 valid value, excluding the Property_List property)
 REPEAT P = (each property supported by Object1) DO {
 'Property Identifier' = P,
 'Property Value' = (the value of P specified in the EPICS)
 }
}

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry
shall contain 'Error Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property. Property_List (371)
shall not appear in the List of Results.

[Add new Clause 9.20.1.X1, p. 398]

[Reviewer Note: A general ReadPropertyMultiple test is not supplied by 135.1 that can be used in a variety of situations.]

9.20.1.X1 Reading Properties Based on Data Type
Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests for requested properties of
each of the supported base data types.

Test Concept: The test 9.18.1.X1 Reading Properties Based on Data Type is repeated using ReadPropertyMultiple instead of
ReadProperty.

[Add new Clause 9.20.1.X2, p. 398]

9.20.1.X2 ReadPropertyMultiple Array Properties
Purpose: To verify that the IUT can execute ReadPropertyMultiple service requests when the requested property is an array,
when its size as well as when a single element of the array is requested. Another request is made to read an element of an array
where the array index is out of range.

Configuration Requirement: O1 is any object in the IUT database having array property P1 having size X.

Test Steps:

1. VERIFY P1 = X, ARRAY INDEX = 0
2. IF (X>0) THEN
3. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = 1
4. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = 1,
 'Property Value' = (V, any valid value of the correct data type for property P1)
5. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = X,
6. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = X,
 'Property Value' = (V, any valid value of the correct data type for property P1)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 487

7. CHECK (V is any valid value of the correct data type for property P1)
8. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Array Index' = (X+1)
9. RECEIVE ReadPropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX

[Add new Clause 9.20.1.X3, p. 398]

9.20.1.X3 ReadPropertyMultiple of the Network Port Object using the Unknown Instance
Purpose: Verify that the IUT selects the correct object when a Network Port is read using the special object instance 4194303.

Test Concept: Execute a ReadPropertyMultiple service request specifying ‘Object Identifier’ = (Network Port, 4194303). The
responding BACnet-user selects the local Network Port object representing the network port through which the request was
received.

Configuration Requirements: Let X be the instance number of the Network Port object associated with the network port through
which the TD will communicate with the IUT.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = (Network Port, 4194303),
 'Property Identifier' = Object-Identifier
2. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = (Network Port, X),
 'Property Identifier' = Object-Identifier,
 'Property Value' = (Network Port, X)
3. REPEAT P = (each property in the specified Network Port object) {
 TRANSMIT ReadPropertyMultiple-Request through the same port as above,
 'Object Identifier' = (Network Port, 4194303),
 'Property Identifier' = P
 RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = (Network Port, X),
 'Property Identifier' = P,
 'Property Value' = V
 VERIFY (Network Port, X), P = V
 }

[Add new Clause 9.20.1.X9, p. 398]

9.20.1.X9 ReadPropertyMultiple Service when Non-BACnet Device Offline
Purpose: To verify that the ReadPropertyMultiple service executes successfully when a non-BACnet device is offline.

Test Concept: Object1 is an object which contains information from a non-BACnet device. The non-BACnet device is verified
to be online and recognized by the IUT. It is then made to go offline, and the IUT is made to recognize that the device is offline.
A property, P1, from Object1 which contains a dynamic value derived from the data in the non-BACnet device is read from
the IUT.

Test Steps:

1. CHECK (any vendor-specified indication, that the non-BACnet device is online)
2. MAKE (the non-BACnet device go offline)
3. MAKE (the IUT notice that the non-BACnet device is offline)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

488 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

4. TRANSMIT ReadPropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1
5. RECEIVE ReadPropertyMultiple-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value)

[Change Clause 9.21, p. 400]

9.21 ReadRange Service Execution Tests
This clause defines the tests necessary to demonstrate support for executing ReadRange service requests.

Dependencies: None.

BACnet Reference Clause: 15.8.

Configuration Requirements: When testing a Log_Buffer property, the The IUT shall be configured with a Trend Log logging
object that contains a set of known log recordstrend data. The TD must have exact knowledge of the trend data log records in
order to evaluate the results of the tests. The value of the Enable property shall be FALSE so that the Log_Buffer does not
change during the tests.

When testing a property other than the Log_Buffer, steps shall be taken to ensure that the value of the property does not change
outside the control of the tester during the execution of the test.

The following sample log buffer is used as explanation for the tests in this section.

Sample Log_Buffer, (Trend Log, Instance 1)

Arbitrary
Record

Designation
Position
(index)

Implied
Sequence #

Timestamp
(Date excluded

for clarity) LogDatum

a 1 16 13:01:00.00 log-status, buffer-purged
b 2 17 13:02:00.00 log-status, log-disabled = FALSE
c 3 18 13:05:00.00 real-value = 5.0
d 4 19 13:10:00.00 real-value = 10.0
e 5 20 13:15:00.00 real-value = 15.0
f 6 21 13:16:00.00 log-status, log-disabled = TRUE
g 7 22 13:21:00.00 log-status, log-disabled = FALSE
h 8 23 13:25:00.00 real-value = 25.0
i 9 24 13:30:00.00 real-value = 30.0
j 10 25 13:35:00.00 real-value = 35.0
k 11 26 13:36:00.00 log-status, log-disabled = TRUE

9.21.1 Positive ReadRange Service Execution Tests

[Change Clause 9.21.1.1, p. 401]

[Reviewer Note: Made the test applicable to object types other than trends.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 489

9.21.1.1 Reading All Items in the List
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return all of the available data items.

Test Concept: A list property, P is read using ReadRange by position with no range specified. It is verified that the complete
list is returned.

Configuration Requirements: Property P is configured with a value that is small enough to be returned in a single ReadRange
response. If the IUT cannot be configured in this manner, see the Notes to Tester.

Notes to Tester: The property P may have more items than can be returned in a single message. Under these circumstances
'Result Flags' will have the value {TRUE, FALSE, TRUE} and the 'Item Count' and 'Item Data' parameters would reflect the
actual number of items that were able to be returned.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer P
2. RECEIVE Read-Range-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {TRUE, TRUE, FALSE},
 'Item Count' = (the number of entries in P trend records in the test object),
 'Item Data' = (all of the entries in P trend records in the test object)

Notes to Tester: The trend data may have more items than can be returned in a single message. Under these circumstances
'Result Flags' will have the value {TRUE, FALSE, TRUE} and the 'Item Count' and 'Item Data' parameters would reflect the
actual number of items that were able to be returned.

[Change Clause 9.21.1.2, p. 401]

[Reviewer Note: Make the test applicable to object types other than trends.]

9.21.1.2 Reading Items by Position with Positive Count
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a
position and the number of items after that position to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the list property P the
Log_Buffer. This range is specified using the 'By Position' option and a positive value for 'Count'. The 'Reference Index' and
'Count' are selected so that the results can be conveyed in a single acknowledgment.

Configuration Requirements: A list property, P, is configured with N items.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer P,
 'Reference Index' = (any value x: 1 ≤ x ≤ Record_Count N),
 'Count' = (any value y x: 0 < y x ≤ Record_Count N - x + 1)
2. RECEIVE Read-Range-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer P,
 'Result Flags' = {?, ?, FALSE},
 'Item Count' = y (the same value used in the 'Count' parameter in step 1),
 'Item Data' = (all of the items specified trend records in order of increasing position. The items specified
include

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

490 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 the item at the index specified by x, plus (y-1) items following.)

Test Example (using the sample buffer at beginning of section):

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (Trend Log, Instance 1),
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 3,
 'Count' = 7
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (Trend Log, Instance 1),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE, FALSE, FALSE},
 'Item Count' = 7,
 'Item Data' = Records < c, d, e, f, g, h, i > in that order.

[Change Clause 9.21.1.3, p. 402]

[Reviewer Note: Make the test applicable to object types other than trends.]

9.21.1.3 Reading Items by Position with Negative Count
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a
position and the number of items before that position to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the list property P the
Log_Buffer. This range is specified using the 'By Position' option and a negative value for 'Count'. The 'Reference Index' and
'Count' are selected so that the results can be conveyed in a single acknowledgement.

Configuration Requirements: A list property, P, is configured with N items.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer P,
 'Reference Index' = (any value x: 1 ≤ x ≤ N Record_Count),
 'Count' = (any value y: y < 0 AND |y| ≤ x)
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer P,
 'Result Flags' = {?, ?, FALSE},
 'Item Count' = |y|,
 'Item Data' = (all of the items specified trend records in order of increasing position. The items specified
 include the item at the index specified by x, plus |y|-1 items preceding.)

Test Example (using the sample buffer at beginning of section):

1 2 3 4 5 6 7 8 9 10 11Position

a b c d e f g h i j k

Indicates records returned in 'item data'

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 491

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (Trend Log, Instance 1),
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 8,
 'Count' = -8
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (Trend Log, Instance 1),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {TRUE, FALSE, FALSE},
 'Item Count' = 8
 'Item Data' = Records < a, b, c, d, e, f, g, h > in that order.

[Remove Clause 9.21.1.5, p. 405]

9.21.1.5 Reading Items by Time Range
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a
range of times that are to be included.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This
range is specified using the "Time Range" option. The 'Beginning Time' and 'Ending Time' are selected so that the results can
be conveyed in a single acknowledgement.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the Trend Log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Beginning Time' = (any value before the last time in the buffer),
 'Ending Time' = (any value > 'Beginning Time')
2. RECEIVE Read-Range-ACK,
 'Object Identifier' = (the Trend Log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result flags' = {TRUE, TRUE, FALSE},
 'Item Count' = (the number of trend records meeting the specified criteria),
 'Item Data' = (all of the specified trend records)

Notes to Tester: The first item returned shall be the first one in the buffer that has a timestamp newer (later time) than the time
specified by the 'Beginning Time' parameter. The last item returned shall be the one with a timestamp older (earlier time) than
or equal to the one specified by the 'Ending Time' parameter

[Change and renumber Clause 9.21.1.6, p. 405]

[Reviewer Note: Make the test applicable to object types other than trends.]

9.21.1.69.21.1.5 Reading a Range of Items that do not Exist by Position
Purpose: To verify that the IUT correctly responds to a ReadRange service request when there are no items within the specified
by position range.

Sample

1 2 3 4 5 6 7 8 9 10 11Position

a b c d e f g h i j k

Indicates records returned in 'item data'

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

492 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known not to be in the list property
P Log_Buffer. The IUT shall respond by returning an empty list.

Configuration Requirements: The list property, P, is configured with N items.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the Trend Log log object configured for this test),
 'Property Identifier' = P Log_Buffer,
 'Reference Index' = (any value x: x > N),
 'Count' = (any value y: y > 0)
 'Beginning Time' = (any value that will result in a time interval for which there are no items present),
 'Ending Time' = (any value that will result in a time interval for which there are no items present)
2. RECEIVE Read-Range-ACK,
 'Object Identifier' = (the Trend Log log object configured for this test),
 'Property Identifier' = P Log_Buffer,
 'Result flags' = {TRUE, TRUE, FALSE},
 'Item Count' = 0,
 'Item Data' = (an empty list)

[Renumber Clause 9.21.1.7, p. 406]

9.21.1.79.21.1.6 Reading a Range of Items that do not Exist (Using by Sequence)

[Renumber Clause 9.21.1.8, p. 406]

9.21.1.89.21.1.7 Reading a Range of Items that do Not Exist (Using by Time)

[Change and renumber Clause 9.21.1.9, p. 407]

[Reviewer Note: Make the test applicable to object types other than trends.]

9.21.1.99.21.1.8 Reading Items by Sequence with Positive Count
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a
sequence number and the number of items after that sequence to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This
range is specified using the 'By Sequence' option and a positive value for 'Count'. The 'Reference Sequence Number' and 'Count'
are selected so that the results can be conveyed in a single acknowledgment.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Reference Sequence Number' = (any value x: (Total_Record_Count – Record_Count + 1) ≤ x ≤
 (Total_Record_Count – y + 1)),
 'Count' = (any value y: 0 < y ≤ Record_Count)
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {?, ?, FALSE},
 'Item Count' = y,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 493

 'Item Data' = (All of the specified trend records in the order of increasing sequence number.
 The items specified are all items with the sequence number in the range of x
 through (x+y-1) in that order).
 'First Sequence Number' = x

Test Example (using sample buffer at beginning of section):

 1. TRANSMIT ReadRange-Request,
 'Object Identifier' = 20:1,
 'Property Identifier' = Log_Buffer,
 'Reference Sequence Number' = 16,
 'Count' = 11
 2. RECEIVE ReadRange-ACK,
 'Object Identifier' = 20:1,
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {TRUE, TRUE, FALSE},
 'Item Count' = 11,
 'Item Data' = Records < a, b, c, d, e, f, g, h, i, j, k > in that order.
 'First Sequence Number' = 16

[Change and renumber Clause 9.21.1.10, p. 408]

[Reviewer Note: Usage of Record_Count was incorrect and changed to Total_Record_Count.]

9.21.1.109.21.1.9 Reading Items by Sequence with Negative Count
Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a
sequence number and the number of items after that sequence to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This
range is specified using the 'By Sequence' option and a negative value for 'Count'. The 'Reference Sequence Number' and
'Count' are selected so that the results can be conveyed in a single acknowledgment.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Reference Sequence Number' = (any value x: (Total_Record_Count - Record_Count+2) < x ≤
Total_Record_Count),
 'Count' = (any value y: 0 < |y| < (Record_Count - (Total_Record_Count – x) + 1)
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {?, ?, FALSE},
 'Item Count' = y,
 'Item Data' = (All of the specified records in order of increasing sequence number. The
 items specified are all items in the range of (x-|y|+1) through x in that order.)
 'First Sequence Number' = (x - |y| + 1)

Test Example (using sample buffer at beginning of section):

 1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (Trend Log, 1),
 'Property Identifier' = Log_Buffer,
 'Reference Sequence Number' = 24,
 'Count' = -6
 2. RECEIVE ReadRange-ACK,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

494 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = (Trend Log, 1),
 'Property Identifier' = Log_Buffer,
 'Result Flags' = {FALSE, FALSE, FALSE},
 'Item Count' = 6,
 'Item Data' = Records < d, e, f, g, h, i > in that order.
 'First Sequence Number' = 19

[Remove Clause 9.21.1.11, p. 409]

9.21.1.11 Data Type Verification Test

[Renumber Clause 9.21.1.13, p. 409]
[Reviewer Note: Clause 9.21.1.12 was moved to Clause 7 and renumbered as 7.3.2.24.X1]

9.21.1.139.21.1.10 Reading Items with Negative Count and MOREITEMS

[Add new Clause 9.21.1.X1, p. 410]

[Reviewer Note: Added a ReadRange test for non-Log_Buffer list properties.]

9.21.1.X1 ReadRange Support for All List Properties
Purpose: To verify that all list properties of all objects can be read using the 3 by position forms of the ReadRange service.

Configuration Requirements: The IUT must be configured with at least one non-empty list property.

Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
 REPEAT Y = (all list properties in object X) DO {
 TRANSMIT ReadRange-Request
 'Object Identifier' = X,
 'Property Identifier' = Y,
 RECEIVE (ReadRange-ACK
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Result Flags' = (?, ?, ?),
 'Item Count' = (C: up to number of items in Y)
 'Item Data' = (the first C elements of Y))|
 (ReadRange-ACK
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Result Flags' = (FALSE, FALSE, FALSE),
 'Item Count' = (C = 0)
 'Item Data' = ())
 IF (C <> 0) THEN
 TRANSMIT ReadRange-Request
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Reference Index' = 1,
 'Count' = (C: any valid positive value)
 RECEIVE ReadRange-ACK
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Result Flags' = (TRUE, ?, ?),
 'Item Count' = (C2: up to C)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 495

 'Item Data' = (the first C2 elements of Y)
 TRANSMIT ReadRange-Request
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Reference Index' = (the number of elements in Y),
 'Count' = (C: any valid negative value)
 RECEIVE ReadRange-ACK
 'Object Identifier' = X,
 'Property Identifier' = Y,
 'Result Flags' = (?, TRUE, ?),
 'Item Count' = (C2: up to abs(C))
 'Item Data' = (the last C2 elements of Y)
 }
 }

[Add new Clause 9.21.1.X10, p. 410]

9.21.1.X10 ReadRange Service when Non-BACnet Device Offline
Purpose: To verify that the ReadRange Service executes successfully when a non-BACnet device is offline.

Test Concept: Object1 is an object which contains information from a non-BACnet device. The non-BACnet device is verified
to be online and recognized by the IUT. It is then made to go offline, and the IUT is made to recognize that the device is offline.
A property, P1, from Object1 which contains a dynamic value derived from the data in the non-BACnet device is read from
the IUT.

Test Steps:

1. CHECK (any vendor-specified indication, that the non-BACnet device is online)
2. MAKE (the non-BACnet device go offline)
3. MAKE (the IUT notice that the non-BACnet device is offline)
4. TRANSMIT ReadRange-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1
5. RECEIVE ReadRange-ACK,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value)

[Add new Clause 9.21.2, p. 410]

9.21.2 Negative ReadRange Service Execution Tests

9.21.2.1 Attempting to Read a Property That Does not Exist
Purpose: To verify the correct execution of the ReadRange service request when the requested property does not exist. This
test is only applied to devices with a Protocol_Revision of 10 or higher.

Configuration Requirements: If all the list properties applicable for the object under testing are supported, then this test shall
be skipped.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (any object that exists in the IUT),
 'Property Identifier' = (any list property applicable for that object but not supported by the IUT),
2. RECEIVE BACnet-Error-PDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

496 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Class' = PROPERTY,
 'Error Code’ = UNKNOWN_PROPERTY

9.21.2.2 Attempting to Read a Property That is not a List
Purpose: To verify the correct execution of the ReadRange service request when the requested property is not a list. This test
is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (any object that exists in the IUT),
 'Property Identifier' = (any non-list property supported by and present in the IUT),
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code’ = PROPERTY_IS_NOT_A_LIST

9.21.2.3 Attempting to Read a non-Array Property with an Array Index
Purpose: To verify the correct execution of the ReadRange service request when the requested property is not an array of lists.
This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (any object that exists in the IUT),
 'Property Identifier' = (any non-array list property supported by and present in the IUT),
 'Property Array Index' = (any valid value)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code’ = PROPERTY_IS_NOT_AN_ARRAY

9.21.2.4 Reading a Range of Items that do not Exist (Using by Position)
Purpose: To verify that the IUT correctly responds to a ReadRange service request when there are no items within the specified
criteria.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known not to be in the Log_Buffer.
The IUT shall respond by returning an empty list.

Test Steps:

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Reference Index' = (any value that will result in no items being present)
 'Count' = (any non-zero number)
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result flags' = {FALSE, FALSE, FALSE},
 'Item Count' = 0,
 'Item Data' = (an empty list)
 'First Sequence Number' = (should be absent)

Test Example 1 (using index that does not exist):

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 497

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Reference Index' = 0
 'Count' = 5
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result flags' = {FALSE, FALSE, FALSE},
 'Item Count' = 0,
 'Item Data' = (an empty list)

Test Example 2 (using index that does not exist):

1. TRANSMIT ReadRange-Request,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Reference Index' = Index= Buffer_Size + 1
 'Count' = -20
2. RECEIVE ReadRange-ACK,
 'Object Identifier' = (the log object configured for this test),
 'Property Identifier' = Log_Buffer,
 'Result flags' = {FALSE, FALSE, FALSE},
 'Item Count' = 0,
 'Item Data' = (an empty list)

9.22 WriteProperty Service Execution Tests

9.22.1 Positive WriteProperty Service Execution Tests

[Change Clause 9.22.1.1, p. 410]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.22.1.1 Writing a Single Element of an Array
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is an array, and a single array
element is written.

Test Concept: The TD shall select an object in the IUT that contains a writable array property. This property is designated
P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writing array values it shall be configured with at least one writable property
that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = (any value N: 1 ≤ N ≤ the size of the array)
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,
 ‘Object Identifier’ = Object1,
 ‘Property Identifier’ = P1,
 ‘Property Array Index’ = N(any value N: 1 ≤ N ≤ the size of the array)
 ‘Property Value’ = (any valid value of the correct datatype subject to the restrictions specified
 in the EPICS as defined in 4.4.2 for this array, except the value X read

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

498 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 for this element in step 1)
3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. VERIFY (Object1), P1 = (the value used in step 2), ARRAY INDEX = N

[Change Clause 9.22.1.2, p. 411]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.22.1.2 Writing a Commandable Property Without a Priority
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is commandable, but a priority
is not specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is commandable and has no internal
algorithm writing to it at priority 16. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports commandable properties that have no internal algorithm writing at
priority 16, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), Priority_Array, ARRAY INDEX = 16
1. VERIFY (Object1), Priority_Array =(the value defined for this property in the EPICS), ARRAY INDEX = 16
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = Present_Value,
 'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X read in step 1)
3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. VERIFY (Object1), Priority_Array = (the value used in step 2), ARRAY INDEX = 16

[Change Clause 9.22.1.3, p. 411]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.22.1.3 Writing a Non-Commandable Property with a Priority
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is not commandable but a priority
is specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is not commandable and has no
internal algorithm writing to it. If no suitable property can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports non-commandable properties that have no internal algorithm writing to them,
it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Priority' = (any valid priority)
 'Property Value' = (any valid value defined for this property subject to the restrictions specified in the EPICS
 as defined in 4.4.2, except the value X read in step 1)
3. RECEIVE BACnet-BACnet-SimpleACK-PDU
4. VERIFY (Object1), P1 = (the value used in step 2)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 499

[Add new Clause 9.22.1.X1, p. 411]

9.22.1.X1 Writing an Array Size
Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-
fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This property
is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties, it shall be configured with at least
one writable non-fixed size array property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = 0
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Array Index' = 0
 'Property Value' = (any valid array size defined for this property subject to the
 restrictions specified in the EPICS as defined in 4.4.2,
 except the value verified in step 1)
3. RECEIVE BACnet-SimpleACK-PDU
4. VERIFY (Object1), P1[0] = (the value used in step 2)

[Add new Clause 9.22.1.X2, p. 411]

[Reviewer Note: Added a general WriteProperty test that can be used in a variety of situations.]

9.22.1.X2 Writing to Properties Based on Data Type
Purpose: This test case verifies that the IUT can execute WriteProperty service requests to specific data types supported by the
IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of that
data type. This property is designated P1.

Configuration Requirements: The IUT shall be configured with at least one writable property of the specified data type to be
used for this test.

Test Steps:

1. X = READ (Object1), P1
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value defined for this property subject to the
 restrictions specified in the EPICS as defined in 4.4.2,
 except the value X determined in step 1)
3. RECEIVE BACnet-SimpleACK-PDU
4. VERIFY (Object1), P1 = (the value used in step 2)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

500 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.22.2 Negative WriteProperty Service Execution Tests

[Change Clause 9.22.2.1, p. 411]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.22.2.1 Writing Non-Array Properties with an Array Index
Purpose: To verify that the IUT can execute WriteProperty service requests when the property value is not an array but an
ARRAY INDEXarray index is included in the service request.

Test Concept: The TD shall select an object in the IUT that contains a writable scalar property designated P1. An attempt will
be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least
one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),
 'Property Array Index' = (any positive integer)
3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN
 RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = PROPERTY_IS_NOT_AN_ARRAY
 ELSE
 RECEIVE BACnet-Error PDU,
 'Error Class' = SERVICES,
 'Error Code' = INCONSISTENT_PARAMETERS
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

[Change Clause 9.22.2.2, p. 412]

[Reviewer Note: Modified test to remove dependency on EPICS values. Fixed array index descrption per BTL-CR-0373.]

9.22.2.2 Writing Array Properties with an Array Index that is Out of Range
Purpose: To verify that the IUT can execute WriteProperty service requests when the requested property value is an array but
the ARRAY INDEXarray index is out of range.

Test Concept: The TD shall select an object in the IUT that contains a writable array property designated P1. An attempt will
be made to write to this property using an array index that is out of range. If no suitable object can be found, then this test shall
be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one
such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 501

2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any value of the correct datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),
 'Property Array Index' = (any value positive integer that is larger thanthat the currentsupported size ofif the array)
3. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

[Change Clause 9.22.2.3, p. 412]

[Reviewer Note: Updated Test Concept and Added Configuration Requirements.]

9.22.2.3 Writing with a Property Value Having the Wrong Datatype
Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be
made to write to this property using a datatype that the IUT supports but which is invalid for the property which is not compliant
with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property definition.
If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any value with an invalid datatype)
3. RECEIVE
 (BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_PARAMETER_DATATYPE) |
 (BACnet-Reject-PDU
 Reject Reason = INVALID_TAG)
4. VERIFY (Object1), P1 = VX

[Change Clause 9.22.2.4, p. 413]

[Reviewer Note: Modified test to remove dependency on EPICS values. Modified to allow
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED in some specific cases.]

9.22.2.4 Writing with a Property Value that is Out of Range
Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is
outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range. If the IUT does not
contain any writable properties that have restricted ranges, then this test shall be skipped.

Notes to Tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct, for
Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed values, the

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

502 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

constructed value shall match the structure defined by the ASN.1, and all field values shall be within the ranges defined by the
standard for those field values.
In this test, the error code OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED is permitted only if the value written would
require the device to exhibit non-supported optional functionality.

Test Steps:

1. READ X = (Object1), P1
 1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS),
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (Object1, any object with writable properties),
 'Property Identifier' = (P1, any writable property with a restricted range of values),
 'Property Value' = (any value, of the correct datatype, that is outside the supported range)
3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN
 RECEIVE
 (BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE) |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED)
 ELSE
 RECEIVE
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE) |
 (BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |
 (BACnet-Reject-PDU,
 Reject Reason = PARAMETER_OUT_OF_RANGE)
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

Notes to Tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct, for
Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed values, the
constructed value shall match the structure defined by the ASN.1 and all field values shall be within the ranges defined by the
standard for those field values.

[Add new Clause 9.22.2.X1, p. 415]

[Reviewer Note: Existing test 9.22.2.1 forbids the testing of a read-only property, to observe the response when an array
index is included in the service request.]

9.22.2.X1 Writing Non-Array Read-only Property with an Array Index
Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value when the property value
is not an array, but an array index is included in the service request, and the property specified in the service request is not
writable.

Test Concept: Select an object, designated Object1, in the IUT that contains a non-writable scalar property designated P1. An
attempt will be made to write to this property with an array index included. If no object supports non-writable scalar properties,
then this test shall be omitted.

Test Steps:

1. TRANSMIT WriteProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any value of the correct datatype for this property)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 503

 'Property Array Index' = (any positive integer)
2. IF (Protocol_Revision is present and Protocol_Revision ≥ 4) THEN
 RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED | PROPERTY_IS_NOT_AN_ARRAY
 ELSE
 RECEIVE (BACnet-Error PDU,
 'Error Class' = SERVICES,
 'Error Code' = INCONSISTENT_PARAMETERS) |
 (BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED | PROPERTY_IS_NOT_AN_ARRAY)

[Add new Clause 9.22.2.X2, p. 415]

9.22.2.X2 Resizing a writable fixed size array property
Purpose: This test case verifies that the IUT correctly responds to an attempt to resize a writable fixed size array property using
WriteProperty service.

Test Concept: Select an object (O1) in the IUT that contains a writable array property of a fixed size. This property is designated
P1. If no suitable object can be found, then this test shall be omitted.

Test Steps:

1. READ X = (O1), P1 ARRAY INDEX = 0
2. WRITE P1= (Entire Array with any valid value greater than Array Size X)
3. RECEIVE BACnet-Error-PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE
4. VERIFY (O1), P1= X, ARRAY INDEX = 0
5. WRITE P1= (Entire Array with any valid value less than Array Size X)
6. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE
7. VERIFY (O1), P1= X, ARRAY INDEX = 0
8. WRITE P1 = (any valid value greater than Array Size X), ARRAY INDEX=0
9. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE | WRITE_ACCESS_DENIED
10. VERIFY (O1), P1= X, ARRAY INDEX = 0,
11. WRITE P1 = (any valid value less than Array Size X), ARRAY INDEX=0
12. RECEIVE BACnet-Error PDU,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE | WRITE_ACCESS_DENIED
13. VERIFY (O1), P1= X, ARRAY INDEX = 0

[Add new Clause 9.22.2.X4, p. 415]

[Reviewer Note: No test exists in the actual test plan when a strong indication by the explicit mention of PROPERTY
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED is mentioned in Clause 12.]

9.22.2.X4 Writing a Property Value Related to Non-supported Optional Functionality
Purpose: To verify that the IUT responds correctly to WriteProperty service requests when the value provided would require
the device to exhibit non-supported optional functionality.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

504 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Concept: A writable property, P1, is selected for which the standard defines optional behavior which the IUT does not
support, and the writing of specific values to the property would require the device to exhibit the non-supported behavior. The
TD attempts to write to the property using a selected value, V1, which would require the IUT to exhibit non-supported optional
functionality.

Test Steps:

1. READ X = (Object1), P1
2. TRANSMIT WriteProperty-Request,
 'Object Identifier' = (Object1, the object containing a writable P1),
 'Property Identifier' = (P1, any writable property with a restricted range of values),
 'Property Value' = (V1, a value that would require a non-supported optional functionality)
3. RECEIVE BACnet-Error-PDU
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
4. VERIFY (Object1), P1 = X

9.23 WritePropertyMultiple Service Execution Tests

9.23.1 Positive WritePropertyMultiple Service Execution Tests

[Change Clause 9.23.1.1, p. 415]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.1.1 Writing a Single Property to a Single Object
Purpose: To verify the ability to write a single property to a single object.

Test Concept: This test case attempts to write to a single scalar property, P1, that is not commandable. If no such writable
property exists, the test can be modified to write to an array property or to a commandable property with a write priority high
enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured
with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1)
3. RECEIVE BACnet-Simple-ACK-PDU
4. VERIFY (Object1), P1 = (the value specified in step 2)

[Change Clause 9.23.1.2, p. 416]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 505

9.23.1.2 Writing Multiple properties to a Single Object
Purpose: To verify the ability to write multiple properties to a single object.

Test Concept: This test case attempts to write to multiple scalar properties, P1 and P2, that are not commandable. If two such
writable properties don't exist, the test can be modified to write to an array property or to a commandable property with a write
priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any object that has two writable scalar properties that are not commandable
it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured, if possible,
with writable array or commandable properties and the test steps modified to account for this variation. If no object type is
supported that has two or more writable properties this test may be omitted. The IUT must support either the configuration
required for this test or a configuration required for test 9.23.1.3

Test Steps:

1. READ X = (Object1), P1
2. READ Y = (Object1), P2
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)
4. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
5. VERIFY (Object1), P1 = (the value specified for P1 in step 23)
6. VERIFY (Object1), P2 = (the value specified for P2 in step 23)

[Change Clause 9.23.1.3, p. 416]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.1.3 Writing a Single Property to Multiple Objects
Purpose: To verify the ability to write a single property from multiple objects.

Test Concept: This test case attempts to write to single scalar properties, P1 and P2, that reside in different objects but are not
commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a
commandable property with a write priority high enough to ensure that the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1
2. READ Y = (Object2), P2
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. VERIFY (Object2), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Object Identifier' = Object2,
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)
4. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

506 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)
6. VERIFY (Object2), P2 = (the value specified for P2 in step 3)

[Change Clause 9.23.1.4, p. 416]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.1.4 Writing Multiple Properties to Multiple Objects
Purpose: To verify the ability to write multiple properties to multiple objects.

Test Concept: This test case attempts to write properties, P1 and P2, that reside in Object1, and properties P3 and P4 that
reside in Object2. P1, P2, P3 and P4 are not commandable properties. If four such writable properties do not exist, the test
can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that
the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1
2. READ Y = (Object1), P2
3. READ Z = (Object2), P3
4. READ A = (Object2), P4
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)
3. VERIFY (Object2), P3 = (the value specified for this property in the EPICS)
4. VERIFY (Object2), P4 = (the value specified for this property in the EPICS)
5. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2),
 'Object Identifier' = Object2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value Z except for the one read in step 3),
 'Object Identifier' = Object2,
 'Property Identifier' = P4,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value A except for the one read in step 4)
6. RECEIVE BACnet-BACnet-SimpleACK-PDU
7. VERIFY (Object1), P1 = (the value specified for P1 in step 5)
8. VERIFY (Object1), P2 = (the value specified for P2 in step 5)
9. VERIFY (Object2), P3 = (the value specified for P3 in step 5)
10. VERIFY (Object2), P4 = (the value specified for P4 in step 5)

[Change Clause 9.23.1.7, p. 417]

[Reviewer Note: the test should not mandate that the writable property be in the device object.]

9.23.1.7 Writing Maximum Multiple Properties
Purpose: This test case verifies that IUT does not arbitrarily restrict the number of properties that can be written to it using a
single WritePropertyMultiple request, to object O1.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 507

Test Concept: A writable property is written to an object in the IUT as many times as can be conveyed in the largest request
accepted by the IUT. The calculation of the maximum request size shall be based on the IUT's Max_APDU_Length_Accepted
and maximum segments per request.

The procedure to determine the number of values to use is:

 MaxAPDU = IUT’s Max_APDU_Length_Accepted
 MaxRxSegs = IUT’s maximum segments accepted per request
 MaxTxSegs = IUT’s maximum segments generated per response

 NonSegRqstHdrSize = size of (non-segmented BACnetConfirmed-RequestPDU header) = 4
 SegRqstHdrSize = size of (segmented BACnetConfirmed-RequestPDU header) = 6
 ObjIdSize = size of (an Object-Identifier) = 5
 TagsSize = size of (an open and a close tag) = 2

 PropIdSize = size of (chosen property Id) = depends on property ID and includes ARRAY INDEX size if required
 ValueSize = size of (chosen property value) = depends on property and value chosen

If the IUT does not support receiving segmented requests:
 NumPropertiesToWrite =

(MaxAPDU – NonSegRqstHdrSize – ObjIdSize – TagsSize) / (PropIdSize + TagsSize + ValueSize) =
(MaxAPDU – 11) / (PropIdSize + 2 + ValueSize)

If the IUT does support receiving segmented requests:
 NumPropertiesToWrite =

((MaxAPDU – SegRqstHdrSize) * MaxRxSegs – ObjIdSize – TagsSize) / PropIdSize =
((MaxAPDU – 6) * MaxRxSegs – 7) / 2

Test Steps:

1. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = (Device, XO1),
 'Property Identifier' = P1,
 'Priority Array Index' = A1, -- only if required
 'Property Value' = V1,
 …
 'Property Identifier' = P1,
 'Priority Array Index' = A1, -- only if required
 'Property Value' = V1
2. RECEIVE Simple-ACKBACnet-SimpleACK-PDU
3. VERIFY (P1 = V1)O1, P1 = V1

[Add new Clause 9.23.1.X4, p. 418]

9.23.1.X4 Writing an Array Size
Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to the array size of a writable,
non-fixed size array property.

Test Concept: Repeat test 9.22.1.X1 Writing an Array Size using WritePropertyMultiple instead of WriteProperty.

9.23.2 Negative WritePropertyMultiple Service Execution Tests

[Change Clause 9.23.2.1, p. 419]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

508 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.2.1 Writing Multiple Properties with a Property Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for an unsupported property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable. The
second property is not supported for this object. The objective is to verify that an appropriate error response is returned and
that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured
with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to
designate the object, P1 the writable property, and P2 the unsupported property used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY,
 'Object Identifier' = Object1,
 'Property Identifier' = P2
4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

[Change Clause 9.23.2.2, p. 419]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.2.2 Writing Multiple Properties with an Object Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for an unsupported object.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is supported and the
property is writable. The second object is not supported. The objective is to verify that an appropriate error response is returned
and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured
with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description Object1 and P1 will be
used to designate the writable object and property used for this test. The designation BadObject will be used to indicate an
object that is not supported.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 509

2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Object Identifier' = BadObject,
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT,
 'Object Identifier' = BadObject,
 'Property Identifier' = P2
4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

[Change Clause 9.23.2.3, p. 420]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.23.2.3 Writing Multiple Properties with a Write Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for a read only property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.
The second property is supported but read only. The objective is to verify that an appropriate error response is returned and
that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured
with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to
designate the object, P1 the writable property, and P2 the read only property used for this test.

Test Steps:

1. READ X = (Object1), P1
2. READ Y = (Object1), P2
1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),
 'Property Identifier' = P2,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 1)
4. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED,
 'Object Identifier' = Object1,
 'Property Identifier' = P2
5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)
6. VERIFY (Object1), P2 = Y(the value specified for this property in the EPICS)

[Change Clause 9.23.2.4, p. 420]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

510 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

[Reviewer Note: Modified test to remove dependency on EPICS values. Added Property Array Index to error received.]

9.23.2.4 Writing Non-Array Properties with an Array Index
Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property value is not
an array but an array index is included in the service request. This test shall only be performed if Protocol_Revision is present
and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable scalar property designated
P1 having a value X. An attempt will be made to write to this property using an array index Y. If no suitable object can be
found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least
one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),
 'Property Array Index' = (Y, any positive integer)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = PROPERTY_IS_NOT_AN_ARRAY,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Array Index' = Y
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

[Change Clause 9.23.2.5, p. 421]

[Reviewer Note: Modified test to remove dependency on EPICS values. Fixed array index description per BTL-CR-0373.]

9.23.2.5 Writing Array Properties with an Array Index that is Out of Range
Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the requested property
value is an array, but the array index is out of range. This test shall only be performed if Protocol_Revision is present and has
a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable array property designated
P1 having value X. An attempt will be made to write to this property using an array index, Y, that is out of range. If no suitable
object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one
such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 511

 'Property Array Index' = (Y, any valuepositive integer that is larger thanthat the currentsupported size of the array)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Array Index' = Y
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

[Change Clause 9.23.2.6, p. 421]

[Reviewer Note: Added configuration requirements to clarify usage.]

9.23.2.6 Writing with a Property Value Having the Wrong Datatype
Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid
datatype.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.
An attempt will be made to write to this property using a datatype that the IUT supports but which is invalid for the property
which is not compliant with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property definition.
If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = P1,
 'Property Value' = (any value with an invalid datatype)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_DATATYPE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1
 | (BACnet-Reject-PDU
 'Reject Reason' = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 'Reject Reason' = INVALID_TAG)
4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

[Change Clause 9.23.2.7, p. 422]

[Reviewer Note: Modified test to remove dependency on EPICS values. Modified to allow this test to be used on all protocol
revisions. Modified to allow OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED in some specific cases.]

9.23.2.7 Writing with a Property Value that is Out of Range
Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when an attempt is made to
write a value that is outside of the supported range. This test shall only be performed if Protocol_Revision is present and has
a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.
The TD attempts to write to a property using a value that is outside of the supported range.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

512 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Notes to Tester: In this test, the error code OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED is permitted only if the value
written would require the device to exhibit non-supported optional functionality.

Test Steps:

1. READ X = (Object1), P1
1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS),
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = (Object1, any object with writable properties),
 'Property Identifier' = (P1, any property with a restricted range of values),
 'Property Value' = (any value that is outside the supported range)
3. IF (Protocol_Revision < 4) THEN
 RECEIVE
 (WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1) |
 (WritePropertyMultiple-Error,
 'Error Class' = PREOPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED,
 'Object Identifier' = Object1,
 'Property Identifier' = P1) |
 (BACnet-Reject-PDU,
 'Reject Reason' = PARAMETER_OUT_OF_RANGE)
 ELSE
 RECEIVE
 (WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1) |
 (WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED,
 'Object Identifier' = Object1,
 'Property Identifier' = P1)
4. VERIFY (OBJECT1), P1 = X(the value defined for this property in the EPICS)

[Add new Clause 9.23.2.X1, p. 424]

9.23.2.X1 WritePropertyMultiple Reject Test
Purpose: This test case verifies that the IUT does not send a Reject-PDU after applying part of a WritePropertyMultiple.

Test Concept: Two writable properties, P1 and P2, are written to the IUT, but the portion of the WritePropertyMultiple
specifying P2 is made invalid by omitting the ‘Property Value’ parameter. If the IUT returns a Reject, then the value of the first
property is checked to ensure it has not changed.

Test Steps:

1. READ OldValue = O1, P1
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (NewValue: any value other than OldValue that would be accepted by
 the IUT for P1)
 'Object Identifier' = O2,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 513

 'Property Identifier' = P2
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = SERVICES,
 'Error Code' = INVALID_TAG
 'Object Identifier' = O2
 'Property Identifier' = P2) |
 RECEIVE BACnet-Reject-PDU,
 'Reject Reason' = INVALID_TAG | MISSING_REQUIRED_PARAMETER
 | INCONSISTENT_PARAMETERS | INVALID_PARAMETER_DATA_TYPE
 | TOO_MANY_ARGUMENTS)
4. IF (a WritePropertyMultiple-Error was received in step 3) THEN
 VERIFY (O1), P1 = NewValue
 ELSE -- a Reject-PDU was received
 VERIFY (O1), P1 = OldValue

[Add new Clause 9.23.2.X2, p. 424]

9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service
Purpose: This test case verifies that the IUT correctly responds to an attempt to resize a writable fixed size array property using
WritePropertyMultiple service.

Test Concept: Select an object(O1) in the IUT that contains a writable array property of a fixed size. This property is designated
P1. If no suitable object can be found, then this test shall be omitted.

Test Steps:

1. READ X = (O1), P1, ARRAY INDEX = 0
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,
'Property Identifier' = P1,
'Property Value' = (Entire Array with any valid value greater than Array Size X)

3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,

'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE,
'ObjectIdentifier' = O1,
'PropertyIdentifier' = P1

4. VERIFY (O1), P1= X, ARRAY INDEX = 0
5. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,
'Property Identifier' = P1,
'Property Value' = (Entire Array with any valid value less than Array Size X)

6. RECEIVE WritePropertyMultiple-Error,
 'Error Class’ = PROPERTY,

'Error Code’ = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE,
'ObjectIdentifier' = O1,
'PropertyIdentifier' = P1

7. VERIFY (O1), P1= X, ARRAY INDEX = 0
8. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,
'Property Identifier' = P1,
'Property Value' = (any valid value greater than Array Size X),
'Property Array Index' = 0

9. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,

'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE,
'ObjectIdentifier' = O1,
'PropertyIdentifier' = P1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

514 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

'Property Array Index’=0
10. VERIFY (O1), P1= X, ARRAY INDEX = 0
11. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,
'Property Identifier' = P1,
'Property Value' = (any valid value less than Array Size X),
'Property Array Index' = 0

12. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,

'Error Code' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE,
'ObjectIdentifier' = O1,
'PropertyIdentifier' = P1
'Property Array Index’= 0

13. VERIFY (O1), P1= X, ARRAY INDEX = 0

[Add new Clause 9.23.2.X3, p. 424]

9.23.2.X3 Writing first element of 'List of Write Access Specifications' with Object Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the first element of the
'List of Write Access Specifications' contains a specification for an unsupported object and all writes after the first failed write
attempt do not take place.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is not supported. The
second object is supported, and the property is writable. The objective is to verify that an appropriate error response is returned
and that all writes after the first failed write attempt do not take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured
with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description O2 and P2 will be used
to designate the writable object and property having value X used for this test. The designation Bad Object will be used to
indicate an object that is not supported or not present in IUT databaseP1 is any valid Property Identifier.

Test Steps:

1. VERIFY (O2), P2 = X
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = BadObject,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2)
 'Object Identifier' = O2,
 'Property Identifier' = P2,
 'Property Value' = (any valid value not equal to X),
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT,
 'Object Identifier' = BadObject,
 'Property Identifier' = P1 |
 (RECEIVE WritePropertyMultiple-Error,
 'Error Class' = OBJECT,
 'Error Code' = UNSUPPORTED_OBJECT_TYPE,
 'Object Identifier' = BadObject,
 'Property Identifier' = P1)
4. VERIFY (O2), P2 = X

[Add new Clause 9.23.2.X4, p. 424]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 515

9.23.2.X4 Writing first element of 'List of Write Access Specifications' with a Write Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the first element of the
'List of Write Access Specifications' contains a specification for a read only property and all writes after the first failed write
attempt do not take place.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported but read only.
The second property is supported and writable. The objective is to verify that an appropriate error response is returned and that
all writes after the first failed write attempt do not take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable, it shall be configured
with one for use in this test. If no such properties are supported, the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description, O1 will be used to
designate the object, P1 the read only property having value X, P2 the writable property having value Y used for this test.

Test Steps:

1. VERIFY (O1), P1= X
2. VERIFY (O1), P2=Y
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = X,
 'Property Identifier' = P2,
 'Property Value' = (any valid value not equal to Y)
4. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = WRITE_ACCESS_DENIED,
 'Object Identifier' = O1,
 'Property Identifier' = P1
5. VERIFY (O1), P2 = Y

[Add new Clause 9.23.2.X5, p. 424]

9.23.2.X5 WritePropertyMultiple Reject Test for first element of 'List of Write Access Specifications'
Purpose: This test case verifies that if IUT does sends a Reject-PDU or Error-PDU, then the write attempt for the remaining
element of 'List of Write Access Specifications' do not take place.

Test Concept: Two writable properties, P1 having value X and P2 having value Y, are written to the IUT, but the portion of the
WritePropertyMultiple specifying P1 is made invalid by omitting the 'Property Value' parameter. The value of the properties
are checked to ensure that it has not changed.

Test Steps:

1. VERIFY (O1), P1= X
2. VERIFY (O2), P2=Y
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Object Identifier' = O2,
 'Property Identifier' = P2
 'Property Value' = (Any valid value not equal to Y))
4. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = SERVICES,
 'Error Code' = INVALID_TAG
 'Object Identifier' = O1
 'Property Identifier' = P1) |

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

516 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 (RECEIVE BACnet-Reject-PDU,
 'Reject Reason' = INVALID_TAG | MISSING_REQUIRED_PARAMETER
 | INCONSISTENT_PARAMETERS | INVALID_PARAMETER_DATA_TYPE
 | TOO_MANY_ARGUMENTS)
4. VERIFY (O1), P1 = X
5. VERIFY (O2), P2 = Y

[Add new Clause 9.23.2.X6, p. 424]

9.23.2.X6 Writing first element of 'List of Write Access Specifications' with a Property Access Error
Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the first element of the
'List of Write Access Specifications' contains a specification for an unsupported property and all writes after the first failed
write attempt do not take place.

Test Concept: An attempt is made to write to two properties in a single object. The first property is not supported for this object.
The second property is supported for this object and writable. The objective is to verify that an appropriate error response is
returned and that all writes after the first failed write attempt do not take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable, it shall be configured
with one for use in this test. If no such properties are supported, the IUT shall be configured with a writable array or
commandable property and the test steps modified to account for this variation. In the test description, O1 will be used to
designate the object, P1 the unsupported property, and P2 the writable property having value X used.

Test Steps:

1. VERIFY (O1), P2 = X
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
 specified in the EPICS as defined in 4.4.2)
 'Property Identifier' = P2,
 'Property Value' = (any valid value not equal to X),
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY,
 'Object Identifier' = O1,
 'Property Identifier' = P1
4. VERIFY (O1), P2 = X

[Add new Clause 9.23.2.X7, p. 424]

9.23.2.X7 Writing a Property Value to a Non-supported Optional Functionality
Purpose: To verify that the IUT can execute WritePropertyMultiple service requests when an attempt is made to write a value
that would require a non-supported optional functionality

Test Concept: The TD attempts to write to a property using a value that would require a non-supported optional functionality.

Test Steps:

1. READ X = (Object1), P1
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = (Object1, any object with writable properties),
 'Property Identifier' = (P1, any property with a restricted range of values),
 'Property Value' = (a value that would require a non-supported optional functionality)
3. RECEIVE WritePropertyMultiple-Error,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 517

 'Error Class' = PROPERTY,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 'Object Identifier' = Object1,
 'Property Identifier' = P1
4. VERIFY (Object1), P1 = X

[Add new Clause 9.23.2.X9, p. 424]

9.23.2.X9 Date Non-Pattern Properties Test using WritePropertyMultiple Service
Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value, V1,
written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a
complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied
to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: if P1 is an array, then a non-zero array index may be provided in the TRANSMIT and the same array index
observed in the WritePropertyMultiple-Error.

Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified,
 day of week unspecified, odd months, even months, last day of month,
 even days, odd days) DO {
2. TRANSMIT WritePropertyMultiple-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (V1 updated with the special value SV)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1)
 | (BACnet-Reject-PDU
 'Reject Reason' = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 'Reject Reason'= INVALID_TAG)
 }

[Add new Clause 9.23.2.X10, p. 424]

9.23.2.X10 Time Non-Pattern Properties Test using WritePropertyMultiple Service
Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property
does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value,
V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a
complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied
to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: if P1 is an array, then a non-zero array index may be provided in the TRANSMIT and the same array index
observed in the WritePropertyMultiple-Error.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

518 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) Do {
2. TRANSMIT WritePropertyMultiple-Request
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (V1 updated with the special value SV)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1
 | (BACnet-Reject-PDU
 'Reject Reason' = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 'Reject Reason'= INVALID_TAG)
}

[Add new Clause 9.23.2.X11, p. 424]

9.23.2.X11 DateTime Non-Pattern Properties Test using WritePropertyMultiple Service
Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special datetime field values to ensure that the property
does not accept them. A datetime DT1 is selected which is within the range that the IUT will accept for the property. The value,
V1, written to the property is the datetime DT1 with one of its fields replaced with one of the date or time special values. If the
property is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall
only be applied to devices claiming Protocol_Revision 11 or higher.

Notes to Tester: if P1 is an array, then a non-zero array index may be provided in the TRANSMIT and the same array index
observed in the WritePropertyMultiple-Error.

Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days, hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
2. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = P1,
 'Property Value' = (DT1 updated with the special value SV)
3. RECEIVE WritePropertyMultiple-Error,
 'Error Class' = PROPERTY,
 'Error Code' = VALUE_OUT_OF_RANGE,
 'Object Identifier' = Object1,
 'Property Identifier' = P1)
 | (BACnet-Reject-PDU
 'Reject Reason' = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 'Reject Reason'= INVALID_TAG)
 }

[Add new Clause 9.23.2.X12, p. 424]

9.23.2.X12 BACnetDateRange Non-Pattern Properties Test using WritePropertyMultiple Service
Purpose: To verify that the property being tested does not accept special date field values, except for fully unspecified start of
the range or fully unspecified end of the range, or both.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 519

Test Concept: A BACnetDateRange property, or property that is a complex datatype containing BACnetDateRange P1 is
written with each of the special field values to ensure that the property does not accept them. Each half of the dateRange DR1
is selected so it is within the range that the IUT will accept for the property. The value, V1, written to the property is the
dateRange DR1 with one of its fields replaced with one of the date special values. If the property is a complex datatype, the
other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied to devices claiming
Protocol_Revision 11 or higher.

Notes to Tester: if P1 is an array, then a non-zero array index may be provided in the TRANSMIT and the same array index
observed in the WritePropertyMultiple-Error.

Test Steps:

5. REPEAT SV = (year unspecified, month unspecified, day of month unspecified,
 day of week unspecified, odd months, even months, last day of month,
 even days, odd days) DO {

6. TRANSMIT WritePropertyMultiple-Request,
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = P1,
 ‘Property Value’ = (DR1 with startDate updated with special value SV)

7. RECEIVE WritePropertyMultiple-Error,
 ‘Error Class’ = PROPERTY,
 ‘Error Code’ = VALUE_OUT_OF_RANGE,
 ‘Object Identifier’ = Object1,
 ‘Property Identifier’ = P1
 | (BACnet-Reject-PDU
 ‘Reject Reason’ = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 ‘Reject Reason’= INVALID_TAG)

8. TRANSMIT WritePropertyMultiple-Request,
 ‘Object Identifier’ = O1,
 ‘Property Identifier’ = P1,
 ‘Property Value’ = (DR1 with endDate updated with special value SV)

9. RECEIVE WritePropertyMultiple-Error,
 ‘Error Class’ = PROPERTY,
 ‘Error Code’ = VALUE_OUT_OF_RANGE,
 ‘Object Identifier’ = Object1,
 ‘Property Identifier’ = P1)
 | (BACnet-Reject-PDU
 ‘Reject Reason’ = INVALID_PARAMETER_DATATYPE)
 | (BACnet-Reject-PDU
 ‘Reject Reason’= INVALID_TAG)
}

9.24 DeviceCommunicationControl Service Execution Test

9.24.1 Positive DeviceCommunicationControl Service Execution Tests

[Change Clause 9.24.1.5, p. 426]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.24.1.5 Finite Time Duration Restored by ReinitializeDevice
Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when a finite time
duration is specified and communication is restored using the ReinitializeDevice service.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

520 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. READ Y = (Device, X), Object_Name
2. TRANSMIT DeviceCommunicationControl-Request,
 'Time Duration' = (a value T > 1, in minutes, selected by the tester)
 'Enable/Disable' = DISABLE,
 'Password' = (any appropriate password as described in the Test Concept)
3. RECEIVE BACnet-SimpleACK-PDU
4. WAIT Internal Processing Fail Time
5. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (Device, X),
 'Property Identifier' = (any required non-array property of the Device object)
6. WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester, and < T as specified in the
 DeviceCommunicationControl-Request)
7. CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2.)
8. TRANSMIT ReinitializeDevice-Request,
 'Reinitialize State of Device' = WARMSTART,
 'Password' = (any appropriate password as described in the Configuration Requirements)
9. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
10. CHECK (Did the IUT perform a WARMSTART reboot?)
11. VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property as described in
the EPICS)

[Add new Clause 9.24.1.11, p. 429]

[Reviewer Note: This new test addressed the requirement of 135-2016bi-2 and BTL-CR-0492].

9.24.1.11 Ensure that DISABLE option is not supported by IUT claiming PR >= 20
Purpose: To verify that IUT claiming Protocol Revision (PR) greater than or equal to 20, does not accept Enable/Disable’
parameter equal to DISABLE in the DeviceCommunicationControl request.

Test Concept: Send DeviceCommunicationControl request with ‘Enable/Disable’ parameter equal to DISABLE to IUT. Then
IUT is verified that it correctly responds with a Result(-).

Configuration Requirements: If the IUT does not support an internal clock this test shall be tested with indefinite time duration.

Test Steps:

1. TRANSMIT DeviceCommunicationControl-Request
 'Time Duration' = (a value T>1, in minutes) | (no value)
 'Enable/Disable'= DISABLE,
 'Password' = Any appropriate password if required
2. RECEIVE BACnet-Error-PDU
 Error Class = SERVICES,
 Error Code = SERVICE_REQUEST_DENIED
3. VERIFY (Device, X), System_Status = (any valid value)

[Add new Clause 9.24.1.12, p. 429]

9.24.1.12 Disable of Service Initiation Restored by ReinitializeDevice
Purpose: To verify the correct execution of the DeviceCommunicationControl service when DISABLE_INITIATION is
requested with a finite time duration. Communication is restored using the ReinitializeDevice service.

Configuration Requirements: The IUT shall be configured to initiate client requests.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 521

Test Steps:

1. MAKE (a condition that would normally cause the IUT to initiate requests)
2. CHECK (that the IUT is initiating requests)
3. TRANSMIT DeviceCommunicationControl-Request,
 'Time Duration' = (a value in minutes > time required to execute all test steps),
 'Enable/Disable' = DISABLE_INITIATION,
 'Password' = (any appropriate password if required)
4. RECEIVE BACnet-SimpleACK-PDU
5. MAKE (a condition that would normally cause IUT to initiate requests)
6. CHECK (that the IUT has stopped initiating requests)
7. VERIFY (any supported property) = (any valid value)
8. TRANSMIT Who-Is-Request
9. RECEIVE I-Am-Request
10. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
 'Password' = (any appropriate password)
11. RECEIVE BACnet-SimpleACK-PDU
12. CHECK (Did the IUT perform a WARMSTART reboot?)
13. MAKE (a condition that would normally cause the IUT to initiate requests)
14. CHECK (that the IUT is initiating requests)

9.24.2 Negative DeviceCommunicationControl Service Execution Tests

[Change Clause 9.24.2.1, p. 429]

[Reviewer Note: Modified the parameter value from DISABLE to DISABLE_INITIATION in step 1.]

9.24.2.1 Invalid Password
Purpose: To verify the correct execution of DeviceCommunicationControl service procedure when an invalid password is
provided. If the IUT does not provide password protection this test case shall be omitted.

Test Steps:

1. TRANSMIT DeviceCommunicationControl-Request,
 'Enable/Disable' = DISABLE_INITIATION, DISABLE
 'Password' = (any invalid password)
2. RECEIVE BACnet-Error-PDU,
 Error Class = SECURITY,
 Error Code = PASSWORD_FAILURE
3. VERIFY (Device, X), System_Status = (any valid value)

[Change Clause 9.24.2.2, p. 429]

[Reviewer Note: Modified the parameter value from DISABLE to DISABLE_INITIATION in step 1.]

9.24.2.2 Missing Password
Purpose: To verify the correct execution of DeviceCommunicationControl service procedure when a password is required but
not provided. If the IUT does not provide password protection, then this test case shall be omitted.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

522 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. TRANSMIT DeviceCommunicationControl-Request,
 'Enable/Disable' = DISABLE_INITIATION DISABLE
2. IF (Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 Error Class = SECURITY,
 Error Code = PASSWORD_FAILURE
ELSE
 RECEIVE BACnet-Error-PDU,
 Error Class = SECURITY,
 Error Code = PASSWORD_FAILURE |
 (RECEIVE BACnet-Error-PDU,
 Error Class = SERVICES,
 Error Code = MISSING_REQUIRED_PARAMETER)
3. VERIFY (Device, X), System_Status = (any valid value)

[Change Clause 9.24.2.3, p. 430]

[Reviewer Note: Added support for additional error codes.]

9.24.2.3 Restore by ReinitializeDevice with Invalid 'Reinitialized State of Device'
Purpose: To verify the communications are not restored when a ReinitializeDevice request is received that contains one of the
backup or restore related values for service parameter 'Reinitialized State of Device'.

Test Concept: Disable the IUT’s communications for a period time, T, longer than it will take to complete the test. Verify that,
while communications are disabled, the IUT correctly responds with a Result(-) when it receives a ReinitializeDevice request
containing a backup or restore related values.

Test Steps:

1. TRANSMIT DeviceCommunicationControl-Request,
 'Enable/Disable' = DISABLE
 'Password' = (any appropriate password),
 'Time Duration' = (a value T >= 1, in minutes) | (no value)
2. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
3. WAIT Internal Processing Fail Time
4. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP | ENDBACKUP |
 STARTRESTORE | ENDRESTORE | ABORTRESTORE,
 'Password' = (any appropriate password)
5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 IF (Device supports DM-BR-B) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = COMMUNICATION_DISABLED
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = COMMUNICATION_DISABLED |
 OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 ELSE
 CHECK(that the IUT responded with BACnet-Error-PDU with an Error Class of SERVICES and any appropriate
Error Code of COMMUNICATION_DISABLE, or that the IUT did not respond at all)
6. TRANSMIT DeviceCommunicationControl-Request,
 'Enable/Disable' = ENABLE
 'Password' = (any appropriate password),
7. RECEIVE BACnet-Simple-ACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 523

9.25 ConfirmedPrivateTransfer Service Execution Tests

[Add new Clause 9.25.1, p. 430]

[Reviewer Note: New Clause number and title added so negative tests could be separated from positive tests.]

9.25.1 Positive ConfirmedPrivateTransfer Service Execute Tests

[Add new Clause 9.25.1.1, p. 430]

[Reviewer Note: Only the clause number and title were added. Except for the removal of the Dependencies and BACnet
Reference Clause sections, the content of 9.25.1.1 is identical to the original 9.25 test.]

9.25.1.1 Correctly Executes a Supported ConfirmedPrivateTransfer Service
Dependencies: None.

BACnet Reference Clause: 16.2.

Purpose: To verify the ability to correctly execute a ConfirmedPrivateTransfer service request.

Test Concept: The service procedure implied by a particular private transfer service is defined by the vendor. This test simply
verifies that an appropriate acknowledgment is returned and that any externally visible actions defined by the vendor are
observed.

Configuration Requirements: The IUT shall be configured to execute at least one ConfirmedPrivateTransfer service. The
service parameters that are to be provided in the request and a list of any externally visible actions that should be apparent to
the tester shall also be provided.

Test Steps:

1. TRANSMIT ConfirmedPrivateTransfer-Request,
 'Vendor ID' = (the Vendor_Identifier specified in the Device object of the
 EPICS),
 'Service Number' = (any service number provided by the vendor),
 'Service Parameters' = (the service parameters provided for this service)
2. RECEIVE ConfirmedPrivateTransfer-ACK,
 'Vendor ID' = (the Vendor_Identifier specified in the Device object of the
 EPICS),
 'Service Number' = (the service number used in step 1),
 'Result Block' = (the expected results provided by the vendor)
3. CHECK (Did the externally visible actions take place?)

[Add new Clause 9.25.2, p. 431]

[Reviewer Note: New Clause number and title added so negative tests could be separated from positive tests.]

9.25.2 Negative ConfirmedPrivateTransfer Service Execute Tests

[Add new Clause 9.25.2.1, p. 431]

[Reviewer Note: There is no existing test verifying correct error responses for unknown ConfirmedPrivateTransfer services.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

524 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.25.2.1 Correctly Executes a Non-Supported ConfirmedPrivateTransfer Service
Purpose: To verify that the IUT correctly responds with an error when an unsupported ConfirmedPrivateTransfer is received.

Test Concept: Send a non-supported ConfirmedPrivateTransfer request to the IUT and verify that it responds with an error or
rejects the service.

Test Steps:

1. TRANSMIT ConfirmedPrivateTransfer-Request,
 'Vendor ID' = (VID: any valid value not supported by the IUT),
 'Service Number' = (SID: any valid value, that when combined with Vendor ID is not supported by the IUT),
 'Service Parameters' = (any valid values)
2. RECEIVE
 (ConfirmedPrivateTransfer-Error,
 'Error Class' = any
 'Error Code' = any
 'Vendor ID' = (VID),
 'Service Number' = (SID),
 'Result Block' = (the expected results provided by the vendor)) |
 (BACnet-Reject-PDU,
 'Reject Reason' = any reason) |
 (BACnet-Abort-PDU
 'Abort Reason' = any reason)
3. CHECK (that the IUT exhibits the vendor defined results)

9.27 ReinitializeDevice Service Execution Tests

9.27.2 Negative ReinitializeDevice Service Execution Tests

[Remove Clause 9.27.2.1, p. 432]

9.27.2.1 COLDSTART with an Invalid Password
Purpose: To verify the correct execution of the ReinitializeDevice request service procedure when a COLDSTART is attempted
and an invalid password is provided. If the IUT does not provide password protection this test case shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = COLDSTART,
 'Password' = (any invalid password)
2. RECEIVE BACnet-Error-PDU,
 Error Class = SECURITY,
 Error Code = PASSWORD_FAILURE
3. CHECK (Did the IUT reboot?)

Notes to Tester: The IUT shall not reinitialize.

[Remove Clause 9.27.2.2, p. 433]

9.27.2.2 WARMSTART with an Invalid Password

Purpose: To verify the correct execution of the ReinitializeDevice request service procedure when a WARMSTART is
attempted and an invalid password is provided. If the IUT does not provide password protection this test case shall be omitted.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 525

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
 'Password' = (any invalid password)
2. RECEIVE BACnet-Error-PDU,
 Error Class = SECURITY,
 Error Code = PASSWORD_FAILURE
3. CHECK (Did the IUT reboot?)

Notes to Tester: The IUT shall not reinitialize.

[Change and renumber Clause 9.27.2.3, p. 433]

[Reviewer Note: Updated test to also test invalid password usage.]

9.27.2.39.27.2.1 COLDSTART with Missing or Invalid Password
Purpose: To verify that the correct BACnet Error PDU is returned when a COLDSTART is attempted, and the password is
invalid or a password is required but no password is provided.

Configuration Requirements: The IUT shall be configured to require a password for ReinitializeDevice.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = COLDSTART,
2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
 (BACnet-Error-PDU,
 'Error Class' = SERVIVCES,
 'Error Code' = MISSING_REQUIRED_PARAMETER)
3. CHECK (The IUT did NOT perform a COLDSTART reboot)
4. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = COLDSTART,
 ‘Password’ = (any invalid password)
5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
 (BACnet-Error-PDU,
 'Error Class' = SERVIVCES,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

526 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Code' = MISSING_REQUIRED_PARAMETER)
6. CHECK (The IUT did NOT perform a COLDSTART reboot)

[Change and renumber Clause 9.27.2.4, p. 433]

[Reviewer Note: Updated test to also test invalid password usage.]

9.27.2.49.27.2.2 WARMSTART with Missing or Invalid Password
Purpose: To verify that the correct BACnet Error PDU is returned when a WARMSTART is attempted and the password is
invalid or a password is required but no password is provided.

Configuration Requirements: The IUT shall be configured to require a password for ReinitializeDevice.

Notes to Tester: External indications that the IUT has reinitialized, such as LEDs or startup message traffic, shall be used to
confirm reinitialization whenever possible.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
 (BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = MISSING_REQUIRED_PARAMETER)
3. CHECK (The IUT did NOT perform a WARMSTART reboot)
4. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = WARMSTART,
 ‘Password’ = (any invalid password)
5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
 (BACnet-Error-PDU,
 'Error Class' = SERVIVCES,
 'Error Code' = MISSING_REQUIRED_PARAMETER)
6. CHECK (The IUT did NOT perform a WARMSTART reboot)

Notes to Tester: External indications that the IUT has reinitialized, such as LEDs or startup message traffic, shall be used to
confirm reinitialization whenever possible.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 527

[Add new Clause 9.27.2.X, p. 433]

[Reviewer Note: Added to ensure that non-supported 'Reinitialized State of Device' are properly rejected.]

9.27.2.X Rejects Unsupported Reinitialize Types
Purpose: Verify that IUT correctly rejects unsupported 'Reinitialized State of Device' values.

Test Concept: Send each unsupported 'Reinitialized State of Device' value to the device and ensure that it correctly rejects the
value.

Test Steps:

1. REPEAT S = (each unsupported 'Reinitialized State of Device' value) {
 TRANSMIT ReinitializeDevice
 'Reinitialized State of Device' = S,
 'Password' = (any valid value)
 RECEIVE BACnet-Error-PDU
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE |
 OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 }

[Change Clause 9.29, p. 435]

[Reviewer Note: Add test support for the UnconfirmedTextMessage service.]

9.29 UnconfirmedTextMessage Service Execution Tests
BACnet does not define a service procedure for executing the UnconfirmedTextMessage service and thus no tests are needed.

[Add new Clause 9.29.1, p. 435]

9.29.1 UnconfirmedTextMessage With No Message Class
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when no 'Message Class' is provided.

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is appropriate.

Test Steps:

1. TRANSMIT UnconfirmedTextMessage-Request,
 'Text Message Source Device' = TD,
 'Message Priority' = NORMAL,
 'Message' = (any CharacterString)
2. CHECK (Did any vendor specified action for these circumstances occur?)

[Add new Clause 9.29.2, p. 435]

9.29.2 UnconfirmedTextMessage With an Unsigned Message Class
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the Unsigned form of the
'Message Class' is used.

Configuration Requirements: The vendor shall provide a list of supported Unsigned message classes.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

528 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is appropriate.

Test Steps:

1. TRANSMIT UnconfirmedTextMessage-Request,
 'Text Message Source Device' = TD,
 'Message Class' = (any Unsigned value from the list provided by the vendor),
 'Message Priority' = NORMAL,
 'Message' = (any CharacterString)
2. CHECK (Did any vendor specified action for these circumstances occur?)

[Add new Clause 9.29.3, p. 435]

9.29.3 UnconfirmedTextMessage With a CharacterString Message Class
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the CharacterString form of
the 'Message Class' is used.

Configuration Requirements: The vendor shall provide a list of supported CharacterString message classes.

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is.

Test Steps:

1. TRANSMIT UnconfirmedTextMessage-Request,
 'Text Message Source Device' = TD,
 'Message Class' = (any CharacterString value from the list provided by the vendor),
 'Message Priority' = NORMAL,
 'Message' = (any CharacterString)
2. CHECK(Did any vendor specified action for these circumstances occur?)

[Change Clause 9.30, p. 435]

9.30 TimeSynchronization Service Execution Tests
Dependencies: ReadProperty Service Execution tests, 9.18.

BACnet Reference Clause: 16.7.

9.30.1 Positive TimeSynchronization Service Execution Tests

[Change Clause 9.30.1.1, p. 435]

[Reviewer Note: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the
UTCTimeSynchronization service.]

9.30.1.1 TimeSynchronization Local Broadcast

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast TimeSynchronization service
request.

Notes to Tester: Select date and time such that either one or both of them is different from initial date and time.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 529

1. READ InitialDate = Local_Date
2. READ InitialTime = Local_Time
3. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = TimeSynchronization-Request,
 date = NewDate: combined with NewTime is different than the InitialDate/InitialTime
 pair
 time = NewTime; combined with NewDate is different than the InitialDate/InitialTime
 pair
4. VERIFY Local_Date = NewDate
5. VERIFY Local_Time ~= NewTime
1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date
2. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date,
 'Property Value' = (any valid date referred to as "InitialDate" below)
3. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time
4. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (any valid time referred to as "InitialTime" below)
5. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = UTC_Offset
6. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = UTC_Offset,
 'Property Value' = (any valid offset referred to as "InitialUTC_Offset" below)
7. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Daylight_Savings_Status
8. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Daylight_Savings_Status,
 'Property Value' = (any valid status referred to as "InitialDaylight_Savings_Status" below)
5. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 BACnet-Unconfirmed-Request-PDU,
 'Service Choice' = TimeSynchronization-Request,
 date = (any date other than InitialDate),
 time = (any time that does not correspond to InitialTime)
6. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date
7. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date,
 'Property Value' = (the date specified in step 5)
8. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time
9. RECEIVE ReadProperty-ACK,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

530 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (the time specified in step 5)
10. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date
11. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Date,
 'Property Value' = (the date specified in step 9)
12. TRANSMIT ReadProperty-Request,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time
13. RECEIVE ReadProperty-ACK,
 'Object Identifier' = (the IUT's Device object),
 'Property Identifier' = Local_Time,
 'Property Value' = (the time specified in step 9)

Notes to Tester: The time value returned by the IUT in step 9 shall agree with the time specified in step 5 within the resolution
for time specified in the EPICS. If the time returned by the IUT indicates that a small amount of time has passed (< 1 second)
since the TimeSynchronization request was received the result shall be considered to be a pass. If the time indicates that the
day of week is unspecified but all other fields are correct the result shall be considered to be a pass.

[Change Clause 9.30.1.2, p. 436]

[Reviewer Note: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the
UTCTimeSynchronization service.]

9.30.1.2 TimeSynchronization Directed to the IUT
Purpose: To verify that the IUT resets its local time and date in response to a TimeSynchronization service request directed to
the IUT's MAC address.

Notes to Tester: The passing results are identical to 9.30.1.1.

Test Steps: This test is identical to 9.30.1.1 except that the TimeSynchronization-Request in step 9step 5 shall be transmitted
using the IUT's MAC address as the destination.

Notes to Tester: The passing results are identical to 9.30.1.1.

[Change Clause 9.31, p. 437]

9.31 UTCTimeSynchronization Service Execution Tests

BACnet Reference Clause: 16.8.

9.31.1 Positive UTCTimeSynchronization Service Execution Tests

[Change Clause 9.31.1.1, p. 437]

[Reviewer Note: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for the
UTCTimeSynchronization service.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 531

9.31.1.1 Local Broadcast
Purpose: To verify that the IUT resets its local time and date in response to a local broadcast UTCTimeSynchronization service
request.

Notes to Tester: Select date and time such that either one or both of them is different from initial date and time. The IUT may
update the Daylight_Savings_Status during the execution of the UTCTimeSynchronization request.

Test Steps:

Test Steps: The test steps are identical to the steps in 9.30.1.1 except that in step 9 the UTCTimeSynchronization request is
used and the date and time conveyed represent UTC.

Passing Results: The passing results are identical to 9.30.1.1 except that the date in step 9 shall be corrected for
InitialUTC_Offset, and the time in step 13 shall be corrected for both Initial_UTC_Offset and Daylight_Savings_Status (as
defined in BACnet 16.7.2).

1. READ InitialDate = Local_Date
2. READ InitialTime = Local_Time
3. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 BACnet-Unconfirmed-Request-PDU,
 ‘Service Choice’ = UTCTimeSynchronization-Request,
 date = NewUtcDate: combined with NewUtcTime and converted to local time is
 different than the InitialDate/InitialTime pair
 time = NewUtcTime: combined with NewUtcDate and converted to local time is
 different than the InitialDate/InitialTime pair
4. VERIFY Local_Date = (NewUtcDate converted to local date/time using UTC_Offset and

Daylight_Saving_Status)
5. VERIFY Local_Time ~= (NewUtcTime converted to local date/time using UTC_Offset and Daylight_Saving_Status)

[Change Clause 9.32, p. 437]

9.32 Who-Has Service Execution Tests
The purpose of this test group is to verify the correct execution of the Who-Has service request.

Dependencies: None.

BACnet Reference Clause: 16.9.

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network

[Change Clause 9.32.1.1, p. 437]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.1 Object ID Version with No Device Range
Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
identifier form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

532 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. READ V1 = (Object1), Object_Name
2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.1.2, p. 438]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.2 Object Name Version with no Device Range
Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
name form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Object Name' = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
 'Object Name' = V1(the object name specified in step 1)

[Change Clause 9.32.1.3, p. 438]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.3 Object ID Version with IUT Inside of the Device Range
Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
identifier form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 533

2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (any value L: 0 ≤ L < the Device object instance number of the IUT),
 'Device Instance High Limit' = (any value H,: H > the Device object instance number of the IUT),
 'Object Identifier' = Object1(any object identifier specified in the EPICS),
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.1.4, p. 439]

[Reviewer Note: Modified test to remove dependency on EPICS values.]

9.32.1.4 Object ID Version with IUT Outside of the Device Range
Purpose: To verify that the IUT ignores a local broadcast Who-Has service request that utilizes the object identifier form and
specifies a device range restriction that does not include the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:
1. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (any value > 0: the Device object instance number does not fall
 in the range between Device Instance Low Limit and Device Instance
 High Limit),
 'Device Instance High Limit' = (any value > Device Instance Low Limit: the Device object
 instance number does not fall in the range between Device Instance Low
 Limit and Device Instance High Limit),
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
2. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time
3. CHECK (verify that the IUT does not respond)

[Change Clause 9.32.1.4, p. 439]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.5 Object Name Version with IUT Inside of the Device Range
Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
name form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 DA = LOCAL BROADCAST,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

534 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (any value L: 0 ≤ L < the Device object instance number of the IUT),
 'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),
 'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
 'Object Name' = V1(the object name specified in step 1)

[Change Clause 9.32.1.7, p. 440]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.

9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests
that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (any value L: 0 ≤ L < the Device object instance number of the IUT),
 'Device Instance High Limit' = (The Device object instance number of the IUT),
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.1.8, p. 440]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests
that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:
1. READ V1 =(Object1), Object_Name

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 535

2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (The Device object instance number of the IUT),
 'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.1.9, p. 440]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range
Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests
that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 Who-Has-Request,
 'Device Instance Low Limit' = (any value L: 0 ≤ L < the Device object instance number of the IUT),
 'Device Instance High Limit' = (The Device object instance number of the IUT),
 'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
 'Object Name' = V1(the object name specified in step 1)

[Change Clause 9.32.1.10, p. 441]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range
Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests
that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

536 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. TRANSMIT
 DA = LOCAL BROADCAST,
 SA = TD,
 Who-Has-Request,
 'Device Instance Low Limit' = (The Device object instance number of the IUT),
 'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),
 'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.1.11, p. 441]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.1.11 Object Name Version, Directed to a Specific MAC Address
Purpose: To verify that the IUT responds with a broadcast I-Have service request even if the Who-Has service requests was
not transmitted with a broadcast address.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT Who-Has-Request,
 'Object Name' = V1(any object name specified in the EPICS),
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 SA = IUT,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
 'Object Name' = V1(the object name specified in step 1)

[Change Clause 9.32.1.12, p. 442]

[Reviewer Note: Addendum 135-2012ar-5 (Protocol Revision 15) allows the IUT to send a unicast response.]

9.32.1.12 Who-Has After Object_Name Changed

Dependencies: Who-Has Service Execution Tests, 9.32.1.2
BACnet Reference Clause: 16.9

Purpose: To verify that a device correctly responds to Who-Has service requests after the Object_Name property of an object
in the device is changed.

Test Concept: The Object_Name property of the referenced object is read to determine its initial value. The Object_Name
property is then changed to a different value, V2, which is not already used by an object in the IUT. The test then verifies
correct responses to Who-Has requests that include an ‘Object Name’ parameter, using the values V1 and V2.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 537

Configuration: An object, O1, exists within the IUT that has a modifiable Object_Name property and has the value V1. If IUT
does not support objects with modifiable Object_Name properties, then this test shall be skipped.

Test Steps:

1. READ V1 = O1, Object_Name
2. IF (Object_Name is writable) THEN
 WRITE O1, Object_Name = V2
 ELSE
 MAKE (O1, Object_Name = V2)
3. TRANSMIT
 DESTINATION = GLOBAL BROADCAST,
 Who-Has-Request,
 'Object Name' = V1
4. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time
5. CHECK (Verify that the IUT does not respond with an I-Have request)
6. TRANSMIT
 DESTINATION = GLOBAL BROADCAST,
 Who-Has-Request,
 'Object Name' = V2
7. BEFORE Unconfirmed Response Fail Time
 RECEIVE DESTINATIONDA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = O1,
 'Object Name' = V2

[Change Clause 9.32.1.13, p. 442]

[Reviewer Note: Addendum 135-2012ar-5 (Protocol Revision 15) allows the IUT to send a unicast response.]

9.32.1.13 Who-Has After Object_Identifier Changed

Dependencies: Who-Has Service Execution Tests, 9.32.1.1

BACnet Reference Clause: 16.9

Purpose: To verify that a device correctly responds to Who-Has service requests after the Object_Identifier property of an
object in the device is changed.

Test Concept: The Object_ Identifier property of the referenced object, O1, is verified to contain the value O1. The
Object_Identifier property is then changed to a different value, O2, which is not already in use by a different object in the IUT.
The test then verifies correct responses to Who-Has requests that include an ‘Object Identifier' parameter, using the values O1
and O2.

Configuration: An object, O1, exists within the IUT that has a modifiable Object_ Identifier property. If the IUT does not
support objects with modifiable Object_Identifiers, then this test shall be skipped.

Test Steps:

1. VERIFY O1, Object_Identifier = O1
2. IF (O1 is writable) THEN
 WRITE O1, Object_Identifier = O2
 ELSE
 MAKE (O1, Object_Identifier = O2)
3. TRANSMIT
 DESTINATION = GLOBAL BROADCAST,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

538 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Who-Has-Request,
 'Object Identifier' = O1
4. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time
5. CHECK (Verify that the IUT does not respond with an I-Have request)
6. TRANSMIT
 DESTINATION = GLOBAL BROADCAST,
 Who-Has-Request,
 'Object Identifier' = O2
7. BEFORE Unconfirmed Response Fail Time
 RECEIVE DESTINATIONDA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = O2
 'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network

[Change Clause 9.32.2.1, p. 443]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

9.32.2.1 Object ID Version, Global Broadcast from a Remote Network
Purpose: To verify the ability of the IUT to recognize the origin of a globally broadcast Who-Has service request and to respond
such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 DESTINATION = LOCAL BROADCAST,
 SA = TD,
 DNET = GLOBAL BROADCAST,
 SNET = (X: any remote network number),
 SADR = (Y: any MAC address valid for the specified network),
 Who-Has-Request,
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network Xspecified in step 1) |
TD (DNET = X, DADR = Y),
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Change Clause 9.32.2.2, p. 443]

[Reviewer Note: Modified test to remove dependency on EPICS values. Added the allowance for Unicast I-Have.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 539

9.32.2.2 Object ID Version, Remote Broadcast
Purpose: To verify the ability of the IUT to recognize the origin of a remotely broadcast Who-Has service request and to
respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT
 DESTINATION = LOCAL BROADCAST,
 SA = TD,
 SNET = (any remote network number),
 SADR = (any MAC address valid for the specified network),
 Who-Has-Request,
 'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time BEFORE Unconfirmed Response Fail Time
4. RECEIVE
 DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network Xspecified in step 1) |
TD (DNET = X, DADR = Y),
 I-Have-Request,
 'Device Identifier' = (the IUT's Device object),
 'Object Identifier' = Object1(the object identifier specified in step 1),
 'Object Name' = V1(the object name specified in the EPICS for this object)

[Add new Clause 9.32.2.X3, p. 444]

9.32.2.X3 Who-Has for Non-existent Object_Name
Purpose: Verifies correct responses to Who-Has service requests by 'Object Name' when the object does not exist in the IUT.

Test Concept: The test verifies the correct non-response to Who-Has service request with 'Object Name' when that named
object does not exist in the IUT.

Configuration Requirements: Choose any character string value V1, which is not the Object_Name of any object in the IUT.
The IUT shall be placed in a state where it is not producing I-Have spontaneously.

Test Steps:

1. TRANSMIT Who-Has-Request,
 'Object Name' = V1
2. WAIT Unconfirmed Response Fail Time
3. CHECK (the IUT does not respond with an I-Have request with 'Object Name' containing V1)

[Add new Clause 9.32.2.X5, p. 444]

9.32.2.X5 Who-Has for Non-existent Object_Identifier
Purpose: Verifies correct responses to Who-Has service requests when the object does not exist in the IUT.

Test Concept: The test verifies the correct non-response to Who-Has request with that 'Object Identifier' parameter for an object
which does not exist.

Configuration Requirements: Choose any standard object (Object1) that does not exist within the IUT, i.e., any unsupported
Object Type or any supported Object Type for which the instance does not exist. The IUT shall be placed in a state where it is
not producing I-Have spontaneously.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

540 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

1. TRANSMIT ReadProperty-Request,
 'Object Identifier' = Object1,
 'Property Identifier' = Object_Identifier
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT
3. TRANSMIT Who-Has-Request,
 'Object Identifier' = Object1
4. WAIT Unconfirmed Response Fail Time
5. CHECK (the IUT does not respond with an I-Have request with 'Object Identifier' containing Object1)

9.33 Who-Is Service Execution Tests

[Change Clause 9.33.1, p. 444]

9.33.1 Execution of Who-Is Service Requests Originating from the Local Network
The purpose of this test group is to verify the correct execution of the Who-Is request service procedure for messages
originating from the local network.

Dependencies: None.
BACnet Reference Clause: 16.10.

[Change Clause 9.33.1.3, p. 445]

[Reviewer Note: The allowed device instance range is from 0 - 4194303 and is specified in section 16.9.1.1.1 and 16.10.1.1.1.
The corresponding test incorrectly set the low limit greater than 0 when it should have been greater than or equal to 0.]

9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range
Purpose: To verify that the IUT ignores Who-Is requests when it is excluded from the specified device range.

Test Steps:
1. TRANSMIT
 DESTINATION = LOCAL BROADCAST,
 Who-Is-Request,
 'Device Instance Range Low Limit' = (any value >any value >= 0 such that the Device object instance number does
not fall in
 the range between Device Instance Low Limit and Device Instance High Limit),
 'Device Instance Range High Limit' = (any value >any value >= Device Instance Low Limit such that the Device
object
 instance number does not fall in the range between Device Instance Low Limit
 and Device Instance High Limit)
2. WAIT Internal Processing Fail Time
3. CHECK (verify that the IUT does not respond)

9.33.2 Execution of Who-Is Service Requests Originating from a Remote Network

[Change Clause 9.33.2.3, p. 447]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 541

[Reviewer Note: Updated the purpose and changed the expected destination on the received packet.]

9.33.2.3 General Inquiry, Directed to a Remote Device
Purpose: To verify that the IUT responds with an I-Am service that is of the form global broadcast, remote broadcast or unicast
the ability of the IUT to recognize the origin of a Who-Is service request, directed to the IUT, and respond such that the device
originating the request receives the response.

Test Steps:

1. TRANSMIT
 DESTINATION = IUT,
 SNET = (any remote network number),
 SADR = (any MAC address valid for the specified network),
 Who-Is-Request
2. WAIT Unconfirmed Response Fail Time
3. RECEIVE
 DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST REMOTE BROADCAST (to the
network specified by SNET in step 1) | TD
 I-Am-Request,
 'I Am Device Identifier' = (the IUT's Device object),
 'Max APDU Length Accepted' = (the value specified in the EPICS),
 'Segmentation Supported' = (the value specified in the EPICS),
 'Vendor Identifier' = (the identifier registered for this vendor)

[Add new Clause 9.X40, p. 457]

[Reviewer Note: Added new test to support AuditLogQuery testing.]

9.X40 AuditLogQuery Service Execution Tests

9.X40.1 AuditLogQuery Service Positive Tests

9.X40.1.1 - AuditLogQuery By Target Test
Purpose: Verify that an Audit Log correctly returns notifications filtered by a specific target.

Test Concept: An Audit Log, O1, containing a sequence of notifications related to a set of audit targets is queried about a
specific target, T1. The query is repeated for each standard form of target-based query, and the result is compared against the
expected set of returned notifications.

Configuration Requirements: The Audit Log, O1, contains a set of audit notifications which contains 0 or more notifications
about audit target T1.

Test Steps:

1. REPEAT Q = (each query in (
 By Target Device Identifier,
 By Target Device Identifier & Target Device Address,
 By Target Device Identifier & Target Object Identifier,
 By Target Device Identifier & Target Property Identifier,
 By Target Device Identifier & Target Array Index,
 By Target Device Identifier & Target Priority,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

542 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 By Target Device Identifier & Operations,
 By Target Device Identifier & Result Filter (failed),
 By Target Device Identifier & Result Filter (success),
 By Target Device Identifier & Target Object Identifier & Target Property Identifier
) {
 TRANSMIT AuditLogQuery-Request,
 'Audit Log' = O1,
 'Query Parameters' = Q,
 'Requested Count' = Total_Record_Count
 RECEIVE AuditLogQuery-ACK,
 'Audit Log' = O1,
 Records' = (RSEQ: a set of records),
 WHILE (the length of RSEQ is not the number of expected records) {
 TRANSMIT AuditLogQuery-Request,
 'Audit Log' = O1,
 'Query Parameters' = Q,
 'Start At Sequence Number' = (the 'Sequence Number' from the last entry in RSEQ)
 'Requested Count' = Total_Record_Count
 RECEIVE AuditLogQuery-ACK,
 'Audit Log' = O1,
 Records' = (NXTSEQ: a set of records),
 IF (the length of NXTSEQ is 0) THEN
 ERROR "expected more records from the Audit Log"
 RSEQ = (RSEQ record with NXTSEQ records appended)
 }
 CHECK(that the records in RSEQ is the set expected and are returned in sequence number order)
}

9.X40.1.2 - AuditLogQuery By Source Test
Purpose: Verify that an Audit Log correctly returns notifications filtered by a specific source.

Test Concept: An Audit Log, O1, containing a sequence of notifications related to a set of audit sources is queried about a
specific source, S1. The query is repeated for each standard form of source-based query, and the result is compared against the
expected set of returned notifications.

Configuration Requirements: The Audit Log, O1, contains a set of audit notifications which contains 0 or more notifications
about audit source S1.

Test Steps:
1. REPEAT Q = (each query in (
 By Source Device Identifier,
 By Source Device Identifier & Source Device Address,
 By Source Device Identifier & Source Object Identifier,
 By Source Device Identifier & Operations,
 By Source Device Identifier & Result Filter (failed),
 By Source Device Identifier & Result Filter (success),
) {
 TRANSMIT AuditLogQuery-Request,
 'Audit Log' = O1,
 'Query Parameters' = Q,
 'Requested Count' = Total_Record_Count
 RECEIVE AuditLogQuery-ACK,
 'Audit Log' = O1,
 'Records' = (RSEQ: a set of records),
 WHILE (the length of RSEQ is not the number of expected records) {
 TRANSMIT AuditLogQuery-Request,
 'Audit Log' = O1,
 'Query Parameters' = Q,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 543

 'Start At Sequence Number' = (the 'Sequence Number' from the last entry in RSEQ)
 'Requested Count' = Total_Record_Count
 RECEIVE AuditLogQuery-ACK,
 'Audit Log' = O1,
 'Records' = (NXTSEQ: a set of records),
 IF (the length of NXTSEQ is 0) THEN
 ERROR "expected more records from the Audit Log"
 RSEQ = (RSEQ record with NXTSEQ records appended)
 }
 CHECK(that the records in RSEQ is the set expected and are returned in sequence number order)
}

9.X40.2 - AuditLogQuery Negative Tests

9.X40.2.1 - Attempting to Query a Non-existent Audit Log
Purpose: Verify that the correct error is returned when the queried log does not exist.

Test Concept: Send an AuditLogQuery request to the IUT for an AuditLog object which does not exist. Verify that the IUT
returns an Error Class of OBJECT and an error code of UNKNOWN_OBJECT.

Test Steps:

1. TRANSMIT AuditLogQuery-Request,
 'Audit Log' = (an audit log not in the IUT),
 'Query Parameters' = (any valid value),
 'Requested Count' = (any valid value)
2. RECEIVE BACnet-Error PDU,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT

[Add new Clause 9.X41, p. 457]

[Reviewer Note: Added new test to support WriteGroup testing.]

9.X41 WriteGroup Tests

9.X41.1.X1 Channel and Group Number Test
Purpose: To verity that the Channel object executes a WriteGroup service request only when containing a specified channel
number and Group Number by a request, and the Channel object ignores a request otherwise. If a Group Number is 0, the
Channel object ignores a service even when its Control_Groups property is set to 0.

Test Concept: The Channel Object, O1, will be assigned a specific value to its channel number and Group Number. When a
device containing O1 receives a WriteGroup service, O1 executes the request and propagates a specified value to its destination
only if A) the O1’s channel number is the same as specified number by the request and B) the O1’s Control_Groups contains
the specified Group Number, except for a case when a Group Number was 0.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
commendable property of an object on either a local or remote device. For a commandable property, all prioritized commands
have to be relinquished, and any minimum on/off time has to be accounted for prior to the test. An initial value of a
commandable property must be the same as RD, which is its Relinquish_Default value. The value to be propagated must be a
valid value that does not require coercion.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

544 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Test Steps:

-- Obtain the data which will be used for the Channel Write Fail Time later in the steps
1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
-- Obtain the Channel Object’s target object reference
2. READ PR = List_Of_Object_Property_References, ARRAY INDEX = X
-- Set arbitrary numbers for Channel_Number and Control_Group to O1
3. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = Channel_Number
 'Property Value' = (CN: Any valid value)
 'Property Identifier' = Control_Groups
 'Property Value' = (CG: Any length of an array containing at least 1 non-zero element)
4. RECEIVE BACnet-SimpleACK-PDU
-- Send a WriteGroup with a mismatching channel number and Group Number
5. TRANSMIT WriteGroup-Request,
 'Group Number' = (A valid value larger than 0 and not contained by CG)
 'Write Priority' = (any valid value),
 'Change List' = (Any valid value different than CN, no overriding priority, Y: a valid value different than RD)
6. WAIT Channel Write Fail Time * LEN
-- Make sure that O1 did not propagate a value to its target references
7. VERIFY PR = RD
-- Send a WriteGroup with a matching channel number and a mismatching group number
8. TRANSMIT WriteGroup-Request,
 'Group Number' = (A valid value larger than 0 and not contained by CG)
 'Write Priority' = (any valid value),
 'Change List' = (CN, no overriding priority, Y: a valid value different than RD)
9. WAIT Channel Write Fail Time * LEN
-- Make sure that O1 did not propagate value to its target references
10. VERIFY PR = RD
-- Send a WriteGroup with a mismatching channel number and a matching group number
11. TRANSMIT WriteGroup-Request,
 'Group Number' = (Any non 0 values contained by CG)
 'Write Priority' = (any valid value),
 'Change List' = (Any valid value different than CN, no overriding priority, Y: a valid value different than RD)
12. WAIT Channel Write Fail Time * LEN
-- Make sure that O1 did not propagate value to its target references
13. VERIFY PR = RD
-- Send a WriteGroup service with a matching channel number and group number
14. TRANSMIT WriteGroup-Request,
 'Group Number' = (Any non 0 values contained by CG)
 'Write Priority' = (any valid value),
 'Change List' = (CN, no overriding priority, Y: a valid value different than RD)
-- Make sure that O1 did propagate value to its target references
15. VERIFY PR = Y
-- Change Control_Groups to 0
16. TRANSMIT WritePropertyMultiple-Request,
 'Object Identifier' = O1,
 'Property Identifier' = Control_Groups
 'Property Value' = 0
17. RECEIVE BACnet-SimpleACK-PDU
-- Send a WriteGroup with 0 Group number
18. TRANSMIT WriteGroup-Request,
 'Group Number' = 0
 'Write Priority' = (any valid value),
 'Change List' = (CN, no overriding priority, Z: a valid value different than Y)
19. WAIT Channel Write Fail Time * LEN
-- Make sure that O1 did not propagate value to its target references
20. VERIFY PR = Y

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 545

9.X41.1.X2 Write Priority and Overriding Priority Test
Purpose: To verity that the overridingPriority, if provided, specifies the priority for writing the value. Otherwise, the ‘Write
Priority’ parameter specifies the priority for writing.

Test Concept: The Channel Object, O1, receives the WriteGroup with P1 as its ‘Write Priority’, and it is verified that P1 is
used for writing the value. O1 then receives another WriteGroup with P1 as its ‘Write Priority’ and P2 as its overridingPriority,
and it is verified that P2 is used for writing the value.

Configuration Requirements: Configure one of the entry for the Channel object's List_Of_Object_Property_References to refer
to a commendable property of an object O2 with Priority_Array on either a local or remote device. All prioritized commands
have to be relinquished, and any minimum on/off time has to be accounted for prior to the test.

Test Steps:

-- Obtain the data which will be used for the Channel Write Fail Time later in the steps
1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
-- Write to O1 using P1 as its Write Priority
2. TRANSMIT WriteGroup-Request,
 'Group Number' = (one of the Control_Group values configured in O1),
 'Write Priority' = (P1: Any valid value)
 'Change List' = (O1's channel number, no overriding priority, Y: any valid value)
3. WAIT Channel Write Fail Time * LEN
-- Make sure that P1 is used for writing the value
4. VERIFY (O2), Priority_Array = Y, ARRAY INDEX = P1
-- Write to O1 using P1 as its Write Priority, P2 as its overridingPriority
5. TRANSMIT WriteGroup-Request,
 'Group Number' = (one of the Control_Group values configured in O1),
 'Write Priority' = P1
 'Change List' = (O1's channel number, P2: Any valid value different than P1, Z: any valid value different than Y)
6. WAIT Channel Write Fail Time * LEN
-- Make sure that P2 is used for writing the value
7. VERIFY (O2), Priority_Array = Z, ARRAY INDEX = P2
-- Make sure that no update on Priority_Array[P1]
8. VERIFY (O2), Priority_Array = Y, ARRAY INDEX = P1

9.X41.1.X3 Relinquish Control Test
Purpose: To verify that if a BACnetGroupChannelValue specifies a NULL value, it serves the same function as if NULL had
been used with WriteProperty.

Test Concept: The Channel Object, O1, receives the WriteGroup service to propagate a value to its destination object property
reference, PR. PR is verified to have the value updated accordingly. The O1 then receives another WriteGroup service with the
BACnetGroupChannelValue specifying a NULL value. PR is verified to have its Relinquish_Default value.

Configuration Requirements: Configure entry X of the Channel object's List_Of_Object_Property_References to refer to a
commendable property of an object O2 with a Relinquish_Default set to RD on either a local or remote device. All prioritized
commands have to be relinquished, and any minimum on/off time has to be accounted for prior to the test.

Test Steps:

-- Obtain the data which will be used for the Channel Write Fail Time later in the steps
1. READ LEN = List_Of_Object_Property_References, ARRAY INDEX = 0
-- Obtain the Channel Object’s target object reference
2. READ PR = List_Of_Object_Property_References, ARRAY INDEX = X
-- Let the Channel Object propagate a value to its target
3. TRANSMIT WriteGroup-Request,
 'Group Number' = (One of the Control_Group values configured in O1),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

546 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Write Priority' = (Any valid value)
 'Change List' = (O1's channel number, no overriding priority, X: any valid value different than RD)
4. WAIT Channel Write Fail Time * LEN
5. VERIFY PR = X
-- Let the Channel Object relinquish control of the target
6. TRANSMIT WriteGroup-Request,
 'Group Number' = (One of the Control_Group values configured in O1),
 'Write Priority' = (Any valid value)
 'Change List' = (O1's channel number, no overriding priority, NULL)
7. WAIT Channel Write Fail Time * LEN
8. VERIFY PR = RD

9.X41.1.X4 Inhibit Delay Test with WriteGroup
Purpose: In the case of WriteGroup, verify that Execution_Delay always occurs unless the WriteGroup service parameter
‘Inhibit Delay’ is TRUE, and the Channel object property Allow_Group_Delay_Inhibit is present and has the value TRUE.

Test Concept: Setup List_Of_Object_Property_References of the Channel Object, O1, to contain 2 valid entries, PR1 and PR2,
and provide each with an execution delay (ED1 and ED2) which are larger than 0. Allow_Group_Delay_Inhibit is set to TRUE.
When a WriteGroup service is sent to O1 without ‘Inhibit Delay’ parameter, it is verified that Execution_Delay occurs. When
another WriteGroup service is sent to O1 with ‘Inhibit Delay’ set to False, it is verified that Execution_Delay still occurs.
Finally, when another WriteGroup service is sent with ‘Inhibit Delay’ set to TRUE, it is verified that Execution_Delay does
not occur.

Configuration Requirements: PR1 and PR2 shall be references to writable properties and shall be the same datatype. ED1 and
ED2 shall be values which are large enough that the delay between writes is sufficient for the test. V1 and V2 shall be of the
expected datatype for PR1 and PR2 so that no coercion occurs and shall be different values.

Test Steps:

-- Setup the Channel object

1. WRITE List_Of_Object_Property_References = (PR1, PR2)
2. WRITE Execution_Delay = (ED1, ED2)
3. WRITE Allow_Group_Delay_Inhibit = TRUE
4. READ V1 = PR1
5. READ V2 = PR2

-- Send a WriteGroup without ‘Inhibit Delay’ parameter
6. TRANSMIT WriteGroup-Request,
 'Group Number' = (one of the Control_Group values configured in O1),
 'Write Priority' = (Any valid value)
 'Change List' = (O1's channel number, no overriding priority, X: any valid value different than V1 or V2)
7. WAIT Channel Write Fail Time
-- Make sure that Execution_Delay occurs
8. VERIFY PR1= V1
9. VERIFY PR2 = V2
10. WAIT (ED1)
11. VERIFY PR1 = X
12. VERIFY PR2 = V2
13. WAIT (ED2 – ED1)
14. VERIFY PR2 = X
-- Send a WriteGroup with ‘Inhibit Delay’ set to FALSE
15. TRANSMIT WriteGroup-Request,
 'Group Number' = (one of the Control_Group values configured in O1),
 'Write Priority' = (Any valid value)
 'Change List' = (O1's channel number, no overriding priority, Y: any valid value different from X)
 ‘Inhibit Delay’ = FALSE
16. WAIT Channel Write Fail Time

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 547

-- Make sure that Execution_Delay occurs
17. VERIFY PR1= X
18. VERIFY PR2 = X
19. WAIT (ED1)
20. VERIFY PR1 = Y
21. VERIFY PR2 = X
22. WAIT (ED2 – ED1)
23. VERIFY PR2 = Y
-- Send a WriteGroup with ‘Inhibit Delay’ set to TRUE
24. TRANSMIT WriteGroup-Request,
 'Group Number' = (one of the Control_Group values configured in O1),
 'Write Priority' = (Any valid value)
 'Change List' = (O1's channel number, no overriding priority, Z: any valid value different from Y)
 ‘Inhibit Delay’ = TRUE
-- Make sure that Execution_Delay does NOT occur
25. WAIT Channel Write Fail Time
26. VERIFY PR1= Z
27. VERIFY PR2 = Z

[Add new Clause 9.X42, p. 457]

[Reviewer Note: Added new test to support DS-COVM-B testing.]

9.X42 SubscribeCOVPropertyMultiple Service Execution Tests

9.X42.1 Positive SubscribeCOVPropertyMultiple Service Execution Tests

9.X42.1.1 Supports Non-Timestamped Notifications
Purpose: To verify that the IUT can execute a COVM Notification without providing a timestamp

Test Concept: A subscription for COVM notifications, with the Timestamped parameter set to FALSE. Verify that the IUT
sends the appropriate COVM notification in response.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid delay between 1 and 3600),
 'List of COV Subscription Specifications' = (any valid list with 'Timestamped' set to FALSE in all entries)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,
 'Time Remaining' = (a value ~= L),
 -- 'Timestamp' = (absent)
 'List of COV Notifications' = (values appropriate to the properties subscribed to)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = TD,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

548 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Time Remaining' = (a value ~= L),
 -- 'Timestamp' = (absent)
 'List of COV Notifications' = (values appropriate to some or all of the properties subscribed
 to)

9.X42.1.2 Supports Timestamped Notifications
Purpose: To verify that the IUT can execute a COVM Notification providing a timestamp

Test Concept: A subscription for COVM notifications with the Timestamped parameter set to TRUE for at least 1 entry in the
list of subscriptions, and FALSE for at least 1 entry in the list of subscriptions, is sent to the IUT for properties for which the
IUT supports COVM. Verify that the IUT sends the appropriate COVM notification in response.

Notes to Tester: If the IUT only supports COVM for one property in one object, then the subscription shall be for the single
property with Timestamped set to TRUE.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (L: a valid lifetime),
 'Max Notification Delay' = (any valid delay between 1 and 3600),
 'List of COV Subscription Specifications' = (any valid list of properties which exist in the IUT for which the
 IUT supports COVM with Timestamped set to TRUE for at
 least one, and FALSE for at least one)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (an appropriate timestamp)
 'List of COV Notifications' = (values appropriate to the properties subscribed to along
 with 'Time of Change' values only for those for which
 timestamps were requested)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (an appropriate timestamp)
 'List of COV Notifications' = (values appropriate to some or all of the properties subscribed
 to along with 'Time of Change' values only for those for which
 timestamps were requested)

9.X42.1.3 Confirmed Change of Value Notification From Property Value
Purpose: To verify that the IUT initiates a ConfirmedCOVMultipleNotification service request when a subscribed to property
changes.

Test Concept: A COVM subscription is made which contains a subscription to property P1 in object O1. The value of P1 is
changed, and it is verified that the IUT sends a COVM notification.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 549

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE,
 'Lifetime' = (L: any valid lifetime),
 'Max Notification Delay' = (any valid value),
 'List of COV Subscription Specifications' = (PROPS: a valid list of properties for which the IUT supports
 COVM including P1 in O1)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent),
 'List of COV Notifications' = (values appropriate to the subscribed to properties)
4. TRANSMIT BACnet-SimpleACK-PDU
5. MAKE (a change to P1 that should cause a COVM notification)
6. BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value greater than 0 and less than L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent),
 'List of COV Notifications' = (a list consisting of a valid value for P1 and values for any co-reported
properties as described in clause 13.1)
7. TRANSMIT BACnet-SimpleACK-PDU

9.X42.1.4 Unconfirmed Change of Value Notification From Property Value
Purpose: To verify that the IUT initiates an UnconfirmedCOVMultipleNotification service request when a subscribed to
property changes.

Test Concept: A COVM subscription is made which contains a subscription to property P1 in object O1. The value of P1 is
changed, and it is verified that the IUT send a COVM notification.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (MND: any valid value)
 'List of COV Subscription Specifications' = (a valid list of properties for which the IUT supports COVM
 including P1 in O1)

2. RECEIVE BACnet-SimpleACK-PDU
3. WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent)
 'List of COV Notifications' = (values appropriate to some or all of the properties subscribed
 to)
4. MAKE (a change to the P1 that should cause a COVM notification)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

550 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

5. BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value greater than 0 and less than the requested lifetime),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent),
 'List of COV Notifications' = (a list consisting of a valid value for P1 and values for any co-reported
properties as described in clause 13.1)

9.X42.1.5 Supports Subscriptions to Multiple Properties Using Multiple Requests
Purpose: To verify the server adds new subscriptions to existing COVM contexts when requested.

Test Concept: A subscription for COVM notifications is established for property P1 of object O1. A second subscription is sent
using the same COVM context for property P2 in object O2. Verify that the IUT's Active_COV_Multiple_Subscriptions
property is correctly updated after each subscription.

Configuration Requirements: There are no active COVM subscriptions for properties in the IUT. If the IUT cannot be
configured to have 2 properties which support COVM subscriptions, then this test shall be skipped.

Notes to Tester: Objects O1 and O2 can be the same object, and properties P1 and P2 can be the same property, but (O1, P1)
must be different than (O2, P2).

Test Steps:

1. CHECK (the IUT's Active_COV_Multiple_Subscriptions property is empty)
2. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = { ('Monitored Object' = O1,
 'List of COV References' = { (
 'Monitored Property' = P1,
 'COV Increment' = (any valid
 increment, or
 empty if P1 is not
 numeric),
 'Timestamped' = TRUE | FALSE)}
)
 }
3. RECEIVE BACnet-SimpleAck-PDU
4. IF (confirmed notifications were requested) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (an appropriate timestamp)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's value)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (an appropriate timestamp, or absent if timestamps not

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 551

 requested)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's value)
5. VERIFY Active_COV_Multiple_Subscriptions = (a list with one entry for COVM context ID1 with 1 entry for the
subscription to P1)
6. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = { ('Monitored Object' = O2,
 'List of COV References' = { (
 'Monitored Property' = P2,
 'COV Increment' = (any valid
 increment, or
 empty if P2 is not
 numeric),
 'Timestamped' = TRUE | FALSE)}
)
 }
7. RECEIVE BACnet-SimpleAck-PDU
8. IF confirmed notifications were requested THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (an appropriate timestamp, or absent if timestamps not
 requested)
 'List of COV Notifications' = (a list of values of length 1 indicating P2's new value)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (an appropriate timestamp, or absent if timestamps not
 requested)
 'List of COV Notifications' = (a list of values of length 1 indicating P2's new value)
9. VERIFY Active_COV_Multiple_Subscriptions = (a list with one entry for COVM context ID1 with 2 entries for P1 and
P2)

9.X42.1.6 Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References Per Context
Purpose: To verify that the IUT can support 5 COV-multiple contexts with 5 COV-references each.

Test Concept: Subscriptions for COVM notifications are made using process identifiers PID1 through PID5. The required post
subscription notifications are verified. Once all subscriptions are made, the Active_COV_Multiple_Subscriptions is verified to
contain all subscriptions.

Configuration Requirements: The IUT has no active COVM subscriptions.

Test Steps:

1. REPEAT (X=PID1 to PID5) {
 TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = X,
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (L, any value large enough to complete the test),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

552 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Max Notification Delay' = (any valid value),
 'List of COV Subscription Specifications' = (any valid list of properties for which the IUT supports
 COVM)
 RECEIVE BACnet-SimpleACK-PDU
2. IF (if confirmed notifications were requested) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (any appropriate timestamp, if subscribed to
 timestamped notifications),
 'List of COV Notifications' = (values appropriate to the subscribed to properties)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = X,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any valid value),
 'Timestamp' = (any appropriate timestamp, if subscribed to
 timestamped notifications)
 'List of COV Notifications' = (values appropriate to some or all of the properties
 subscribed to)
 }
3. VERIFY Active_COV_Multiple_Subscriptions = (a list of 5 COVM contexts as subscribed to)

9.X42.1.7 Supports Client-Supplied COV Increment
Purpose: To verify that the IUT abides by client supplied COV increments from SubscribeCOVPropertyMultiple requests.

Test Concept: A subscription for COVM notifications is made to a numeric property P1 which supports COVM in object O1.
The COV Increment, N, is specified in the subscription request. Verify that the COV Increment N is stored in the COVM
context for this subscription. The value of P1 is changed by less than the COV Increment, and the TD waits to ensure the IUT
does not generate a notification. The value of P1 is changed such that the total change is more than N, and it is verified that the
IUT sends a notification within the delay time.

Configuration Requirements: If the property being subscribed to has a related COV_Increment property in the object, then the
value of N should be significantly different than the value of the COV_Increment property. If the object does not have a
COV_Increment property, then N shall be significantly different than the device's internal COV Increment.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (ID1: any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (MND: any valid value),
 'List of COV Subscription Specifications' = {('Monitored Object' = O1,
 'List of COV References' = { (
 'Monitored Property' = P1,
 'COV Increment' = N,
 'Timestamped' = TRUE | FALSE)}
) }
2. RECEIVE BACnet-SimpleACK-PDU
3. VERIFY Active_COV_Multiple_Subscriptions = (a list containing a COVM context for ID1 containing 1 entry
 for P1 with a COV_ Increment of N)
4. MAKE (P1's value change by less than COV Increment)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 553

5. WAIT Notification Fail Time + MND
5. CHECK (verify that the IUT did not transmit a notification message for the monitored property)
6. MAKE (P1's value change such that the total change to P1 is slightly more than N)
7. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any valid value greater than 0 and less than L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's new value)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = (ID1),
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any valid value greater than 0 and less than L),
 'Timestamp' = (an appropriate timestamp, if subscribed to
 timestamped notifications, otherwise absent)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's new value)

9.X42.1.8 Updating Existing Subscriptions
Purpose: To verify that the IUT supports resubscriptions to extend the lifetime of COVM contexts.

Test Concept: A COVM subscription is made for 1 or more properties in the IUT. The IUT shall be made to transmit a
notification to the TD and the Time Remaining value is validated. Before the subscription expires, the TD resubscribes with a
different, and longer, lifetime and the new lifetime is verified in the resultant COVM notification.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (MND: any valid value)
 'List of COV Subscription Specifications' = (PROPS: a valid list of subscriptions)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = IUD1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR: TR ~= L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 Notifications, otherwise absent)
 'List of COV Notifications' = (values appropriate to each entry in PROPS)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR:TR ~= L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

554 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'List of COV Notifications' = (values appropriate to some or all entries in PROPS)
4. MAKE (a change to a monitored property, P1, that should cause a COVM notification)
5. WAIT N seconds, where L > N > the resolution of the IUT's COVM lifetime timer
6. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR: 0 < TR < (L - N)),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's new value)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR: 0 < TR < (L - N)),
 'Timestamp' = (an appropriate timestamp, if subscribed to
 timestamped notifications, otherwise absent),
 'List of COV Notifications' = (values appropriate to some or all entries in PROPS)
7. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = (the same value used previously),
 'Lifetime' = (L2: where L < L2 <= 28800),
 'Max Notification Delay' = MND,
 'List of COV Subscription Specifications' = PROPS
8. RECEIVE BACnet-SimpleACK-PDU
9. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR2: TR ~= L2),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent)
 'List of COV Notifications' = (values appropriate to each entry in PROPS)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = (the same identifier used in step 2),
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR2: TR2 ~= L2),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 notifications, otherwise absent),
 'List of COV Notifications' = (values appropriate to some or all entries in PROPS)

9.X42.1.9 Canceling Subsets of COVM Subscriptions
Purpose: To verify that the IUT correctly cancels COVM subscriptions for some, not all, of the properties subscribed to in a
COVM context.

Test Concept: A subscription for COVM notifications is established for multiple properties within the IUT. Before the
subscriptions expire, one of the subscriptions is cancelled. Verify that the IUT's Active_COV_Multiple_Subscriptions property
only contains an entry for the remaining subscriptions.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 555

Configuration Requirements: There are no active COVM subscription for properties in the IUT. If the IUT cannot be configured
to have 2 properties which support COVM subscriptions, then this test shall be skipped.

Test Steps:

1. VERIFY Active_COV_Multiple_Subscriptions = ()
2. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = (any valid notification delay),
 'List of COV Subscription Specifications' = (a list of 2 or more properties for which the IUT supports
 COVM)
3. RECEIVE BACnet-SimpleACK-PDU
4. WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (any value ~= L),
 'Timestamp' = (an appropriate timestamp, or absent if not requested)
 'List of COV Notifications' = (values appropriate to some or all of the properties subscribed
 to)
5. VERIFY Active_COV_Multiple_Subscriptions = (a list with 1 COVM context containing all properties
 subscribed to)
6. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = FALSE
 'Lifetime' = (absent)
 'Max Notification Delay' = (absent)
 'List of COV Subscription Specifications' = (CANCELLED: a subset of the properties subscribed to)
7. RECEIVE BACnet-SimpleACK-PDU
8. VERIFY Active_COV_Multiple_Subscriptions = (a list with 1 COVM context containing all remaining
 properties subscribed to, excluding those in CANCELLED)

9.X42.1.10 Canceling Expired or Non-Existing Subscriptions
Purpose: To verify the IUT does not return an error when the client cancels a COVM subscription that doesn't match any of the
COV contexts in the IUT's list of active subscriptions.

Test Concept: Send a SubscribeCOVPropertyMultiple request to cancel a subscription for property P1 in object O1, which is
not in the list of subscriptions in the IUT's Active_COV_Multiple_Subscriptions property. Verify that the IUT sends a BACnet-
SimpleACK-PDU in response.

Configuration Requirements: The IUT is configured with 1 or more COVM subscriptions. One of the subscriptions is using a
process identifier ID1 and includes a subscription to property P1 in object O1. Property P2 in object O2 shall not be included
in the subscriptions for ID1 (but may in subscriptions using a different process identifier). Where possible, P2 in O2 should be
a property for which the IUT supports COVM subscriptions.

Test Steps:

1. READ COVM_LIST = Active_COV_Multiple_Subscriptions
2. CHECK (COVM_LIST contains an COVM context with a process identifier of ID1 and includes a subscription to property
P1 in object O1)
3. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier which is not ID1),
 'Issue Confirmed Notifications' = (the value matching the entry for ID1),
 -- 'Lifetime' = (absent),

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

556 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 -- 'Max Notification Delay' = (absent),
 'List of COV Subscription Specifications' = (a list with 1 entry matching the subscription details for P1 in
 O1)
4. RECEIVE BACnet-SimpleACK-PDU
5. VERIFY Active_COV_Multiple_Subscriptions = COVM_LIST
6. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = (the value matching the entry for ID1),
 -- 'Lifetime' = (absent),
 -- 'Max Notification Delay' = (absent),
 'List of COV Subscription Specifications' = (a list with 1 entry referencing P2 in O2)
7. RECEIVE BACnet-SimpleACK-PDU
8. VERIFY Active_COV_Multiple_Subscriptions = COVM_LIST

9.X42.1.11 Subscription Expiration Test
Purpose: To verify that the IUT removes subscriptions from the list of active subscriptions once the subscription lifetime has
elapsed.

Test Concept: A COVM subscription is made for 1 or more properties in the IUT. One of the subscribed to properties is made
to change, and it is verified that the IUT transmits a notification to the TD containing an accurate Time Remaining value. The
tester then waits for the subscription to expire, and it is verified that Active_COV_Multiple_Subscriptions is updated. The
property is changed again, and it is verified that the IUT does not send a notification.

Configuration Requirements: No existing subscription exists for ID1 for the TD. A value for L is chosen which is long enough
to complete the initial test steps, but which is short enough to wait for it to expire.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = ID1,
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = L,
 'Max Notification Delay' = 0,
 'List of COV Subscription Specifications' = (a valid list of subscriptions)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (a value ~= L),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 Notifications, otherwise absent),
 'List of COV Notifications' = (values appropriate to the properties subscribed to)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 WHILE (notifications have not been received for all subscribed to items)
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' ~= (a value approximately equal to, but not greater than, the
 requested subscription lifetime),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 Notifications, otherwise absent),
 'List of COV Notifications' = (values appropriate to some or all of the properties subscribed
 to)
4. MAKE (a change to a monitored property, P1, that should cause a COVM notification)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 557

5. WAIT N seconds, where L > N > the resolution of the IUT's COVM lifetime timer
6. IF (the subscription was for confirmed notifications) THEN
 BEFORE Notification Fail Time
 RECEIVE ConfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR: 0 < TR < (L - N)),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 Notifications, otherwise absent)
 'List of COV Notifications' = (a list of values of length 1 indicating P1's value)
 TRANSMIT BACnet-SimpleACK-PDU
 ELSE
 BEFORE Notification Fail Time
 RECEIVE UnconfirmedCOVNotificationMultiple-Request,
 'Subscriber Process Identifier' = ID1,
 'Initiating Device Identifier' = IUT,
 'Time Remaining' = (TR: 0 < TR < (L - N)),
 'Timestamp' = (an appropriate timestamp, if subscribed to timestamped
 Notifications, otherwise absent)
 'List of COV Notifications' = (values appropriate to the properties subscribed to)
7. WAIT L seconds
8. MAKE (a change to a monitored property that would cause a COVM notification if there were an active subscription)
9. CHECK (verify that the IUT did not transmit a COVM notification message for the modified property)
10. VERIFY Active_COV_Multiple_Subscriptions = (a list which does not contain a COVM context for ID1)

9.X42.2 Negative SubscribeCOVPropertyMutliple Service Execution Tests

9.X42.2.1 The Monitored Object Does Not Support COVM Notification
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored object does not support COVM notifications.

Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1 where O1
does not support COVM. All requested subscriptions before O1 are selected such that they would succeed if O1 were not in
the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered.

Configuration Requirements: The object, O1, shall not support COVM notification for any of its properties. If the IUT cannot
be configured in this manner, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property requested from O1)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference = P1,
 'Error Class' = OBJECT,
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
 }

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

558 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

9.X42.2.2 The Monitored Property Does Not Support COVM Notification
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored property does not support COVM notifications.

Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1 where P1
does not support COVM. All requested subscriptions before P1 are selected such that they would succeed if P1 were not in the
list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered.

Configuration Requirements: The object, O1, shall support COVM notification for any of its properties. If the IUT does not
support objects for which COVM is supported for only a subset of the properties, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property which cannot be
 subscribed to)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference' = P1,
 'Error Class' = PROPERTY,
 'Error Code' = NOT_COV_PROPERTY
 }

9.X42.2.3 Monitored Object Does Not Exist
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored object does not exist.

Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1 where O1
does not exist but would support COVM for P1 if it did. All requested subscriptions before O1 are selected such that they
would succeed if O1 were not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first
failed element encountered.

Configuration Requirements: The object, O1, shall be of a type for which the IUT supports COVM notifications for property
P1. If the IUT cannot be configured in this manner, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property requested from O1)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference' = P1,
 'Error Class' = OBJECT,
 'Error Code' = UNKNOWN_OBJECT
 }

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 559

9.X42.2.4 Monitored Property Does Not Exist
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored property does not exist.

Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1 where P1
does not exist in O1. All requested subscriptions before P1 in O1 are selected such that they would succeed if P1 in O1 were
not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered.

Configuration Requirements: The object, O1, shall exist, shall not contain P1, and be of a type for which the IUT supports
COVM notifications. If the IUT cannot be configured in this manner, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property which cannot be
 subscribed to)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference' = P1,
 'Error Class' = PROPERTY,
 'Error Code' = UNKNOWN_PROPERTY
 }

9.X42.2.5 Array Index Provided But Property is Not an Array
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored property is not an array, but an array index is provided.

Test Concept: A subscription for COVM notifications is made which includes a request for property P1, with an array index,
in object O1 where the IUT supports COVM for P1 in O1 but P1 is not an array. All requested subscriptions before P1 in O1
are selected such that they would succeed if P1 in O1 were not in the list. It is verified that the IUT returns the correct error
indicating O1 and P1 as the first failed element encountered.

Configuration Requirements: The property P1 shall be one which supports COVM and is not an array. If the IUT cannot be
configured in this manner, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property which cannot be
 subscribed to. An array index shall be included in the entry for
 P1)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference' = P1,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

560 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 'Error Class' = PROPERTY,
 'Error Code' = PROPERTY_IS_NOT_AN_ARRAY
 }

9.X42.2.6 Array Index Provided Is Out Of Range
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the monitored property is an array, but the provided array index is outside the range of the array.

Test Concept: A subscription for COVM notifications is made which includes a request for an array property P1, with an array
index, in object O1 where the IUT supports COVM for P1. All requested subscriptions before P1 in O1 are selected such that
they would succeed if P1 in O1 were not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as
the first failed element encountered.

Configuration Requirements: If the IUT does not support COVM on any array properties, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other
 objects with P1 being the first property which cannot be
 subscribed to. The array index included in the entry for
 P1 shall be larger than the number of entries in P1)
2. RECEIVE BACnet-Error-PDU,
 'First-Failed-Subscription' = {
 'Monitored Object Identifier' = O1,
 'Monitored Property Reference' = P1,
 'Error Class' = PROPERTY,
 'Error Code' = INVALID_ARRAY_INDEX
 }

9.X42.2.7 No Space to Add List Element
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when there is no space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of
resources and returns the appropriate error.

Configuration Requirements: If the device cannot be configured such that the maximum number of subscriptions the IUT can
accept is less than 10000, then this test shall be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1 or until the IUT returns an Error-
PDU) {

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = PID,
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid lifetime large enough to complete the test),
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
2. RECEIVE BACNET-SimpleACK-PDU

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 561

 | (BACnet-Error-PDU,
 'Error Class' = RESOURCES,
 'Error Code' = NO_SPACE_TO_ADD_LIST_ELEMENT)
}

9.X42.2.8 The Lifetime Parameter is Out Of Range
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the Lifetime parameter is out of range.

Configuration Requirements: If the device supports lifetimes across the full range of valid lifetimes, then this test shall be
skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (a value larger than that supported by the IUT
 'Max Notification Delay' = (any valid value smaller than the lifetime),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE

9.X42.2.9 The Max Notification Delay Parameter is Out Of Range
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the Max Notification Delay parameter is out of range.

Configuration Requirements: If the device supports Max Notification Delays across the full range of valid values, then this test
shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (any valid value large enough to complete the test),
 'Max Notification Delay' = (a value larger than supported by the IUT),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE

9.X42.2.10 The Max Notification Delay is Greater Than the Lifetime
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription
when the Max Notification Delay parameter is greater than the Lifetime parameter.

Test Steps:

1. TRANSMIT SubscribeCOVPropertyMultiple-Request
 'Subscriber Process Identifier' = (any valid process identifier),
 'Issue Confirmed Notifications' = TRUE | FALSE,
 'Lifetime' = (a value supported by the IUT but within the normal range of

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

562 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 Max Notification Delay)
 'Max Notification Delay' = (a value greater than the lifetime),
 'List of COV Subscription Specifications' = (any valid list of subscriptions)
2. RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = VALUE_OUT_OF_RANGE

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 563

135.1-2019s-10 Improve existing DEFINITIONS

Rationale

New definitions are added to ANSI/ASHRAE Standard 135.1-2019.

In addition, the reference to the BACnet standard is updated.

[Change Clause 3, p. 1]

3. DEFINITIONS

All definitions from ANSI/ASHRAE Standard 135-2016135-2020 also apply to this addendum.

[Add new Clause 3.5, p. 1]

3.5 Common language used in tests
'any valid value': Any valid value refers to any value of the correct data type and within the vendor’s range specified for the
property this is applied to.

'any appropriate password': Any password that meets the Configuration Requirements specified in the test or test section.
Passwords when required by the vendor are required to be no more than 20 characters.

'reset': Some tests require to reset the IUT. Reset includes power cycle via switch, power cycle via loss of power, and
reinitializeDevice WARMSTART. As defined by the BACnet standard, "WARMSTART shall mean to reboot the
device and start over, retaining all data and programs that would normally be retained during a brief power
outage."

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

564 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-11 Improve the EPICS FILE FORMAT and the EPICS CONSISTENCY TESTS

Rationale

New fail timers are added to ANSI/ASHRAE Standard 135.1-2019.

In addition, the EPICS Consistency Tests are improved.

4. ELECTRONIC PICS FILE FORMAT

4.5 Sections of the EPICS File

[Change Clause 4.5.9, p. 8]

4.5.9 Timers
This section defines timer values that are used to determine when a test has failed because an appropriate response has not been
observed by the TD. A Real value in seconds must be provided for each timer. See 6.3.

Fail Times: ↵
{↵
Notification Fail Time: ↵
Internal Processing Fail Time: ↵
Minimum ON/OFF Time: ↵
Schedule Evaluation Fail Time: ↵
External Command Fail Time: ↵
Program Object State Change Fail Time: ↵
Acknowledgement Fail Time: ↵
Slave Proxy Confirm Interval: ↵
Unconfirmed Response Fail Time: ↵
Channel Write Fail Time: ↵
Auto Negotiation Fail Time: ↵
Activate Changes Fail Time: ↵
Foreign Device Registration Fail Time: ↵
}↵

[Change Clause 5, p. 10]

[Reviewer Note: Improved the language in this set of tests to clarify the exact requirement of the test.]

5. EPICS CONSISTENCY TESTS
These tests are static tests of the EPICS and do not involve interrogating the IUT. There are no Test Configuration or Test Step
sections with TCSL in these tests because the tests are static tests of the EPICS and not tests of the IUT itself.

Each implementation shall be tested to ensure consistency among interrelated data elements. These tests shall include:

(a) All object types required by the specified BIBBs shall be indicated as supported in the Standard Object Types Supported
section of the EPICS.

(b) A minimum of one instance of each object type required by the specified BIBBs shall be included in the test database.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 565

(c) The Protocol_Object_Types_Supported property of the Device object in the test database shall indicate support for each
object type required by the supported BIBBs.

(d) All application services required by the supported BIBBs shall be indicated as supported in the BACnet Standard
Application Services Supported section of the EPICS with Initiate and Execute indicated as required by the supported BIBBs.

(e) The Protocol_Services_Supported property of the Device object in the test database shall indicate support for each
application service for which the supported BIBBs requires support for execution of the service.

(f) The object types listed in the Standard Object Types Supported section of the EPICS shall have a one-to-one
correspondence with object types listed in the Protocol_Object_Types_Supported property of the Device object contained in
the test database.

(g) For each object type listed in the Standard Object Types SupportedSupported* section of the EPICS there shall be at least
one object of that type in the test database. It is permissible for there to be no instance of the File object type if File objects are
dynamically creatable and come into existence only temporarily during Backup and restore.
*An object type is supported if it can be made to exist in the IUT’s database.

(h) There shall be a one-to-one correspondence between the objects listed in the Object_List property of the Device object and
the objects included in the test database. The Object_List property and the test database shall both include all proprietary
objects. Properties of proprietary objects that are not required by BACnet Clause 23.4.3 need not be included in the test
database.

(i) For each object included in the test database, all required properties for that object as defined in Clause 12 of BACnet shall
be present. Standard properties which are not defined for the implemented Protocol_Revision shall not be present. In addition,
if any of the properties supported for an object require the conditional presence of other properties, their presence shall be
verified.

(j) For each property that is required to be writable, or conditionally writable, that property shall be marked as writable, or
conditionally writable, in the EPICS.

(k) The length of the Protocol_Services_Supported bitstring shall have the number of bits defined for
BACnetProtocolServicesSupported for the IUT's declared protocol revision.

(l) The length of the Protocol_Object_Types_Supported bitstring shall have the number of bits defined for
BACnetObjectTypesSupported for the IUT's declared protocol revision

(m) For each object included in the test database, any properties that are deprecated or removed shall not appear after the
Protocol_Revision in which the property was deprecated or removed.

(n) If the Protocol_Revision property is present in the Device object and its value is greater than or equal to 14, the
Property_List property of each object included in the test database shall have one entry for each property present, including
non-standard properties with the exception of Object_Type, Object_Identifier, Object_Name, and Property_Listfor each object
included in the test database, the Property_List property shall have one entry for each property present, including non-standard
properties, but excluding Object_Type, Object_Identifier, Object_Name, and Property_List.

(o) If the Segmentation_Supported property in the Device object is SEGMENTED_BOTH or SEGMENTED_RECEIVE, then
the value of the Max_Segments_Accepted property of the Device object shall be greater than 1.

(p) For each property that is required to be read-only, that property shall not be marked as writable, or conditionality writable,
in the EPICS.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

566 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-12 Add new and improve existing CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE
TESTS

Rationale

New conventions for specifying BACnet conformance tests in ANSI/ASHRAE Standard 135.1-2019 are added.
In addition, the language for Internal Processing Fail Time is improved.

6. CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE TESTS

6.2 TCSL Statements

[Add new Clause 6.2.14, p. 18]

6.2.14 Assignment Statement

The assignment statement is used to set the value of a TCSL variable

 <assignment statement> := <variable> '=' '(' <value description> ')'

The <value description> is a simple English phrase describing the content that is to be placed into the variable. It may
reference other variables already in use by the test. For example:

 READ X = O1, Present_Value
 READ Y = O2, Present_Value
 MAX = (the larger of X and Y)

6.3 Time Dependencies

[Change Clause 6.3.2, p. 18]

6.3.2 Internal Processing Fail Time
The Internal Processing Fail Time is the elapsed time, in seconds, between the receipt of a write to a BACnet property or
some other event that changes the value of the property and when a test is considered to have failed because the property
value has not been updated.

The Internal Processing Fail Time contained in the EPICS is the maximum value for all situations. In order to reduce test
time, it is acceptable that a shorter Internal Processing Fail Time value be used on a per test basis where the shorter time
will not negatively impact the test result.

[Add new Clause 6.3.X1, p. 19]

6.3.X1 Channel Write Fail Time

The Channel Write Fail Time is the elapsed time, in seconds, between a change to the Present_Value of a Channel object and
when a test is considered to have failed because the first write operation associated with the newly written value state has not
been performed. If the Channel object has multiple target properties to write to, the time to write all of them would be less
than or equal to the number of target properties times this value.

[Add new Clause 6.3.X2, p. 19]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 567

6.3.X2 Auto-negotiation Fail Time

The Auto-negotiation Fail Time is the elapsed time, in seconds, between when auto-negotiation is requested and when a test
is considered to have failed because the IUT has not completed auto-negotiation of link speed.

[Add new Clause 6.3.X3, p. 19]

6.3.X3 Activate Changes Fail Time

The Activate Changes Fail Time is the elapsed time, in seconds, that the IUT requires in order to complete activation of
changes in a Network Port object, including any required reset of the device and when a test is considered to have failed
because the IUT has not completed activation of the Network Port changes.

[Add new Clause 6.3.X4, p. 19]

6.3.X4 Foreign Device Registration Fail Time
The Foreign Device Registration Fail Time is the elapsed time, in seconds, between when the device sends a Register-
Foreign-Device request and when the device considers the request to have failed due to having not received a BVLC-Result
for the registration request.

[Add new Clause 6.3.X5, p. 19]

6.3.X5 Audit Notification Forwarder Fail Time

The Audit Notification Forwarder Fail Time is the elapsed time, in seconds, between when a forwarding audit log receives
an audit notification and when a test is considered to have failed because the expected audit notification message has not been
transmitted.

[Add new Clause 6.X6, p. 19]

6.X6 Test Execution Considerations
There are some implicit test considerations which apply to all tests.

6.X6.1 Value Comparisons
Value comparisons, such as those in conditionals and statements (6.1.1 and 6.2) should always take into account the
resolution constraints of 4.4.2, such that if any value is written with a higher or finer granularity than the IUT supports, any
and all subsequent comparisons to that written value shall not result in the test step failing once the constraints have been
applied to the value from the testing device.
Any value from the IUT is compared to a value from the testing device, the comparison shall not fail as long as the values are
identical once the resolution constraints are applied to the external value. Devices may either truncate or round values
written/received at a finer resolution than they claim in 4.4.2. This should be consistent across all values of that datatype.

Floating point values may be stored in the IUT using a different precision than what the value is encoded with from the
testing device. Comparisons to these types of values should always consider that the IUT can round or truncate them, and that
the value may also lose precision when stored, although the IUT must always present the stored value using full precision on
a subsequent read.

Example: An IUT has a property with type REAL which has a resolution of 0.5. If a TD writes 0.75, it is acceptable for the
IUT to present, on a subsequent read, either 1.0 or 0.5 for the property value so long as it is consistent.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

568 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

6.X6.2 Functional Expectations
Because devices may store information in truncated or rounded format due to internal limitations, they may not behave
exactly as all test cases prescribe. In these cases, it is acceptable for the IUT to present or act on information based on the
granularity supported by the IUT. For example, an IUT may be configured with a schedule which begins at 12:01:01, but
since the device only supports granularity of 1 minute, the scheduled behavior may begin at 12:01:00 or 12:02:00.

6.X6.3 Complex Datatypes
Since all complex datatypes can be broken down into one or more primitive datatypes, value comparisons and functional
expectations from the above sections shall apply to each of the components that comprise a complex datatype. When there
are relationships present within the fields of a complex datatype, the IUT shall continue to meet the functional expectations
between all fields of complex datatypes when applying any rounding or truncation.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 569

135.1-2019s-13 Add new and improve existing SPECIAL FUNCTIONALITY TESTS

Rationale

Errors have been identified in a number of special functionality tests in ANSI/ASHRAE Standard 135.1-2019.
In addition, the test coverage is increased by the addition of new tests.

13. SPECIAL FUNCTIONALITY TESTS

13.1 Segmentation

13.1.12 IUT Abort When Segmentation Not Possible

[Change Clause 13.1.12.1, p. 633]

[Reviewer Note: Added ‘Server’ flag, in consequence of BTL-CRR-0177.]

13.1.12.1 IUT Does Not Support Segmented Response
Purpose: To verify that the IUT returns the correct abort message when it does not support segmented responses and a response
would be larger than 1 segment.

BACnet Reference Clause: 5.4.5.3.

Test Concept: The TD uses ReadPropertyMultiple to ask for more data than can fit in a single segment. The TD also specifies
that the smallest (50 octet) segment size be used for the response. The data that are requested is the Object_Identifier property
of the Device object of the IUT. The number of copies of the data that is requested is one more than the maximum number
which would fit in a 50-octet segment.

Configuration Requirements: The IUT supports execution of the ReadPropertyMultiple service but does not support
transmission of segmented responses.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
 'max-APDU-length-accepted' = B'0000',
 'segmented-response-accepted' = TRUE,
 'Object Identifier' = (Device, X),
 'Property Identifier' = Object_Identifier,
 'Property Identifier' = Object_Identifier,
 'Property Identifier' = Object_Identifier,
 'Property Identifier' = Object_Identifier,
 'Property Identifier' = Object_Identifier
2. RECEIVE BACnet-Abort-PDU,
 'Server’ = TRUE,
 'Abort Reason' = SEGMENTATION_NOT_SUPPORTED

[Add new Clause 13.1.12.X1, p. 635]

13.1.12.X1 Reading with maximum-segments-accepted bit pattern B'000'
Purpose: To verify that the IUT implements at least support for two segments, when the 'max-segments-accepted' parameter
that it sends is B’000’.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

570 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

Configuration Requirements: If the IUT cannot be configured to issue any BACnet-Confirmed-Request-PDU with 'segmented-
response-accepted' = TRUE and the 'max-segments-accepted' parameter equal to B’000’, then this test shall be skipped.

1. RECEIVE BACnet-Confirmed-Request-PDU,
 'segmented-response-accepted' = TRUE
 'max-segments-accepted' = B‘000’
2. TRANSMIT BACnet-ComplexACK-PDU,
 'segmented-message' = TRUE,
 'more-follows' = TRUE,
 'sequence-number' = 0,
 'proposed-window-size' = (any valid value)
3. RECEIVE BACnet-SegmentACK-PDU,
 'server' = FALSE,
 'negativeACK' = FALSE
4. TRANSMIT BACnet-ComplexACK-PDU,
 'segmented-message' = TRUE,
 'more-follows' = FALSE,
 'sequence-number' = 1
5. RECEIVE BACnet-SegmentACK-PDU,
 'server' = FALSE,
 'negativeACK' = FALSE

13.5 Slave Proxy Tests

[Change Clause 13.5.3, p. 643]

[Reviewer Note: The third Who-Is should be a remote broadcast as the global broadcast case is already tested by the first
Who-Is. Steps 3 and 4 rely on functionality not required by the standard and should be deleted (see IR 135.1-2019-1).]

13.5.3 Proxy Test
BACnet Reference Clauses: 12.11.40, 12.11.41, 12.11.42, 12.11.43, and 16.10.2.

Purpose: This test verifies that an IUT correctly proxies for slaves that are listed in its Slave_Address_Binding property.

Test Concept: Configure the IUT so that it will proxy for a slave device and wait for the IUT to find and confirm the slave.
Issue Who-Is requests in all forms to ensure that the IUT correctly proxies the I-Am responses for the slave device. The test
should be repeated with the TD connected to the MS/TP segment, and with the TD connected to a different BACnet network.

Configuration Requirements: The MS/TP network, N1, shall contain a slave device at address A1 with a device identifier of
D1. The IUT shall be configured to perform slave proxying. The test starts after the IUT has successfully found and confirmed
the slave device. This test shall be repeated once with the TD connected to the MS/TP network and once with the TD connected
to a different BACnet network.

Test Steps:

1. TRANSMIT DESTINATION = GLOBAL BROADCAST, Who-Is-Request
2. BEFORE Unconfirmed Response Fail Time
 RECEIVE
 DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST | TD
 SOURCE = A1
 I-Am-Request,
 'I Am Device Identifier' = (the slave’s Device object’s Object_Identifer),D1,
 'Max APDU Length Accepted' = (the slave’s value for this property),
 'Segmentation Supported' = FALSE,
 'Vendor Identifier' = (the slave’s value for this property)
3. TRANSMIT DESTINATION = A1, Who-Is

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 571

4. BEFORE Unconfirmed Response Fail Time
 RECEIVE
 DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST | TD
 SOURCE = A1
 I-Am-Request,
 'I Am Device Identifier' = (the slave’s Device object’s Object_Identifer),
 'Max APDU Length Accepted' = (the slave’s value for this property),
 'Segmentation Supported' = FALSE,
 'Vendor Identifier' = (the slave’s value for this property)
3. IF the TD is not connected to the MS/TP network
 TRANSMIT DESTINATION = GLOBAL BROADCAST, Who-Is
 TRANSMIT
 DA = IUT, -- targeting the MS/TP network
 DNET = N1,
 DLEN = 0,
 Who-Is-Request
64. BEFORE Unconfirmed Response Fail Time
 RECEIVE
 DESTINATION = GLOBAL BROADCAST | LOCALREMOTE BROADCAST | TD
 SOURCE = A1
 I-Am-Request,
 'I Am Device Identifier' = (the slave’s Device object’s Object_Identifer),D1,
 'Max APDU Length Accepted' = (the slave’s value for this property),
 'Segmentation Supported' = FALSE,
 'Vendor Identifier' = (the slave’s value for this property)

13.8 Backup and Restore Procedure Tests

13.8.1 Backup and Restore Execution Tests

[Change Clause 13.8.1.1, p. 645]

[Reviewer Note: Corrected the Backup_And_Restore_State in step 22. Changed test to account for optional properties.]

13.8.1.1 Execution of Full Backup and Restore Procedure
Purpose: This test case verifies that the IUT can execute a full Backup and Restore procedure.

Test Concept: This test takes the IUT through a successful Backup and then a successful Restore procedure. The
Database_Revision and Last_Restore_Time properties are noted before the procedure begins for later comparison. The IUT is
then commanded to enter the Backup state; all the files are read, and the IUT is commanded to end the backup. If the
Database_Revision property can be changed by means other than the restore procedure, it is modified and checked to ensure
that it incremented correctly; then the IUT is commanded to enter the Restore state. If the file objects do not exist on the IUT,
the TD will create them in the IUT. The files are then truncated to size 0, the file contents are written to the IUT, and the IUT
is commanded to end the restore. The Database_Revision and Last_Restore_Time properties are checked to ensure that they
incremented or advanced correctly.

For IUTs that use Stream Access when performing the AtomicReadFile and AtomicWriteFile services, a Maximum Requested
Octet Count (MROC) and a Maximum Write Data Length (MWDL) shall be calculated before starting the test. These values
shall be used during the test. MROC shall be 16 less than the minimum of the TD’s Max_APDU_Length_Accepted and the
IUT’s maximum transmittable APDU length. MWDL shall be 21 less than the minimum of the TD’s maximum transmittable
APDU length and the IUT’s Max_APDU_Length_Accepted.

Test Steps:

1. READ DR1 = Database_Revision

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

572 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

2. READ LRT1 = Last_Restore_Time
3. READ OL1 = Object_List
4. REPEAT X = (1 through length of OL1) DO {
 READ NAMES[X] = (OL1[X]), Object_Name
 }
5 IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE

 READ BPT = APDU_Timeout
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE

 READ RCT = APDU_Timeout
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 VERIFY Backup_And_Restore_State = IDLE
6. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Password' = (any valid password)
7. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
8. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 READ BRSTATE = Backup_And_Restore_State
 READ CF = Configuration_Files
 WHILE (BRSTATE = PREPARING_FOR_BACKUP) DO {
 WAIT 1 second
 READ BRSTATE = Backup_And_Restore_State
 IF (CF is an empty list) THEN
 READ CF = Configuration_Files
 IF (CF is a non-empty list) THEN
 READ X = (the file referenced by Configuration_Files[1]).Name
 }
 CHECK (BRSTATE = PERFORMING_A_BACKUP)
9. READ CF = Configuration_Files
10. CHECK (CF is a non-empty array of BACnetObjectIdentifiers referring to File objects)
11. REPEAT X = (each entry in CF) DO {
 READ Y = X, File_Access_Method
 IF (Y = RECORD_ACCESS) THEN
 WHILE (the last read resulted in an Ack with 'End Of File' == FALSE) DO {
 TRANSMIT AtomicReadFile-Request,
 ‘Object Identifier’ = X,
 ‘File Start Record’ = (the next unread record),
 ‘Requested Record Count’ = 1
 RECEIVE AtomicReadFile-ACK,
 'End Of File' = TRUE | FALSE,
 ‘File Start Record’ = Z,
 ‘Requested Record Count’ = 1
 ‘Returned Data’ = (File contents)
 | Error-PDU -- only acceptable for the first record and only when there are no records in the file
 'Error Class' = SERVICES,
 'Error Code' = INVALID_FILE_START_POSITION
 }
 ELSE
 WHILE (the last read did not indicate 'End Of File') DO {
 TRANSMIT AtomicReadFile-Request,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 573

 ‘Object Identifier’ = X,
 ‘File Start Position’ = (the next unread octet),
 ‘Requested Octet Count’ = MROC
 RECEIVE AtomicReadFile-ACK,
 'End Of File' = TRUE | FALSE,
 ‘File Start Position’ = (the next unread octet)
 ‘File Data’ = (File contents of length MROC if 'End Of File' is FALSE
 or of length MROC or less if 'End Of File' is TRUE)
 | Error-PDU -- only acceptable for the first record and only when there are no records in the file
 'Error Class' = SERVICES,
 'Error Code' = INVALID_FILE_START_POSITION
 }
 }
12. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialize State Of Device’ = ENDBACKUP,
 ‘Password’ = (any valid password)
13. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
14. VERIFY System_Status ! = BACKUP_IN_PROGRESS
15. IF (Backup_And_Restore_State is present or (Protocol_Revision is present and Protocol_Revision ≥ 1013)) THEN
 VERIFY Backup_And_Restore_State = IDLE
16. IF (Database_Revision is changeable) THEN
 MAKE (the configuration in the IUT different, such that the Database_Revision property increments)
 VERIFY Database_Revision <> DR1
 READ DR2 = Database_Revision
 CHECK (DR1 <> DR2)
17. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialize State Of Device’ = STARTRESTORE,
 ‘Password’ = (any valid password)
18. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
19. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 READ BRSTATE = Backup_And_Restore_State
 WHILE (BRSTATE = PREPARING_FOR_RESTORE) DO {
 WAIT 1 second
 READ BRSTATE = Backup_And_Restore_State
 }
 CHECK (BRSTATE = PERFORMING_A_RESTORE)
20. READ OL2 = Object_List
21. REPEAT X = (entry in CF) DO {
 IF (X is not in OL2) THEN
 TRANSMIT CreateObject-Request
 ‘Object Identifier’ = X
 RECEIVE CreateObject-ACK
 ‘Object Identifier’ = X
 READ FS = X, File_Size
 IF (File_Size is not equal to the size of the backed up file) THEN
 WRITE X, File_Size = 0
 IF (Y = RECORD_ACCESS) THEN
 TRANSMIT AtomicWriteFile-Request
 ‘File Identifier’ = X
 ‘File Start Record’ = 0
 ‘Record Data’ = (file content for first record obtained in step 11)
 RECEIVE AtomicWriteFile-ACK
 ‘File Start Record’ = 0
 REPEAT REC = (each record in the backup of this file) {
 TRANSMIT AtomicWriteFile-Request
 ‘File Identifier’ = X
 ‘File Start Record’ = -1
 ‘Record Count’ = 1

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

574 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 ‘Record Data’ = REC
 RECEIVE AtomicWriteFile-ACK
 ‘File Start Record’ = (the record number)
 }
 ELSE
 REPEAT Z = (0 through the file size, in increments of MWDL) DO {
 TRANSMIT AtomicWriteFile-Request
 ‘File Identifier’ = X
 ‘File Start Position’ = Z
 ‘Record Data’ = (file contents obtained from the backup, the number of octets
 being the lesser of (file size - Z) and MWDL)
 RECEIVE AtomicWriteFile-ACK
 ‘File Start Position’ = Z
 }
 }
22. IF (Backup_And_Restore_State is present or (Protocol_Revision is present and Protocol_Revision ≥ 1013)) THEN
 VERIFY Backup_And_Restore_State = RESTORE_IN_PROGRESS PERFORMING_A_RESTORE
23. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialize State Of Device’ = ENDRESTORE,
 ‘Password’ = (any valid password)
24. RECEIVE BACnet-Simple-ACK-PDUBACnet-SimpleACK-PDU
25. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 VERIFY Backup_And_Restore_State = IDLE
26. READ DR3 = Database_Revision
27. CHECK (DR3 <> DR1)
28. IF (Database_Revision was changed in step 16) THEN
 CHECK (DR3 <> DR2)
29. VERIFY Last_Restore_Time > LRT1
30. READ OL3 = Object_List
31. CHECK (that OL1 and OL3 contain the same set of objects)
32. REPEAT X = (1 through length of OL1) DO {
 VERIFY (OL1[X]), Object_Name = NAMES[X]
 }

[Change Clause 13.8.1.2, p. 648]

[Reviewer Note: Changed test to account for optional properties.]

13.8.1.2 Attempting a Backup Procedure While Already Performing a Backup Procedure
Purpose: To verify that the IUT correctly rejects a command to start a Backup Procedure when already performing a Backup
Procedure.

Test Concept: The IUT is commanded to start a Backup Procedure from one client and then is commanded to start a Backup
Procedure from a different client.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE

 READ BPT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Property Identifier' = (any valid password)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 575

3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
5. TRANSMIT
 SNET = (N, any remote network number),
 SADR = (M, any MAC address valid for the specified network),
 ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Property Identifier' = (any valid password),
6. RECEIVE
 DNET = N,
 DADR = M,
 BACnet-Error PDU,
 'Error Class' = DEVICE,
 'Error Code' = CONFIGURATION_IN_PROGRESS
7. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ENDBACKUP,
 'Property Identifier' = (any valid password)
8. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU

[Change Clause 13.8.1.3, p. 649]

[Reviewer Note: Changed test to account for optional properties.]

13.8.1.3 Attempting a Backup Procedure While Already Performing a Restore Procedure
Purpose: To verify that the IUT correctly rejects a command to start a Backup Procedure when already performing a Restore
Procedure.

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE

 READ RCT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Property Identifier' = (any valid password)
3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
5. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Property Identifier' = (any valid password),
6. RECEIVE BACnet-Error PDU,
 'Error Class' = DEVICE,
 'Error Code' = CONFIGURATION_IN_PROGRESS
7. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ABORTRESTORE,
 'Property Identifier' = (any valid password)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

576 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

8. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
9. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

[Change Clause 13.8.1.4, p. 649]

[Reviewer Note: Changed test to account for optional properties.]

13.8.1.4 Attempting a Restore Procedure While Already Performing a Backup Procedure
Purpose: To verify that the IUT correctly rejects a command to start a Restore Procedure when already performing a Backup
Procedure.

Test Concept: The IUT is commanded to start a Restore Procedure from one client and then is commanded to start a Restore
Procedure from a different client.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE

 READ BPT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Property Identifier' = (any valid password)
3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
5. TRANSMIT
 SNET = (N, any remote network number),
 SADR = (M, any MAC address valid for the specified network),
 ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Property Identifier' = (any valid password),
6. RECEIVE
 DNET = N,
 DADR = M,
 BACnet-Error PDU,
 'Error Class' = DEVICE,
 'Error Code' = CONFIGURATION_IN_PROGRESS
7. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ENDBACKUP,
 'Property Identifier' = (any valid password)
8. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU

[Change Clause 13.8.1.5, p. 650]

[Reviewer Note: Changed test to account for optional properties.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 577

13.8.1.5 Attempting a Restore Procedure While Already Performing a Restore Procedure
Purpose: To verify that the IUT correctly rejects a command to start a Restore Procedure when already performing a Restore
Procedure.

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE

 READ RCT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Property Identifier' = (any valid password)
3. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
5. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Property Identifier' = (any valid password),
6. RECEIVE BACnet-Error PDU,
 'Error Class' = DEVICE,
 'Error Code' = CONFIGURATION_IN_PROGRESS
7. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ABORTRESTORE,
 'Property Identifier' = (any valid password)
8. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
9. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

[Change Clause 13.8.1.6, p. 650]

[Reviewer Note: Modified to consider the protocol revision for WAITs. Changed test to account for optional properties.]

13.8.1.6 Ending Backup and Restore Procedures via Timeout
Purpose: This test case verifies that the IUT will end Backup and Restore procedures after not receiving any messages related
to the backup or restore for longer than Backup_Failure_Timeout and that the Backup_Failure_Timeout property is writeable.

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

Test Steps:

1. WRITE Backup_Failure_Timeout = (A value T1 greater than Backup_Preparation_Timeout)
2. VERIFY Backup_Failure_Timeout = T1
3. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

578 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

 READ BPT = Backup_Preparation_Time
 ELSE
 READ BPT = APDU_Timeout
4. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Property Identifier' = (any valid password)
5. RECEIVE Simple-ACK-PDUBACnet-SimpleACK-PDU
6. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 READ BRSTATE = Backup_And_Restore_State
 WHILE (BRSTATE = PREPARING_FOR_BACKUP) DO {
 WAIT 1 second
 READ BRSTATE = Backup_And_Restore_State
 }
 CHECK (BRSTATE = PERFORMING_A_BACKUP)
7. WAIT (T1 + 10 seconds)
8. IF (Backup_And_Restore_State is present or (Protocol_Revision is present and Protocol_Revision ≥ 1013)) THEN
 VERIFY Backup_And_Restore_State = IDLE
9. VERIFY System_Status ! = BACKUP_IN_PROGRESS
10. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE
 READ RCT = APDU_Timeout
11. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialized State of Device’ = STARTRESTORE,
 ‘Password’ = (any valid password)
12. RECEIVE BACnet-Simple ACK-PDU
13. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 READ BRSTATE = Backup_And_Restore_State
 WHILE (BRSTATE = PREPARING_FOR_RESTORE) DO {
 WAIT 1 second
 READ BRSTATE = Backup_And_Restore_State
 }
 CHECK (BRSTATE = PERFORMING_A_RESTORE)
 ELSE
 WAIT (30 seconds)
14. WAIT (T1 + 10 40 seconds)
15. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 VERIFY Backup_And_Restore_State = IDLE
16. VERIFY System_Status ! = DOWNLOAD_IN_PROGRESS

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

[Change Clause 13.8.1.7, p. 651]

[Reviewer Note: Changed test to account for optional properties.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 579

13.8.1.7 Ending Backup and Restore Procedures via Abort
Purpose: This test case verifies that the IUT will leave the BACKUP_IN_PROGRESS and DOWNLOAD_IN_PROGRESS
states upon a command to abort.

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE
 READ BPT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Password' = (any valid password)
3. RECEIVE BACnet-Simple ACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
5. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ENDBACKUP,
 'Password' = (any valid password)
6. RECEIVE BACnet-Simple ACK-PDU
7. IF (Backup_And_Restore_State is present or (Protocol_Revision is present and Protocol_Revision ≥ 1013)) THEN
 VERIFY Backup_And_Restore_State = IDLE
8. VERIFY System_Status != BACKUP_IN_PROGRESS
9. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE
 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE
 READ RCT = APDU_Timeout
10. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Password' = (any valid password)
11. RECEIVE BACnet-Simple ACK-PDU
12. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
13. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ABORTRESTORE,
 'Password' = (any valid password)
14. RECEIVE BACnet-Simple ACK-PDU
15. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT
 IF (Backup_And_Restore_State is present or Protocol_Revision ≥ 13) THEN
 VERIFY Backup_And_Restore_State = IDLE
16. VERIFY System_Status ! = DOWNLOAD_IN_PROGRESS

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is
different from the IUT state when this test was started.

[Change Clause 13.8.1.8, p. 652]

[Reviewer Note: Added supported error codes.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

580 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

13.8.1.8 Attempting a Backup Procedure with an Invalid Password
Purpose: To verify the correct execution of the Backup procedure when an invalid password is provided and when a password
is required but no password is provided. If the IUT cannot be made to deny a ReinitializeDevice <STARTBACKUP> service
request that does not contain a valid password, then this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Password' = (any invalid password)
2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
3. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP
4. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |

[Change Clause 13.8.1.9, p. 652]

[Reviewer Note: Added supported error codes.]

13.8.1.9 Attempting a Restore Procedure with an Invalid Password
Purpose: To verify the correct execution of the Restore procedure when an invalid password is provided and when a password
is required but no password is provided. If the IUT cannot be made to deny a ReinitializeDevice <STARTRESTORE > service
request that does not contain a valid password, then this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Password' = (any invalid password)
2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 581

 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED) |
3. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE
4. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
 RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE
 ELSE
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SECURITY,
 'Error Code' = PASSWORD_FAILURE) |
 (RECEIVE BACnet-Error-PDU,
 'Error Class' = SERVICES,
 'Error Code' = SERVICE_REQUEST_DENIED)

[Change Clause 13.8.1.10, p. 653]

[Reviewer Note: Changed test to account for optional properties.]

13.8.1.10 Starting and Ending a Backup Procedure when a Password is not Required
Purpose: This test case verifies that the IUT ignores the password. If the IUT cannot be made to accept a ReinitializeDevice
service request that contains any or no password, then this test shall be omitted.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE
 READ BPT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Password' = (any non-zero length password)
3. RECEIVE BACnet-Simple ACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
5. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ENDBACKUP,
 'Password' = (any non-zero length password)
6. RECEIVE BACnet-Simple ACK-PDU
7. IF (Backup_And_Restore_State is present or (Protocol_Revision is present and Protocol_Revision ≥ 1013)) THEN
 VERIFY Backup_And_Restore_State = IDLE
8. VERIFY System_Status ! = BACKUP_IN_PROGRESS

[Change Clause 13.8.1.11, p. 653]

[Reviewer Note: Corrected the 'Reinitialized State of Device' value in step 5. Changed test to account for optional properties.]

13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required
Purpose: This test case verifies that the IUT ignores the password. If the IUT cannot be made to accept a ReinitializeDevice
service request that contains any or no password, then this test shall be omitted.

Test Steps:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

582 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE

 READ RCT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialized State of Device’ = STARTRESTORE,
 ‘Password’ = (any non-zero length password)
3. RECEIVE BACnet-Simple ACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
5. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialized State of Device’ = ENDABORTRESTORE,
 ‘Password’ = (any non-zero length password)
6. RECEIVE BACnet-Simple ACK-PDU
7. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT
8. VERIFY System_Status ! = DOWNLOAD_IN_PROGRESS

[Change Clause 13.8.1.12, p. 653]

[Reviewer Note: Changed test to account for optional properties.]

13.8.1.12 System_Status during a Backup Procedure
Purpose: This test case verifies that the IUT correctly sets its System_Status during a Backup procedure. If the IUT does not
change its operational behavior during a Backup Procedure, then this test shall be omitted.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Backup_Preparation_Time is present) THEN
 READ BPT = Backup_Preparation_Time
 ELSE
 READ BPT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTBACKUP,
 'Password' = (any valid password)
3. RECEIVE BACnet-Simple ACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT BPT
5. VERIFY System_Status = BACKUP_IN_PROGRESS
6. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ENDBACKUP,
 'Password' = (any valid password)
7. RECEIVE BACnet-Simple ACK-PDU
8. WAIT a vendor specified period of time for the device to complete the backup operation
9. VERIFY System_Status != BACKUP_IN_PROGRESS

[Change Clause 13.8.1.13, p. 654]

[Reviewer Note: Changed test to account for optional properties.]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 583

13.8.1.13 System_Status during a Restore Procedure
Purpose: This test case verifies that the IUT correctly sets its System_Status during a Restore procedure. If the IUT does not
change its operational behavior during a Restore Procedure, this test shall be omitted.

Test Steps:

1. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 IF (Restore_Preparation_Time is present) THEN
 READ RPT = Restore_Preparation_Time
 ELSE

 READ RPT = APDU_Timeout
 IF (Restore_Completion_Time is present) THEN
 READ RCT = Restore_Completion_Time
 ELSE
 READ RCT = APDU_Timeout
2. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = STARTRESTORE,
 'Password' = (any valid password)
3. RECEIVE BACnet-Simple ACK-PDU
4. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
5. VERIFY System_Status = DOWNLOAD_IN_PROGRESS
6. TRANSMIT ReinitializeDevice-Request,
 'Reinitialized State of Device' = ABORTRESTORE,
 'Password' = (any valid password)
7. RECEIVE BACnet-Simple ACK-PDU
8. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RCT
9. VERIFY System_Status != DOWNLOAD_IN_PROGRESS

13.8.2 Backup and Restore Initiation Tests

[Change Clause 13.8.2.1, p. 654]

[Reviewer Note: Added note about preparation time properties. Clarified test characteristics for backup file names.]

13.8.2.1 Initiate a Full Backup and Restore
Purpose: To verify that the IUT can perform a Backup and Restore on a BACnet server device.

Test Concept: The IUT is first made to initiate a Backup and then a Restore of the TD device. This test verifies that the IUT
performs the Backup procedure correctly by comparing the resulting restored file with the original. The TD is made to respond
appropriately such that the Backup and Restore procedures are completed normally. The final check can be accomplished
using a file compare of the original files to the files restored or by comparing the network traffic during the backup to the
network traffic during the restore. The number of files, the order of the files, and the file content should be the same. The test
is to be executed multiple times with the TD configured with different sets of backup and restore characteristics.

Configuration Requirements: The IUT is configured to already contain a device binding for the TD device. The TD is
configured with some of the following characteristics:

Backup Characteristics:

1. The TD is configured to contain an APDU size that is smaller than the APDU size of the IUT. If the TD and the IUT

support segmentation, the TD is configured to support a smaller window size than the IUT.
2. The TD is configured to contain a configuration file of size zero.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

584 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

3. The TD is configured to contain some configuration files that are STREAM_ACCESS and some that are
RECORD_ACCESS.

4. The TD is configured to only allow access to File and Device objects during the Backup and Restore procedures. All other
attempts shall result in an error from the TD.

5. The TD is configured to require the same password for all of the reinitialize device requests.
6. The TD is configured to contain characters in the object name of some file name objects, such as * " and \, that would

reveal weakness in the implementation process that assigns names to files where the backup is stored not be accepted by
the OS which the IUT is running on.

7. The TD is configured with a Protocol_Revision < 10.
8. The TD is configured with a Protocol_Revision ≥≥ 10. This is only used if the IUT claims Protocol_Revision ≥≥ 10.

Note that if IUT claims Protocol_Revision < 10, the presence of preparation time properties in a TD with Protocol_Revision
≥ 10 may be ignored and cannot be relied upon.

Restore Characteristics:

1. The TD is configured to support CreateObject service, and some of the configuration files exist while others do not.
2. The TD is configured such that some of the configuration file File objects exist, but the file size is different from that of

the file to be restored.
3. The TD is configured to not support the CreateObject service.
4. The TD is configured to contain some configuration files that are STREAM_ACCESS and some that are

RECORD_ACCESS.
5. The TD is configured to only allow access to File and Device objects during the Backup and Restore procedures. All other

attempts shall result in an error from the TD.
6. The TD is configured to require the same password for all of the reinitialize device requests.
7. The TD is configured with a Protocol_Revision < 10.
8. The TD is configured with a Protocol_Revision ≥≥ 10. This is only used if the IUT claims Protocol_Revision ≥≥ 10.

Note that if IUT claims Protocol_Revision < 10, the presence of preparation time properties in a TD with Protocol_Revision
≥ 10 may be ignored and cannot be relied upon.

Notes to Tester: Other items to ensure were correct during execution of the test:
1. Verify the order the IUT read the configuration files was the same as the order returned by the Configuration_Files

property.
2. Verify that any file with a File_Size of zero was restored.
3. Verify that each file read is in byte order if STREAM_ACCESS and in record order if RECORD_ACCESS.

Test Steps:

1. MAKE (IUT initiate a backup on the TD device)
2. WAIT (for backup to complete)
3. MAKE (changes required in TD to meet restore characteristics for this test)
4. MAKE (IUT initiate a restore on the TD device)
5. WAIT (for restore to complete)
6. CHECK (that the file content restored is the same as the file content that was backed up)

Notes to Tester: Other items to ensure were correct during execution of the test:

1. Verify the order the IUT read the configuration files was the same as the order returned by the Configuration_Files

property.
2. Verify that any file with a File_Size of zero was restored.
3. Verify that each file read is in byte order if STREAM_ACCESS and in record order if RECORD_ACCESS.

13.9 Application State Machine Tests

[Add new Clause 13.9.X1, p. 658]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 585

13.9.X1 Ignore Confirmed Broadcast Requests
Purpose: This test case verifies that the IUT will quietly discard any Confirmed-Request-PDU, whose destination address is a
multicast or broadcast address, received from the network layer.

Test Concept: The TD transmits the Confirmed-Request-PDU services whose destination address is a multicast or broadcast
address. The IUT is required to silently drop the requests because it should only respond to unicast confirmed requests.

Test Steps:

1. TRANSMIT Any BACnet-Confirmed-Request-PDU,
 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,

2. CHECK (that the IUT does not send any packets in response to above Confirmed-Request-PDU)

13.10 Workstation Scheduling Tests

13.10.4 Modify and Exception_Schedule

[Change Clause 13.10.4.9, p. 671]

[Reviewer Note: Modified to include new WeekOfMonth values defined in PR 18.]

13.10.4.9 Modify an Exception_Schedule by Adding a BACnetSpecialEvent with Period of Choice calendarEntry of
Choice WeekNDay
Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetSpecialEvent
of the schedule with the calendarEntry of type WeekNDay.

Test Concept: For different WeekNDay values, add a BACnetCalendarEntry to the Date_List property of an
Exception_Schedule, and verify the IUT writes the modified Date_List correctly to the reference device.

Test Configuration: A reference device contains reference objects S1, C1, and C2. Choose the value set to use from the table
below based on the protocol-revision for the IUT.

 WeekNDay = <Month><weekOfMonth><dayOfWeek>
Value Set Protocol_Revision Month weekOfMonth dayOfWeek
1 PR < 4 0 to 12 and FF 1 to 6 and FF 1 to 7 and FF
2 PR >= 4 0 to 12 and FF and 13 and 14 1 to 6 and FF 1 to 7 and FF
3 PR >= 18 0 to 12 and FF and 13 and 14 1 to 9 and FF 1 to 7 and FF

Test Steps:

REPEAT WND = (WeekNDay Value Set from table)
{
 1. MAKE (the IUT add an entire BACnetSpecialEvent with period of choice calendarEntry of choice
 WeekNDay with value of WND to the Exception_Schedule of S1)
 2. CHECK (Did the IUT write the modified Exception_Schedule correctly?)
}
Notes to Tester: For example, try different WeekNDay representations that leave one or more of each of the following fields
unspecified: month, weekOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision ≥ 4, try using the special
values for month 13 (all odd) and 14 (all even).

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

586 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

13.10.5 Modify a Calendar Object

[Change Clause 13.10.5.4, p. 674]

[Reviewer Note: Modified to include new WeekOfMonth values defined in PR 18.]

13.10.5.4 Modify a Calendar by Adding a BACnetCalendarEntry of Choice WeekNDay to the Date_List
Purpose: Demonstrate that the IUT can accept user input and use it to add a BACnetCalendarEntry of choice WeekNDay to
the Date_List.

Test Concept: For different WeekNDay values, add a BACnetCalendarEntry to the Date_List property of a Calendar, and
verify the IUT writes the modified Date_List correctly to the reference device.

Test Configuration: A reference device contains reference object C1. Choose the value set to use from the table below based
on the protocol-revision for the IUT.

 WeekNDay = <Month><weekOfMonth><dayOfWeek>
Value Set Protocol_Revision Month weekOfMonth dayOfWeek
1 PR < 4 0 to 12 and FF 1 to 6 and FF 1 to 7 and FF
2 PR >= 4 0 to 12 and FF and 13 and 14 1 to 6 and FF 1 to 7 and FF
3 PR >= 18 0 to 12 and FF and 13 and 14 1 to 9 and FF 1 to 7 and FF

Test Steps:

REPEAT WND = (WeekNDay Value Set from table)
{
 1. MAKE (the IUT add a BACnetCalendarEntry of type WeekNDay with value of WND to the Date_List of
 C1)
 2. CHECK (Did the IUT write the modified Date_List correctly?)
}
Notes to Tester: For example, try different WeekNDay representations that leave one or more of each of the following fields
unspecified: month, weekOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision ≥ 4, try using the special
month values 13 (all odd) and 14 (all even)

[Add new Clause 13.10.X8, p. 675]

13.10.X8 Modify a Self-inconsistent Timer to be Consistent

Purpose: Demonstrate that the IUT can read a Timer that is self-inconsistent with regard to datatype and modify it to be
consistent. This capability is required in order to be able to fix Timer objects that may be in a self-inconsistent state when the
process of changing datatype in an earlier attempt was interrupted.

Test Configuration: A reference device contains any valid Timer object T that supports modifying the datatype.

Notes to Tester: A consistent timer is one that meets all of these criteria:

1. All non-NULL values used in the State_Change_Values property shall be of the same datatype.
2. All properties referenced by the List_Of_Object_Property_References are writable with that datatype.

Until those conditions are met, the inconsistency can be detected by reading the Reliability property which will have the value
CONFIGURATION_ERROR.

Test Steps:

1. MAKE (the IUT modify T so that the datatype which State_Change_Values holds, and which
List_Of_Object_Property_References values points to, is consistent)
2. CHECK (Did the IUT write a consistent timer?)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 587

[Add new Clause 13.10.X9, p. 675]

13.10.X9 Change the Datatype that a Timer Object References

Purpose: Verify that the IUT can alter the datatype of a Timer object.

Test Configuration: A reference device contains any valid Timer object that supports modifying the datatype.

Notes to Tester: It is acceptable that the IUT modify the Timer one property at a time, so there may be a time period when the
Timer is in a self-inconsistent state during reconfiguration.

Test Steps:

1. MAKE (the State_Change_Values have, and/or List_Of_Object_Property_References point to a scheduled datatype that
is different)
2. CHECK (Did the IUT write the modified properties correctly?)

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

588 ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019

135.1-2019s-14 Apply miscellaneous editorial changes

Rationale

Several editorial changes are applied:

The reference to the BACnet standard is updated to ANSI/ASHRAE Standard 135-2020.

The Dependencies and BACnet Reference Clause(s) sections have been identified as not valuable. Both sections
are removed to reduce maintenance.

The position of the Notes to Tester section at end of the test bears the risk of testers missing this important
instruction. This section is repositioned within tests specifications.

[Change Clause 6.2.8, p.16]

6.2.9 WAIT Statement

The WAIT statement is used to pause the execution of the TD for some specified amount of time.

 <wait statement> ::= WAIT <timer value>

Test Steps: The TD shall pause the amount of time specified by the <timer value> before proceeding to the next test step. The
<timer value> shall be one of the timers specified in 6.3 of this standard, in ANSI/ASHRAE 135-20082020, or as otherwise
specified.

Example: WAIT Internal Processing Fail Time

[Change Clause 6.2.11, p.17

6.2.11 BEFORE Statement
The BEFORE statement is used to test for the occurrence of an expected action before a timer expires.

 <before statement> ::= BEFORE <timer> <statement>

The <timer value> shall be one of the timers specified in 6.3 of this standard, in ANSI/ASHRAE 135-20082020, or as otherwise
specified. If the action indicated by <statement> has not yet occurred when the timer expires the test fails. Otherwise this test
step passes and the test continues. For example:

Example: BEFORE Acknowledgment Fail Time RECEIVE BACnet-SimpleACK-PDU

[Change Clause 6.4, p.19

6.4 BACnet References
All references to BACnet clauses in this standard refer to ANSI/ASHRAE 135-20082020, except as otherwise noted ("BACnet-
2001" refers to ANSI/ASHRAE 135-2001).

[Change Clauses 7 – 14.9.3, p. 20 - 703]

[Reviewer Note: In Clauses 7 through 14, remove the references to clauses of the BACnet standard.]

BACnet-2001 Reference Clause:

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ANSI/ASHRAE Addendum s to ANSI/ASHRAE Standard 135.1-2019 589

BACnet-2001 Reference Clauses:

BACnet Reference Clause:

BACnet Reference Clauses:

[Change Clauses 7 – 14.9.3, p. 20 - 703]

[Reviewer Note: In Clauses 7 through 14, remove the Dependencies section.]

Dependencies:

[Change Clauses 7 – 14.9.3, p. 20 - 703]

[Reviewer Note: In Clauses 7 through 14, rename “Note to Tester”, “Note to tester”, and “Notes to tester” to “Notes to Tester”.
Move the Notes to Tester section from after the Test Steps to immediately before the Test Steps. Example: 135.1-2019s-7,
Clause 7.3.2.9.3]

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

POLICY STATEMENT DEFINING ASHRAE’S CONCERN
FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment.
ASHRAE’s members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of
the systems and components in their responsibility while maximizing the beneficial effects these systems provide,
consistent with accepted Standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the
indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by
itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure,
continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote
those new and revised Standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date Standards and design considerations as the
material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and
will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating
Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the
system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope
operates. However, energy source selection and the possible environmental impact due to the energy source and
energy transportation will be considered where possible. Recommendations concerning energy source selection
should be made by its members.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

ASHRAE · 180 Technology Parkway · Peachtree Corners, GA 30092 · www.ashrae.org

About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and
sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE
and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic
partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and
connect on LinkedIn, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital
Collections, which provides online access with automatic updates as well as historical versions of publications.
Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the
active Standard or Guideline and its previous version. For more information, visit the Standards and Guidelines
section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this
Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer
distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda,
errata, and interpretations only in electronic form to promote more sustainable use of
resources.

3/23

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either
print or digital form is not permitted without ASHRAE's prior written permission.

	135_1_2019_s_text.pdf
	135.1-2019s-1 Add new and correct existing tests for the Network Layer
	10.1.1 Processing Application Layer Messages Originating from Remote Networks
	10.2.2.7.2 Unknown Network Layer Message Type

	10.2.3 Routing of Unicast APDUs
	10.2.3.2 Route Message from a Local Device to a Local Device
	10.2.3.6 Attempt to Locate Downstream Routers
	10.2.3.6.1 Failed Attempt to Locate Router
	10.2.3.6.2 Successful Attempt to Locate Router

	10.2.X1 Initiates Network-Number-Is on Startup
	10.2.X2 Routers Execute What-Is-Network-Number
	10.5 Initiating Network Layer Messages
	10.5.2 Managing Router Tables
	10.5.2.X1 Query A Router’s Known Routes

	10.6 Non-Router Functionality Tests
	10.6.3 Ignore Router Commands

	10.7 Router Functionality
	10.7.2 Router Binding via Application Layer Services

	10.8 Virtual Routing Functionality Tests
	10.8.3 Routing of Unicast APDUs
	10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response Message from the Virtual Device to the Local Device
	10.8.3.2 Route Request Message from a Virtual Device to a Local Device
	10.8.3.5 Unicast Messages That Should Not Be Routed
	10.8.3.5.1 Unknown Network

	10.8.3.X1 Silently Drop Messages to a Virtual Device that is Offline

	10.8.4 Routing of Broadcast APDUs to Virtual Devices
	10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network

	10.8.7 Multiple Devices on a Single Virtual Network
	10.8.7.4 Who-Is Specifying Unknown Device Ids
	10.8.7.5Who-Has Specifying Unknown Device Ids

	135.1-2019s-2 Add new and correct existing tests for the MS/TP Data Link Layer
	12.1 MS/TP State Machine Tests
	12.1.3 MS/TP Data Link Layer Tests (Alternate)
	12.1.3.3 Verify Tframe_gap
	12.1.3.X1 Frame Type Based on Transmitted NPDU size
	12.1.3.X2 Executing COBS Encoded Frames
	12.1.3.X3 Data Not For Us Test

	135.1-2019s-3 Add tests for the BACnet Secure Connect Data Link Layer
	12.YY Secure Connect Functionality Tests
	12.YY.1 Basic Node Tests
	12.YY.1.1 Basic Node Positive Tests
	12.YY.1.1.1 Connect and Maintain Hub Connection Test
	12.YY.1.1.2 Connect to Failover Hub Test
	12.YY.1.1.3 Connect to Failover Hub on Startup Test
	12.YY.1.1.4 Reconnect to Primary Hub Test
	12.YY.1.1.5 Unicast Through Hub Test
	12.YY.1.1.6 Unicast to Hub Test
	12.YY.1.1.7 Local Broadcast Initiation Test
	12.YY.1.1.8 Local Broadcast Execution Test
	12.YY.1.1.9 VMAC Uniqueness Test
	12.YY.1.1.10 UUID Persistence Test
	12.YY.1.1.11 UUID Persistence When VMAC Changes Test
	12.YY.1.1.12 Unknown 'Must Understand' is True Message Test
	12.YY.1.1.13 Unknown 'Must Understand' is False Message Test
	12.YY.1.1.14 Multiple Header Options Test
	12.YY.1.1.15 Advertisement-Solicitation Execution Test
	12.YY.1.1.16 Heartbeat-Request Initiation Test
	12.YY.1.1.17 Configurable Reconnect Timeout Test
	12.YY.1.1.18 Fixed Reconnect Timeout Test

	12.YY.1.2 Basic Node Negative Tests
	12.YY.1.2.1 Direct Connect Not Supported - NAK Address Resolution Test
	12.YY.1.2.2 Malformed BVLC Test
	12.YY.1.2.3 Discard BVLC with Wrong Address Test
	12.YY.1.2.4 Hub Connector Ignores Malformed Hub URIs Test
	12.YY.1.2.5 Connect-Request Response Wait Time Test
	12.YY.1.2.6 HTTP 1.1 Fallback Test
	12.YY.1.2.7 Rejection of Invalid Certificate Outgoing Connection Test
	12.YY.1.2.8 No Additional Certificate Checks Performed Test On Outgoing Connections
	12.YY.1.2.9 Invalid WebSocket Data Test

	12.YY.1.3 Basic Node Configuration Tests
	12.YY.1.3.1 Configuration Via PEM Test
	12.YY.1.3.2 Configuration Tool Accepts Arbitrary Valid Certificate Parameters Test
	12.YY.1.3.3 Factory Defaults Test

	12.YY.2 Hub Tests
	12.YY.2.1 Hub Positive Tests
	12.YY.2.1.1 Local Broadcast Initiation Test
	12.YY.2.1.2 Local Broadcast Execution Test
	12.YY.2.1.3 Minimum NPDU Forwarding Size Test
	12.YY.2.1.4 Failover Hub Connects to Primary Hub Test
	12.YY.2.1.5 Failover Hub’s Local Node Connects to Failover Hub Test
	12.YY.2.1.6 Failover Hub Split Horizon Test
	12.YY.2.1.7 Hub Forwards Unicast BVLCs Test
	12.YY.2.1.8 No Additional Certificate Checks Performed Test On Incoming Connections
	12.YY.2.1.9 Duplicate Connection Test
	12.YY.2.1.10 Heartbeat-Request Execution Test

	12.YY.2.2 Hub Negative Tests
	12.YY.2.2.1 Hub Discards BVLCs with Non-connected VMAC Test
	12.YY.2.2.2 Connect-Request Wait Time Test
	12.YY.2.2.3 VMAC Collision Detection Test
	12.YY.2.2.4 Rejection of Invalid Certificate Incoming Connection Test

	12.YY.3 Direct Connect Tests
	12.YY.3.1 Direction Connect Basic Tests
	12.YY.3.1.1 Direction Connect Basic Positive Tests
	12.YY.3.1.1.1 Unicast Through Direct Connect Test
	12.YY.3.1.1.2 Direct Connect Disconnect Test
	12.YY.3.1.1.3 Direct Connect Establishment Failover Test

	12.YY.3.1.2 Direction Connect Basic Negative Tests
	12.YY.3.1.2.1 Discard Broadcast BVLC Received on Direct Connect Test

	12.YY.3.2 Accepting Direct Connect Tests
	12.YY.3.2.1 Accepting Direct Connect Positive Tests
	12.YY.3.2.1.1 Direct Connect Acceptance Test
	12.YY.3.2.1.2 No Additional Certificate Checks Performed Test On Incoming Connections

	12.YY.3.2.2 Accepting Direct Connect Negative Tests
	12.YY.3.2.2.1 Connect-Request Wait Time Test
	12.YY.3.2.2.2 Direct-Connect Duplicate Connection for IUT Accepted Connections Test
	12.YY.3.2.2.3 Direct-Connect Duplicate Connection for IUT Initiated Connections Test
	12.YY.3.2.2.4 VMAC Collision Detection Test
	12.YY.3.2.2.5 Rejection of Invalid Certificate Incoming Connection Test

	12.YY.3.3 Initiating Direct Connect Tests
	12.YY.3.3.1 Initiating Direct Connect Positive Tests
	12.YY.3.3.1.1 Direct Connect Establishment Test
	12.YY.3.3.1.2 Direct Connect Multiple URI Test

	12.YY.3.3.2 Initiating Direct Connect Negatives Tests
	12.YY.3.3.2.1 Invalid Web Socket Scheme In Configured Direct Connect URI Test
	12.YY.3.3.2.2 Invalid Web Socket Scheme in Discovered Direct Connect URI Test
	12.YY.3.3.2.3 Rejection of Invalid Certificate Outgoing Connection Test

	10 NETWORK LAYER PROTOCOL TESTS
	10.2 Router Functionality Tests
	10.2.X3 Data Attributes Forwarding Test
	10.2.X4 Data Attributes Dropping Test
	10.2.X5 Secure Path Test
	10.2.X6 Insecure Path Test

	135.1-2019s-4 Add tests for IPv6
	12.X BACnet/IPv6 Functionality Tests
	12.X.1 Common Tests
	12.X.1.1 Execute Original-Unicast-NPDU
	12.X.1.2 Execute Virtual-Address-Resolution

	12.X.2 IPv6 Normal Mode Tests
	12.X.2.1 Positive Tests
	12.X.2.1.1 Initiate Original-Broadcast-NPDU
	12.X.2.1.2 Execute Original-Broadcast-NPDU
	12.X.2.1.3 Execute Forwarded-NPDU
	12.X.2.1.4 Execute Address-Resolution
	12.X.2.1.5 Execute Forwarded-Address-Resolution

	12.X.2.2 Negative Tests
	12.X.2.2.1 Reject Register-Foreign-Device
	12.X.2.2.2 Reject Delete-Foreign-Device-Table-Entry
	12.X.2.2.3 Reject Distribute-Broadcast-To-Network

	12.X.3 Foreign Device Tests
	12.X.3.1 Positive Tests
	12.X.3.1.1 Initiate Distribute-Broadcast-To-Network-NPDU
	12.X.3.1.2 Execute Forwarded-NPDU
	12.X.3.1.3 Execute Forwarded-Address-Resolution

	12.X.3.2 Negative Tests
	12.X.3.2.1 Ignores Original-Broadcast-NPDU
	12.X.3.2.2 Ignore Address-Resolution
	12.X.3.2.3 Reject Register-Foreign-Device
	12.X.3.2.4 Reject Delete-Foreign-Device-Table-Entry
	12.X.3.2.5 Reject Distribute-Broadcast-To-Network

	12.X.4 BBMD Tests
	12.X.4.1 Positive Tests
	12.X.4.1.1 Original-Broadcast-NPDU
	12.X.4.1.2 Forwarded-NPDU
	12.X.4.1.3 Address-Resolution
	12.X.4.1.4 Forwarded-Address-Resolution
	12.X.4.1.5 Distribute-Broadcast-To-Network

	12.X.4.2 Negative Tests
	12.X.4.2.1 Reject Forwarded-NPDU
	12.X.4.2.2 Reject Address-Resolution
	12.X.4.2.3 Reject Forwarded-Address-Resolution
	12.X.4.2.4 Reject Distribute-Broadcast-To-Network

	12.X.4.3 Broadcast Distribution Table Operations
	12.X.4.3.1 Verify writability of the BDT

	12.X.5 Foreign Device Management Tests
	12.X.5.1 Execute Register-Foreign-Device
	12.X.5.2 Execute Delete-Foreign-Device-Table-Entry
	12.X.5.3 Foreign Device Table Timer Operations
	12.X.5.3.1 Non-Zero-Duration Foreign Device Table Timer Operations
	12.X.5.3.2 Zero-Duration Foreign Device Timer Operations

	12.X.5.4 Delete-Foreign-Device-Table-Entry For A Non-existent Entry

	135.1-2019s-5 Add new and correct existing BACnet/IP Functionality Tests
	14.12.3. BACnet/IP FUNCTIONALITY TESTS
	14.112.3.1 Non-BBMD B/IP Device
	14.1.712.3.1.7 Forwarded-NPDU (One-hop Distribution)
	14.1.812.3.1.8 Original-Broadcast-NPDU
	14.1.1012.3.1.10 Forwarded-NPDU (Two-hop Distribution)
	12.3.1.X11 Processing Forwarded-NPDU request initiated from different port
	12.3.1.X12 Processing Forwarded-NPDU request initiated from different port when registered as a Foreign Device into a BBMD

	14.212.3.2 BBMD B/IP Device with a Server Application
	14.2.112.3.2.1 Execute Forwarded-NPDU
	14.2.1.112.3.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)
	14.2.1.212.3.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)

	14.2.212.3.2.2 Execute Original-Broadcast-NPDU
	14.2.2.112.3.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)
	14.2.2.212.3.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)

	14.312.3.3 Broadcast Distribution Table Operations
	14.3.312.3.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous Session
	12.3.3.X1 Write-BDT service is required to return Write-BDT-NAK

	14.612.3.6 Foreign Device Management
	14.6.312.3.6.3 Foreign Device Table Timer Operations
	14.6.3.112.3.6.3.1 Non-Zero-Duration Foreign Device Table Timer Operations
	14.6.3.212.3.6.3.2 Zero-Duration Foreign Device Timer Operations

	14.712.3.7 Broadcast Management (BBMD, Foreign Devices, Local Application)
	14.7.112.3.7.1 Broadcast Message from Directly Connected IP Subnet
	14.7.1.112.3.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)
	14.7.1.212.3.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)

	14.7.212.3.7.2 Broadcast Message Forwarded by a Peer BBMD
	14.7.2.112.3.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)
	14.7.2.212.3.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)

	14.7.312.3.7.3 Broadcast Message from a Foreign Device
	14.7.3.112.3.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)
	14.7.3.212.3.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)

	14.8 Registering as a Foreign Device12.3.8 Foreign Device Tests
	14.812.3.8.1 Registering as a Foreign Device
	12.3.8.X1 Register-Foreign-Device Enable and Disable Test
	12.3.8.X2 Recurring Register-Foreign-Device Test
	12.3.8.X3 BBMD Address Configuration Test
	12.3.8.X4 Transmits a Broadcast at Startup preceded by Register-Foreign-Device
	12.3.8.X5 Time-to-Live Configuration Test

	14.912.3.9 Initiating BVLL Service Requests Conveying an NPDU
	14.9.112.3.9.1 Distribute-Broadcast-To-Network

	12.3.X1 BBMD Configuration Tests – A side
	12.3.X1.1 Read-Broadcast-Distribution-Table Initiation
	12.3.X1.2 Write-Broadcast-Distribution-Table Initiation
	12.3.X1.3 Read-Foreign-Device-Table Initiation
	12.3.X1.4 Delete-Foreign-Device-Table-Entry Initiation

	12.3.X2 BBMD Configuration Tests – B side
	12.3.X2.1 Broadcast-Distribution-Table Holds at Least 5 Entries
	12.3.X2.2 Holds at Least 5 Foreign Device Registrations
	12.3.X2.3 Negative Foreign Device Registration when BBMD_Accept_FD_Registrations is FALSE
	12.3.X2.4 Broadcast Distribution Table Configuration via Hostname Entries

	135.1-2019s-6 Renumber Clause 15
	15.14. Reporting Test Results

	135.1-2019s-7 Add new and correct existing Object Support Tests
	7. OBJECT SUPPORT TESTS
	7.1 Read Support for Properties in the Test Database
	7.1.1 Read Support Test Procedure
	7.1.2 Non-documented Property Test
	7.1.3 Verifying Property_List against the EPICS

	7.2 Write Support for Properties in Test Database
	7.2.1 Functional Range Requirements for Property Values
	7.2.1.3 Octetstrings and Characterstrings

	7.2.2 Write Support Test Procedure
	7.2.3 Read-only Property Test
	7.2.X1 Date Pattern Properties Test
	7.2.X2 Time Pattern Properties Test
	7.2.X3 DateTime Pattern Properties Test
	7.2.X4 Date Non-Pattern Properties Test
	7.2.X5 Time Non-Pattern Properties Test
	7.2.X6 DateTime Non-Pattern Properties Test
	7.2.X7 BACnetDateRange Non-Pattern Properties Test
	7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test

	7.3 Object Functionality Tests
	7.3.1 Property Tests
	7.3.1.1.X1 7.3.1.1 Out_Of_Service, Status_Flags, and Reliability Test
	7.3.1.1.X2 Out_Of_Service for Commandable Value Objects Test
	7.3.1.1.X3 Out_Of_Service, Status_Flags, and Reliability Test for Objects without Present_Value
	7.3.1.6 Minimum On/Off Time Tests
	7.3.1.6.1 Override of Minimum Time
	7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6
	7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6
	7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6
	7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6
	7.3.1.6.6 Minimum_Off_Time - Clock is not affected by additional write operations
	7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations
	7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE
	7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE
	7.3.1.6.10 Ensuring Minimum Times Are Not Affected By Time Changes
	7.3.1.6.11 Minimum_Off_Time - Value Source Mechanism
	7.3.1.6.12 Minimum_On_Time - Value Source Mechanism

	7.3.1.7 COV Tests
	7.3.1.7.X1 COV_Resubscription_Interval Test

	7.3.1.8 Binary Object Change of State Tests
	7.3.1.9 Binary Object Elapsed Active Time Tests
	7.3.1.10 Event_Enable Tests
	7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL, and TO_FAULT

	7.3.1.11 Acked_Transitions Tests
	7.3.1.11.1 Acked_Transitions TestsTest
	7.3.1.11.2 Acked_Transitions Test for Latching Objects

	7.3.1.13 Limit_Enable Tests
	7.3.1.13.1 Limit_Enable Test, LowLimitEnable
	7.3.1.13.2 Limit_Enable Test, HighLimitEnable

	7.3.1.17 Event_Message_Texts Tests
	7.3.1.20 Event_Algorithm_Inhibit_Ref Tests
	7.3.1.20.1 Event_Algorithm_Inhibit_Ref Test
	7.3.1.20.2 Event_Algorithm_Inhibit Writable Test

	7.3.1.21 Reliability_Evaluation_Inhibit Tests
	7.3.1.21.1 Reliability_Evaluation_Inhibit Test

	7.3.1.X16 Array Resizing Test using WritePropertyMultiple Service
	7.3.1.X18 Non-zero Writable State Count Test
	7.3.1.X19 Non-zero Writable Elapsed Active Time Test
	7.3.1.X20 Strike Count Tests
	7.3.1.X20.1 Non-zero Writable Strike Count Test
	7.3.1.X20.2 Strike Count Test

	7.3.1.X41 Blink Warn Tests
	7.3.1.X41.Y1 Blink-Warn WARN Command Test
	7.3.1.X41.Y2 Blink-Warn WARN_OFF Command Test
	7.3.1.X41.Y3 Blink-Warn WARN_RELINQUISH Command Test
	7.3.1.X41.Y4 Blink-Warn STOP Command Test
	7.3.1.X41.Y5 Blink-Warn WARN Command Failure Test
	7.3.1.X41.Y6 Blink-Warn WARN_OFF Command Failure Test
	7.3.1.X41.Y7 Blink-Warn WARN_RELINQUISH Command Failure Test
	7.3.1.X41.Y8 Blink-Warn WARN_OFF Command Halted Test
	7.3.1.X41.Y9 Blink-Warn WARN_RELINQUISH Command Halted Test

	7.3.1.X42 Value Source Mechanism Tests
	7.3.1.X42.Y1 Writing to the Value_Source Property by a Device Other than the Device that Commanded the Object.
	7.3.1.X42.Y2 Non-commandable Value_Source Property Test
	7.3.1.X42.Y3 Value_Source Property None Test
	7.3.1.X42.Y5 Life Safety Value_Source Property Test

	7.3.1.X498 Audit_Level Property Tests
	7.3.1.X498.1 Object Specific Configurable Audit_Level NONE Test
	7.3.1.X498.2 Audit Reporter Audit_Level Test
	7.3.1.X498.3 Audit_Level Change Notification Test

	7.3.1.X499 Audit_Notification_Recipient Property Tests
	7.3.1.X499.1 Audit_Notification_Recipient Test

	7.3.1.X500 Audit_Priority_Filter Property Tests
	7.3.1.X500.1 Audit_Priority_Filter Target Audit Reporting Test

	7.3.1.X501 Auditable_Operations Property Tests
	7.3.1.X501.1 Non-configurable Auditable_Operations Property Test
	7.3.1.X501.2 Auditable_Operations Target Audit Reporting Test
	7.3.1.X501.3 Auditable_Operations Source Audit Reporting Test

	7.3.1.X503 Maximum_Send_Delay Property Tests
	7.3.1.X503.1 Maximum_Send_Delay Test

	7.3.1.X504 Monitored_Objects property Tests
	7.3.1.X504.1 Monitored_Objects Test

	7.3.1.X505 Send_Now Property Tests
	7.3.1.X505.1 Send_Now Test

	7.3.2 Object Specific Tests
	7.3.2.4 Averaging Object Tests
	7.3.2.4.1 Reinitializing the Samples
	7.3.2.4.2 Managing the Sample Window

	7.3.2.8 Calendar TestObject Tests
	7.3.2.8.1 Single Date Rollover Test
	7.3.2.8.2 Date Range Test
	7.3.2.8.3 WeekNDay Test

	7.3.2.9 Command Object Tests
	7.3.2.9.3 External Writes Test
	7.3.2.9.7 Write While In_Process is TRUE Test.

	7.3.2.10 Device Object Tests
	7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test
	7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property of an Object
	7.3.2.10.X2 Max_Segments_Accepted at least the minimum
	7.3.2.10.X Ensure UTC_Offset is Configurable
	7.3.2.10.X3 Ensure Device Object_Name is Configurable
	7.3.2.10.X4 Ensure Device Object_Identifier is Configurable

	7.3.2.13 Global Group Object Tests
	7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test
	7.3.2.13.X2 Reliability MEMBER_FAULT Test
	7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test
	7.3.2.13.X4 Present_Value Tracking and Reliability Test
	7.3.2.13.X5 Present_Value Tracking Test
	7.3.2.13.X6 COVU_Period and COVU_Recipients Zero Test

	7.3.2.15 Life Safety Point Object Tests
	7.3.2.15.X5 Writable Tracking_Value
	7.3.2.15.X6 Supports Writable Mode Property
	7.3.2.15.X7 Support Operation_Expected Property
	7.3.2.15.X8 Support Writable Member_Of Property
	7.3.2.15.X9 Silenced Property Test

	7.3.2.22 Program Object Tests
	7.3.2.22.1 Program_Change property test

	7.3.2.23 Schedule Object Tests
	7.3.2.23.6 Weekly_Schedule Restoration Test
	7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests7.3.
	7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests
	7.3.2.23.10.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test
	7.3.2.23.10.3.8 Revision 4 Event Priority Test

	7.3.2.23.11 Written Datatypes Tests
	7.3.2.23.11.1 Internally Written Datatypes Test, non-NULL values

	7.3.2.24 Logging Object Tests
	7.3.2.24.3 Stop_Time Test
	7.3.2.24.4 Log_Interval Test
	7.3.2.24.6 Stop_When_Full Tests
	7.3.2.24.6.1 Stop_When_Full TRUE Test

	7.3.2.24.13 Log-Status Test
	7.3.2.24.14 Time_Change Test
	7.3.2.24.15 COV-Sampling Verification Test
	7.3.2.24.19 Trigger Verification Test
	9.21.1.12 7.3.2.24.X1 Status/Failure logging
	7.3.2.24.X8 Clock-Aligned Logging
	7.3.2.24.X9 Logging Interval_Offset
	7.3.2.24.X10 Buffer_Size Write Test

	7.3.2.25 Event Log Tests
	7.3.2.25.1 Internal Logging of Notifications
	7.3.2.25.2 Remote Logging of Notifications
	7.3.2.25.3 Internal Logging of ACK_NOTIFICATIONs
	7.3.2.25.4 Remote Logging of ACK_NOTIFICATIONs

	7.3.2.30 Notification Forwarder Object Tests
	7.3.2.30.6 Out_Of_Service Property Test

	7.3.2.X37 Accumulator Object Tests
	7.3.2.X37.1 Present_Value Remains In-Range Test
	7.3.2.X37.2 Prescale in Accumulator Test
	7.3.2.X37.3 Logging_Record in Accumulator Test
	7.3.2.X37.4 Logging_Record in Accumulator RECOVERED Test
	7.3.2.X37.5 Logging_Record in Accumulator STARTING Test
	7.3.2.X37.6 Out_Of_Service Accumulator Test
	7.3.2.X37.7 Value_Set Writing Test
	7.3.2.X37.8 Value_Before_Change Writing Test

	7.3.2.X38 Pulse Converter Object Tests
	7.3.2.X38.1 Adjust_Value Write Test
	7.3.2.X38.2 Scale_Factor Test
	7.3.2.X38.3 Out_Of_Service Pulse Converter Test
	7.3.2.X38.4 Update_Time Reflects Change to the Count and is Updated Atomically Test
	7.3.2.X38.5 Adjust_Value Out-of-Range WriteProperty Test

	7.3.2.X40 Channel Object Tests
	7.3.2.X40.2 Last_Priority Test
	7.3.2.X40.3 WriteGroup Service Support Test
	7.3.2.X40.4 Propagation Entirety Test
	7.3.2.X40.5 Write_Status Test
	7.3.2.X40.6 Allow_Group_Delay_Inhibit Test
	7.3.2.X40.7 Numeric to BOOLEAN Coercion Rule Test
	7.3.2.X40.8 BOOLEAN to Numeric Coercion Rule Test
	7.3.2.X40.9 Unsigned/INTEGER/REAL/Double to Numeric Coercion Rule Test
	7.3.2.X40.10 Invalid Datatype Coercion Test
	7.3.2.X40.11 No Coercion Test
	7.3.2.X40.12 Write Priority Test
	7.3.2.X40.13 Writing with a NULL Value Test

	7.3.2.X45 Elevator Group Object Tests
	7.3.2.X45.1 Machine_Room_ID property references a Positive Integer Value Object
	7.3.2.X45.2 Linking of Lift and Escalator Objects under Group_Members property of the Elevator Group Object
	7.3.2.X45.3 Landing_Call_Control test

	7.3.2.X46 Lift Object Tests
	7.3.2.X46.1 Array Size of the Lift Object Properties Based on Car Door size.
	7.3.2.X46.2 Lift Properties Operational Test
	7.3.2.X46.3 Out_Of_Service, Status_Flags for Lift Object
	7.3.2.X46.4 Energy_Meter_Ref Property Tests

	7.3.2.X47 Escalator Object Tests
	7.3.2.X47.1 Out_Of_Service, Status_Flags for Escalator object

	7.3.2.X53 Load Control Object Tests
	7.3.2.X53.1 Requested_Shed_Level property test with LEVEL choice
	7.3.2.X53.2 Shed_Levels property test
	7.3.2.X53.3 Load Control Status_Flags and Reliability Test
	7.3.2.X53.4 Requested_Shed_Level property test with PERCENT choice
	7.3.2.X53.5 Requested_Shed_Level property test with AMOUNT choice

	7.3.2.X54 Lighting Output Object Tests
	7.3.2.X54.21 Lighting Output Tracking Test
	7.3.2.X54.22 Lighting Output Present Value between 0.0 and 1.0 Test
	7.3.2.X54.32 Lighting Command Operation FADE_TO Test
	7.3.2.X54.33 Lighting Command Operation RAMP_TO Test
	7.3.2.X54.34 Lighting Command Operation STEP_UP Test
	7.3.2.X54.35 Lighting Command Operation STEP_DOWN Test
	7.3.2.X54.36 Lighting Command Operation STEP_ON Test
	7.3.2.X54.37 Lighting Command Operation STEP_ OFF Test
	7.3.2.X54.41 Transition None Test
	7.3.2.X54.42 Transition Test
	7.3.2.X54.51 Feedback_Value Clamping Test
	7.3.2.X54.61 Min_Actual_Value and Max_Actual_Value Test
	7.3.2.X54.62 Min_Actual_Value and Max_Actual_Value Scaling Test

	7.3.2.X55 Access Door Object Tests
	7.3.2.X55.1 Commandable Present_Value Test
	7.3.2.X55.2 Door_Status, Lock_Status and Door_Alarm_State Tests
	7.3.2.X55.3 Door_Status with Physical Door Status Tests
	7.3.2.X55.4 Lock_Status Tests
	7.3.2.X55.5 Secured_Status Tests
	7.3.2.X55.6 Door_Unlock_Delay_Time Test
	7.3.2.X55.7 Masked_Alarm_Values Tests
	7.3.2.X55.8 Door_Open_Too_Long Test

	7.3.2.X56 Access Point Object Tests
	7.3.2.X56.1 Authentication_Status and Access_Event Test
	7.3.2.X56.2 Allowed Access Test
	7.3.2.X56.3 Denied Access Test
	7.3.2.X56.4 Authorization Mode Test
	7.3.2.X56.5 Access Rights Exemptions Test
	7.3.2.X56.6 Change Authentication Policy Test
	7.3.2.X56.7 Lockout State Test
	7.3.2.X56.8 Threat Level Test
	7.3.2.X56.9 Denied Access Occupancy Upper Limit Test
	7.3.2.X56.10 Denied Access Disabled Credential Test

	7.3.2.X57 Access Zone Object Tests
	7.3.2.X57.1 Occupancy State Test
	7.3.2.X57.2 Occupancy Counting Test
	7.3.2.X57.3 Keeping Track of Credentials Test
	7.3.2.X57.4 Passback Mode Test

	7.3.2.X59 Access Rights Object Tests
	7.3.2.X59.1 Enable Test
	7.3.2.X59.2 Negative Rules Test
	7.3.2.X59.3 Positive Access Rules Test
	7.3.2.X59.4 Accompaniment Test

	7.3.2.X60 Access Credential Object Tests
	7.3.2.X60.1 Credential Status, Credential Disable and Reason for Disable Test
	7.3.2.X60.2 Activation Time and Expiration Time Test
	7.3.2.X60.3 Disabled Access Rights Test
	7.3.2.X60.4 Days Remaining and Uses Remaining Test
	7.3.2.X60.5 Absentee Limit Test
	7.3.2.X60.6 Last Access Point, Last Use Time and Last Access Event Test
	7.3.2.X60.7 Extended Time Enable Test

	7.3.2.X61 Credential Data Input Object Tests
	7.3.2.X61.1 Return from Out Of Service Undefined Test
	7.3.2.X61.2 Read Valid Authentication Factor Test

	7.3.2.X62 Network Port Object Tests
	7.3.2.X62.1 Network Port Configuration Tests
	7.3.2.X62.1.1 Configure Network Through Network Port Object Test
	7.3.2.X62.1.2 Verify Network Configuration Through Network Port Object Test
	7.3.2.X62.1.3 Network Port Non-Volatility Properties Test
	7.3.2.X62.1.4 Network Port Configuration Conflict Test

	7.3.2.X62.2 Network-Number-Is Updates Network_Number_Quality Test
	7.3.2.X62.3 Network Port Command Tests
	7.3.2.X62.3.1 IDLE Command Rejected
	7.3.2.X62.3.2 DISCARD_CHANGES Command Test
	7.3.2.X62.3.3 RENEW_FD_REGISTRATION Command Tests
	7.3.2.X62.3.3.1 RENEW_FD_REGISTRATION Command Test
	7.3.2.X62.3.3.2 RENEW_FD_REGISTRATION Command Failure Test

	7.3.2.X62.3.4 RESTART_SLAVE_DISCOVERY Command Tests
	7.3.2.X62.3.4.1 RESTART_SLAVE_DISCOVERY Command Test
	7.3.2.X62.3.4.2 RESTART_SLAVE_DISCOVERY Command Failure Test

	7.3.2.X62.3.5 RENEW_DHCP Command Tests
	7.3.2.X62.3.5.1 RENEW_DHCP Command Test
	7.3.2.X62.3.5.2 RENEW_DHCP Command Failure Test

	7.3.2.X62.3.6 RESTART_AUTO-NEGOTIATION Command Tests
	7.3.2.X62.3.6.1 RESTART_AUTO-NEGOTIATION Command Test
	7.3.2.X62.3.6.2 RESTART_AUTONEGOTIATION Command Failure Test

	7.3.2.X62.3.7 DISCONNECT Command Tests
	7.3.2.X62.3.7.1 DISCONNECT Command Test
	7.3.2.X62.3.7.2 DISCONNECT Command Failure Test

	7.3.2.X62.3.8 RESTART_PORT Command Tests
	7.3.2.X62.3.8.1 RESTART_PORT Command Test
	7.3.2.X62.3.8.2 RESTART_PORT Command Failure Test

	7.3.2.X62.3.9 No Commands if Changes_Pending Test

	7.3.2.X62.4 Hierarchical Network Port Tests
	7.3.2.X62.4.1 Valid Hierarchy Test
	7.3.2.X62.4.2 Properties in Referenced Network Port Reflected in Top Network Port Object
	7.3.2.X62.4.3 Changes Reflected in Top Network Port Object
	7.3.2.X62.4.4 Changes Reflected in Lower Network Port Objects

	7.3.2.X62.5 APDU_Length Test
	7.3.2.X62.6 Routing_Table Test
	7.3.2.X62.7 DHCP Tests
	7.3.2.X62.7.1 Basic IPv4 DHCP Test
	7.3.2.X62.7.2 Basic IPv6 DHCP Test

	7.3.2.X63 Timer Object Tests
	7.3.2.X63.1.1 Timer State_Change_Values
	7.3.2.X63.1.2 Timer Running then Expired Test
	7.3.2.X63.1.3 Default_Timeout Test
	7.3.2.X63.1.4 Running Timer by writing the Present_Value
	7.3.2.X63.1.5 Restarting An Expired Timer
	7.3.2.X63.1.6 Already Running Timer restarted by writing the Present_Value
	7.3.2.X63.1.7 Already Running Timer restarted with Default_Timeout
	7.3.2.X63.1.8 Timer accepts all the required datatypes in an Internal Reference
	7.3.2.X63.1.9 Timer supports writing an External Device
	7.3.2.X63.1.10 Forcing Timer Expiration by writing Zero
	7.3.2.X63.1.11 Forcing Timer Expiration by writing FALSE
	7.3.2.X63.1.12 Forcing Timer Expiration by writing IDLE
	7.3.2.X63.1.13 Resetting Timer by writing IDLE
	7.3.2.X63.1.14 Timer Object Operation Unaffected by Changes to Local_Time and Local_Date
	7.3.2.X63.1.15 Changes made by State_Change_Values are at Correct Priority
	7.3.2.X63.1.16 Changing Default_Timeout Test
	7.3.2.X63.2.1 Writing Timer with an Unsupported External Reference
	7.3.2.X63.2.2 Writing an Unsupported Datatype to State_Change_Values
	7.3.2.X63.2.3 Invalid Property Writing in a Timer
	7.3.2.X63.2.4 Expired Timer Ignores Writing Zero
	7.3.2.X63.2.5 Expired Timer Ignores Writing FALSE
	7.3.2.X63.2.6 Idle Timer Ignores Writing Zero
	7.3.2.X63.2.7 Idle Timer Ignores Writing FALSE
	7.3.2.X63.2.8 Idle Timer Ignores Writing IDLE
	7.3.2.X63.2.9 Default_Timeout Written Outside Supported Range

	7.3.2.X64 Audit Log Object Tests
	7.3.2.X64.1 One Audit Log Holds all of an Objects History Test
	7.3.2.X64.2 Audit Notification Basic Combining Test
	7.3.2.X64.3 Audit Notification Combining Failure Test
	7.3.2.X64.4 Audit Notification Non-combining Test
	7.3.2.X64.5 Audit Notification Combining Duplicate Test
	7.3.2.X64.6 Audit Notification Combining Target Value Preference Test
	7.3.2.X64.7 Accepts Audit Notifications from an Audit Forwarder Test
	7.3.2.X64.8 Hierarchical Logging Test

	7.3.2.X65 Audit Reporter Object Tests
	7.3.2.X65.4 Target Audit Reporting - Basic Notification Test
	7.3.2.X65.5 Target Audit Reporting - Unconfirmed Service Operation Test
	7.3.2.X65.6 Target Audit Reporting - Confirmed Service Operation Audit Notification
	7.3.2.X65.7 Target Audit Reporting - Operations with Priority Test
	7.3.2.X65.8 Target Audit Reporting - Target_Value and Current_Value Test
	7.3.2.X65.9 Target Audit Reporting - Error Audit Notification Test
	7.3.2.X65.10 Target Audit Reporting - GENERAL Operation Test
	7.3.2.X65.11 Source Audit Reporting - Basic Notification Test
	7.3.2.X65.12 Source Audit Reporting - Same Device Notification Test
	7.3.2.X65.13 Source Audit Reporting - Unconfirmed Service Operation Test
	7.3.2.X65.14 Source Audit Reporting - Confirmed Service Operation Audit Notification
	7.3.2.X65.15 Source Audit Reporting - Operations with Priority Test
	7.3.2.X65.16 Source Audit Reporting - Error Audit Notification Test
	7.3.2.X65.17 Source Audit Reporting - Single Source Audit Reporter Object Test
	7.3.2.X65.18 Audit Forwarding Test

	7.3.2.X66 Staging Object Tests
	7.3.2.X66.1 Clamping Present_Value to Max_Pres_Value or Min_Pres_Value
	7.3.2.X66.2 Present_Stage Evaluation
	7.3.2.X66.3 Present_Stage Evaluates on Restart
	7.3.2.X66.4 Default_Present_Value is Abided on Restart
	7.3.2.X66.5 Writing to Target References
	7.3.2.X66.6 Stage Value Bitstring is Same Length as Target_References
	7.3.2.X66.7 Max_Pres_Value Equals Last Stage Limit
	7.3.2.X66.8 CONFIGURATION_ERROR when Min_Pres_Value is too Large
	7.3.2.X66.9 COMMUNICATION_FAILURE on Failed Write to External Target Reference
	7.3.2.X66.10 Fault Indicated on Failed Write to Local Target Reference
	7.3.2.X66.11 Out_Of_Service, Status_Flags, and Reliability for Staging Object
	7.3.2.X66.12 Stages Array Sizing Test
	7.3.2.X66.13 Present_Stage Evaluates on Change to Stages Property
	7.3.2.X66.14 CONFIGURATION_ERROR when Limits are Out of Order
	7.3.2.X66.15 CONFIGURATION_ERROR when Deadband < 0
	7.3.2.X66.16 CONFIGURATION_ERROR when Stages Size is less than Two
	7.3.2.X66.17 Stage_Names and Stages Size Equality Test
	7.3.2.X66.18 Stage_Names Array Sizing Test
	7.3.2.X66.19 Target_References Array Sizing Test
	7.3.2.X66.20 Writing Target_References with an Unsupported External Reference

	135.1-2019s-8 Add new and correct existing Application Service Initiation Tests
	8. APPLICATION SERVICE INITIATION TESTS
	8.1 AcknowledgeAlarm Service Initiation Tests
	8.1.1 AcknowledgeAlarm Service Initiation Test
	8.1.X2 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the 'Initiating Device Identifier' Parameter

	8.2 ConfirmedCOVNotification Service Initiation Tests
	8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Valuea Object's for Changes to Present_Value in Objects with a COV_Increment
	8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for Changes to Status_Flags Property
	8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object's for Changes to Present_Value Property in Objects without a COV_Increment
	8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property
	8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, or Life Safety Zone Object Present_Value Property
	8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point, and Life Safety Zone Object Status_Flags Property
	8.2.78.2.4 Change of Value Notification from Loop Object Present_Value Property
	8.2.8 Change of Value Notification from a Loop Object Status_Flags Property
	8.2.98.2.5 Missing Lifetime Test
	8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value
	8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags
	8.2.X11 Change of Value Notification from an Access Door object Present_Value, Status_Flags and Door_Alarm_State property
	8.2.X12 Change of Value Notification from an Access Point object
	8.2.X13 Change of Value Notification from a Credential Data Input object
	8.2.X17 Change of Value Notification of Staging Object Present_Value Property
	8.2.X18 Change of Value Notification from a Staging Object Status_Flags Property
	8.2.X19 Change of Value Notification from a Staging Object Present_Stage Property

	8.3 UnconfirmedCOVNotification Service Initiation Tests
	8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for changes to Present_Value Property in Objects with a COV_Increment
	8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value Object's for Changes to Status_Flags Property
	8.3.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object's for Changes to Present_Value Property in Objects without a COV_Increment
	8.3.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property
	8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone Object Present_Value Property
	8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life SafetyZone Object Status_Flags Property
	8.3.78.3.4 Change of Value Notification from Loop Object Present_Value Property
	8.3.8 Change of Value Notification from a Loop Object Status_Flags Property
	8.3.98.3.5 Unsubscribed Change of Value Notifications
	8.3.108.3.6 Device Restart Notifications
	8.3.X1 COVU_Recipients Notifications
	8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value
	8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags
	8.3.X14 Change of Value Notification from an Access Door object Present_Value, Status_Flags and Door_Alarm_State property
	8.3.X15 Change of Value Notification from an Access Point object
	8.3.X16 Change of Value Notification from a Credential Data Input object
	8.3.X17 Change of Value Notification of Staging Object Present_Value Property
	8.3.X18 Change of Value Notification of Staging Object Status_Flags Property
	8.3.X19 Change of Value Notification of Staging Object Present_Stage Property

	8.4 ConfirmedEventNotification Service Initiation Tests
	8.4.4 COMMAND_FAILURE Tests (ConfirmedEventNotification)
	8.4.8 CHANGE_OF_LIFE_SAFETY Tests (ConfirmedEventNotification)
	8.4.8.7 Mode Transition Tests when Event State is Maintained

	8.4.9 EXTENDED Test (ConfirmedEventNotification)
	8.4.17 CHANGE_OF_RELIABILITY (ConfirmedEventNotification Tests)
	8.4.17.1 CHANGE_OF_RELIABILITY with No Fault the NONE fault Algorithm (ConfirmedEventNotifications)
	8.4.17.7 CHANGE_OF_RELIABILITY for Event Enrollment Fault Condition Precedence (ConfirmedEventNotifications)
	8.4.17.7 Event Enrollment Fault Condition Precedence Tests
	8.4.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults
	8.4.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms
	8.4.17.7.3 Internal Faults Take Precedence Over Fault Algorithms

	8.4.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (ConfirmedEventNotification)
	8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification)
	8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification)
	8.4.17.X1.3 CHANGE_OF_RELIABILITY with the FAULT_OUT_OF_RANGE Algorithm (ConfirmedEventNotification)

	8.4.X10 CHANGE_OF_DISCRETE_VALUE Test (ConfirmedEventNotification)
	8.4.X11 ACCESS_EVENT Test (ConfirmedEventNotification)
	8.4.X18 CHANGE_OF_TIMER ConfirmedNotification Tests
	8.4.X18.X1 CHANGE_OF_TIMER ConfirmedEventNotification Test
	8.4.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification

	8.5 UnconfirmedEventNotification Service Initiation Tests
	8.5.17 CHANGE_OF_RELIABILITY Tests (UnconfirmedEventNotification Tests)
	8.5.17.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm (UnconfirmedEventNotifications)
	8.5.17.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm (UnconfirmedEventNotifications)
	8.5.17.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm (UnconfirmedEventNotifications)
	8.5.17.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm (UnconfirmedEventNotifications)
	8.5.17.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm (UnconfirmedEventNotifications)
	8.5.17.7 CHANGE_OF_RELIABILITY for Event Enrollment Fault Condition Precedence (UnconfirmedEventNotifications)
	8.5.17.7 Event Enrollment Fault Condition Precedence Tests
	8.5.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults
	8.5.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms
	8.5.17.7.3 Internal Faults Take Precedence Over Fault Algorithms

	8.5.17.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault (UnconfirmedEventNotifications)
	8.5.17.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault (UnconfirmedEventNotifications)
	8.5.17.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL (UnconfirmedEventNotifications)
	8.5.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (UnconfirmedEventNotification)
	8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification)
	8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification)
	8.5.17.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault (UnconfirmedEventNotifications)
	8.5.17.X1.3 CHANGE_OF_RELIABILITY with the FAULT_OUT_OF_RANGE Algorithm (UnconfirmedEventNotification)

	8.5.X10 CHANGE_OF_DISCRETE_VALUE Test (UnconfirmedEventNotification)
	8.5.X11 ACCESS_EVENT Test (UnconfirmedEventNotification)
	8.5.X18 CHANGE_OF_TIMER Tests
	8.5.X18.X1 CHANGE_OF_TIMER UnconfirmedEventNotification Test
	8.5.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal UnconfirmedEventNotification Test

	8.11 SubscribeCOVProperty Service Initiation Tests
	8.11.1 Confirmed Notifications Subscription
	8.11.2 Unconfirmed Notifications Subscription
	8.11.3 Canceling a Subscription
	8.11.X1 Change of Value Notification Tests
	8.11.X1.1 Change of Value Notification
	8.11.X1.2 Change of Value Notifications with Invalid Process Identifier
	8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired
	8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier
	8.11.X1.5 Change of Value Notifications with Invalid Monitored property

	8.11.X4 Requests 8 Hour Lifetimes

	8.18 ReadProperty Service Initiation Tests
	8.18.X1 Reading and Presenting Large List Properties

	8.20 ReadPropertyMultiple Service Initiation Tests
	8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails
	8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service
	8.20.5.2 Fallback to ReadProperty on Reject - UNRECOGNIZED_SERVICE Response

	8.21 ReadRange Service Initiation Tests
	8.21.1 Reading Values with no Specified Range
	8.21.3 Reading a Range of Values by Position
	8.21.9 Presents Log Records Containing a Specific Datatype

	8.22 WriteProperty Service Initiation Tests
	8.22.X1 Accepting Input and Modifying Large List Properties
	8.22.X4 Writing Array Properties as a Whole Array

	8.24 DeviceCommunicationControl Service Initiation Tests
	8.24.1 Indefinite Duration, Disable, No Password
	8.24.2 Indefinite Duration, Disable, Password
	8.24.3 Time Duration, Disable, Password
	8.24.4 Enable, Password
	8.24.5 Enable, No Password
	8.24.6 Time Duration, Disable, No Password
	8.24.7 Time Duration, Disable-Initiation, Password

	8.27 ReinitializeDevice Service Initiation Tests
	8.27.2 COLDSTART with a Password
	8.27.4 WARMSTART with a Password

	8.32 Who-Has Service Initiation Tests
	8.32.1 Object Identifier Selection with no Device Instance Range
	8.32.2 Object Name Selection with no Device Instance Range
	8.32.3 Object Identifier Selection with a Device Instance Range
	8.32.4 Object Name Selection with a Device Instance Range

	8.34 Who-Is Service Initiation Tests
	8.34.2 Who-Is Request with a Device Instance Range

	8.X2 WriteGroup Service Initiation Tests
	8.X2.1 Broadcasting to a Group of Channel Objects

	8.X12 SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.1.1 Confirmed Notifications Subscription
	8.X12.1.2 Unconfirmed Notifications Subscription
	8.X12.1.3 Requests 8 Hour Lifetimes
	8.X12.1.4 Subscribe to Timestamped Notifications
	8.X12.1.5 Subscribe to Two Properties in a Single Object
	8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Request
	8.X12.1.7 Change of Value Multiple Notification
	8.X12.1.8 Canceling a Subscription

	8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired
	8.X12.2.2 Unknown Subscription

	8.X41 AuditLogQuery Initiation Tests
	8.X41.1 Reading a Range of Items Using Any Valid Query

	135.1-2019s-9 Add new and correct existing Application Service Execution Tests
	9. APPLICATION SERVICE EXECUTION TESTS
	9.1 AcknowledgeAlarm Service Execution Tests
	9.1.1 Positive AcknowledgeAlarm Service Execution Tests
	9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter
	9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter
	9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications
	9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications
	9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Time Stamp' is Too Old
	9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Time Stamp' is Too Old

	9.2 ConfirmedCOVNotification Service Execution Tests
	9.2.1 Positive ConfirmedCOVNotification Service Execution Tests
	9.2.1.1 Change of Value Notifications
	9.2.1.X5 ConfirmedCOVNotification from Access Door Object
	9.2.1.X6 ConfirmedCOVNotification from Access Point Object
	9.2.1.X7 ConfirmedCOVNotification from Credential Data Input Object

	9.2.2 Negative ConfirmedCOVNotification Service Execution Tests
	9.2.2.1 Change of Value Notification Arrives after Subscription has Expired
	9.2.2.2 Change of Value Notifications with Invalid Process Identifier
	9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

	9.3 UnconfirmedCOVNotification Service Execution Tests
	9.3.X6 UnconfirmedCOVNotification from Access Door Object
	9.3.X7 UnconfirmedCOVNotification from Access Point Object
	9.3.X8 UnconfirmedCOVNotification from Credential Data Input Object
	9.3.2 Change of Value Notifications

	9.4 ConfirmedEventNotification Service Execution Tests
	9.4.X2 Decoding BACnetPropertyStates in 'Event Values'

	9.5 UnconfirmedEventNotification Service Execution Tests
	9.5.X2 Decoding BACnetPropertyStates in 'Event Values'

	9.9 LifeSafetyOperation Service Execution Test
	9.9.19.9.1.1 Reset Single Object Execution Tests
	9.9.29.9.1.2 Reset Multiple Object Execution Tests
	9.9.39.9.1.3 Silencing/Unsilencing Execution Tests
	9.9.2 Negative LifeSafetyOperation Execution Tests
	9.9.2.1 LifeSafetyOperation for an Object Which Does Not Exist
	9.9.2.2 LifeSafetyOperation which is Invalid given the Object's Current State
	9.9.2.3 LifeSafetyOperation On An Object Which Does Not Support It

	9.10 SubscribeCOV Service Execution Tests
	9.10.1 Positive SubscribeCOV Service Execution Tests
	9.10.1.7 Finite Lifetime Subscriptions
	9.10.1.8 Updating Existing Subscriptions
	9.10.1.X1 Ensuring 5 Concurrent COV Subscribers

	9.10.2 Negative SubscribeCOV Service Execution Tests
	9.10.2.1 The Monitored Object Does Not Support COV Notification
	9.10.2.X1 The Monitored Object Does Not Exist
	9.10.2.X2 There Is No Space For A Subscription
	9.10.2.X3 The Lifetime Parameter is Out of Range

	9.10.X3 Positive Unsubscribed COVNotification Execution Tests
	9.10.X3.1 Unsubscribed COVNotification Execution Test

	9.11 SubscribeCOVProperty Service Execution Tests
	9.11.1 Positive SubscribeCOVProperty Service Execution Tests
	9.11.1.1 Confirmed COV Notifications
	9.11.1.2 Unconfirmed COV Notifications
	9.11.1.4 Canceling COV Subscriptions
	9.11.1.5 Canceling Expired or Non-Existing Subscriptions
	9.11.1.7 Finite Lifetime Subscriptions
	9.11.1.8 Updating Existing Subscriptions
	9.11.1.9 Client-Supplied COV Increment
	9.11.1.X10 Accepts SubscribeCOVProperty-Requests with 8 Hour Lifetimes
	9.11.1.X11 Confirmed Change of Value Notification from Property Value
	9.11.1.X12 Unconfirmed Change of Value Notification from Property Value
	9.11.1.X21 Confirmed Change of Value Notification from Status_Flags Property
	9.11.1.X22 Unconfirmed Change of Value Notification from Status_Flags Property

	9.11.2 Negative SubscribeCOVProperty Service Execution Tests
	9.11.2.1 The Monitored Object Does Not Support COV Notification
	9.11.2.2 The Monitored Property Does Not Support COV Notification
	9.11.2.X11 Monitored Object Does Not Exist
	9.11.2.X12 Monitored Property Does Not Exist
	9.11.2.X13 There Is No Space For Subscription
	9.11.2.X14 The Lifetime Parameter is Out of Range

	9.12 Atomic ReadFile Service Execution Tests
	9.12.1 Positive AtomicReadFile Service Execution Tests
	9.12.1.2 Reading Stream Based Files
	9.12.1.2.1 Reading an Entire Stream-Based File

	9.13 AtomicWriteFile Service Execution Tests
	9.13.1 Positive AtomicWriteFile Service Execution Tests
	9.13.1.2 Writing to Stream-Based Files
	9.13.1.2.1 Writing an Entire Stream-Based File
	9.13.1.2.3 Appending Data to the End of a File

	9.14 AddListElement Service Execution Tests
	9.14.2 Negative AddListElement Service Execution Tests
	9.14.2.2 Adding a List Element With an Invalid Datatype
	9.14.2.3 An AddListElement Failure Part Way Through a List

	9.15 RemoveListElement Service Execution Tests
	9.15.2 Negative RemoveListElement Service Execution Tests
	9.15.2.2 A RemoveListElement Failure Part Way Through a List

	9.16 CreateObject Service Execution Tests
	9.16.1 Positive CreateObject Service Execution Tests
	9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values
	9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values

	9.16.2 Negative CreateObject Service Execution Tests
	9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values
	9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values
	9.16.2.6 Attempting to Create an Object with an instance of 4194303
	9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)
	9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)

	9.17 DeleteObject Service Execution Tests
	9.17.2 Negative DeleteObject Service Execution Tests
	9.17.2.1 Attempting to Delete an Object That is Not Deletable

	9.18 ReadProperty Service Execution Tests
	9.18.1 Positive ReadProperty Service Execution Tests
	9.18.1.2 Reading a Single Element of an Array
	9.18.1.X1 Reading Properties Based on Data Type
	9.18.1.X3 Respects max-segments-accepted bit pattern
	9.18.1.X4 Reading Array Properties at Different Array Indexes
	9.18.1.X5 ReadProperty of the Network Port Object using the Unknown Instance
	9.18.1.X8 ReadProperty Service when Non-BACnet Device Offline

	9.20 ReadPropertyMultiple Service Execution Tests
	9.20.1 Positive ReadPropertyMultiple Service Execution Tests
	9.20.1.1 Reading a Single Property from a Single Object
	9.20.1.2 Reading Multiple properties from a Single Object
	9.20.1.3 Reading a Single Property from Multiple Objects
	9.20.1.4 Reading Multiple Properties from Multiple Objects
	9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error
	9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors
	9.20.1.7 Reading ALL Properties
	9.20.1.8 Reading OPTIONAL Properties
	9.20.1.9 Reading REQUIRED Properties
	9.20.1.X1 Reading Properties Based on Data Type
	9.20.1.X3 ReadPropertyMultiple of the Network Port Object using the Unknown Instance
	9.20.1.X9 ReadPropertyMultiple Service when Non-BACnet Device Offline

	9.21 ReadRange Service Execution Tests
	9.21.1 Positive ReadRange Service Execution Tests
	9.21.1.1 Reading All Items in the List
	9.21.1.2 Reading Items by Position with Positive Count
	9.21.1.3 Reading Items by Position with Negative Count
	9.21.1.5 Reading Items by Time Range
	9.21.1.69.21.1.5 Reading a Range of Items that do not Exist by Position
	9.21.1.99.21.1.8 Reading Items by Sequence with Positive Count
	9.21.1.109.21.1.9 Reading Items by Sequence with Negative Count
	9.21.1.11 Data Type Verification Test
	9.21.1.X1 ReadRange Support for All List Properties
	9.21.1.X10 ReadRange Service when Non-BACnet Device Offline

	9.21.2 Negative ReadRange Service Execution Tests
	9.21.2.1 Attempting to Read a Property That Does not Exist
	9.21.2.2 Attempting to Read a Property That is not a List
	9.21.2.3 Attempting to Read a non-Array Property with an Array Index
	9.21.2.4 Reading a Range of Items that do not Exist (Using by Position)

	9.22 WriteProperty Service Execution Tests
	9.22.1 Positive WriteProperty Service Execution Tests
	9.22.1.1 Writing a Single Element of an Array
	9.22.1.2 Writing a Commandable Property Without a Priority
	9.22.1.3 Writing a Non-Commandable Property with a Priority
	9.22.1.X1 Writing an Array Size
	9.22.1.X2 Writing to Properties Based on Data Type

	9.22.2 Negative WriteProperty Service Execution Tests
	9.22.2.1 Writing Non-Array Properties with an Array Index
	9.22.2.2 Writing Array Properties with an Array Index that is Out of Range
	9.22.2.3 Writing with a Property Value Having the Wrong Datatype
	9.22.2.4 Writing with a Property Value that is Out of Range
	9.22.2.X1 Writing Non-Array Read-only Property with an Array Index
	9.22.2.X2 Resizing a writable fixed size array property
	9.22.2.X4 Writing a Property Value Related to Non-supported Optional Functionality

	9.23 WritePropertyMultiple Service Execution Tests
	9.23.1 Positive WritePropertyMultiple Service Execution Tests
	9.23.1.1 Writing a Single Property to a Single Object
	9.23.1.2 Writing Multiple properties to a Single Object
	9.23.1.3 Writing a Single Property to Multiple Objects
	9.23.1.4 Writing Multiple Properties to Multiple Objects
	9.23.1.7 Writing Maximum Multiple Properties
	9.23.1.X4 Writing an Array Size

	9.23.2 Negative WritePropertyMultiple Service Execution Tests
	9.23.2.1 Writing Multiple Properties with a Property Access Error
	9.23.2.2 Writing Multiple Properties with an Object Access Error
	9.23.2.3 Writing Multiple Properties with a Write Access Error
	9.23.2.4 Writing Non-Array Properties with an Array Index
	9.23.2.5 Writing Array Properties with an Array Index that is Out of Range
	9.23.2.6 Writing with a Property Value Having the Wrong Datatype
	9.23.2.7 Writing with a Property Value that is Out of Range
	9.23.2.X1 WritePropertyMultiple Reject Test
	9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service
	9.23.2.X3 Writing first element of 'List of Write Access Specifications' with Object Access Error
	9.23.2.X4 Writing first element of 'List of Write Access Specifications' with a Write Access Error
	9.23.2.X5 WritePropertyMultiple Reject Test for first element of 'List of Write Access Specifications'
	9.23.2.X6 Writing first element of 'List of Write Access Specifications' with a Property Access Error
	9.23.2.X7 Writing a Property Value to a Non-supported Optional Functionality
	9.23.2.X9 Date Non-Pattern Properties Test using WritePropertyMultiple Service
	9.23.2.X10 Time Non-Pattern Properties Test using WritePropertyMultiple Service
	9.23.2.X11 DateTime Non-Pattern Properties Test using WritePropertyMultiple Service
	9.23.2.X12 BACnetDateRange Non-Pattern Properties Test using WritePropertyMultiple Service

	9.24 DeviceCommunicationControl Service Execution Test
	9.24.1 Positive DeviceCommunicationControl Service Execution Tests
	9.24.1.5 Finite Time Duration Restored by ReinitializeDevice
	9.24.1.11 Ensure that DISABLE option is not supported by IUT claiming PR >= 20
	9.24.1.12 Disable of Service Initiation Restored by ReinitializeDevice

	9.24.2 Negative DeviceCommunicationControl Service Execution Tests
	9.24.2.1 Invalid Password
	9.24.2.2 Missing Password
	9.24.2.3 Restore by ReinitializeDevice with Invalid 'Reinitialized State of Device'

	9.25 ConfirmedPrivateTransfer Service Execution Tests
	9.25.1 Positive ConfirmedPrivateTransfer Service Execute Tests
	9.25.1.1 Correctly Executes a Supported ConfirmedPrivateTransfer Service

	9.25.2 Negative ConfirmedPrivateTransfer Service Execute Tests
	9.25.2.1 Correctly Executes a Non-Supported ConfirmedPrivateTransfer Service

	9.27 ReinitializeDevice Service Execution Tests
	9.27.2 Negative ReinitializeDevice Service Execution Tests
	9.27.2.1 COLDSTART with an Invalid Password
	9.27.2.2 WARMSTART with an Invalid Password
	9.27.2.39.27.2.1 COLDSTART with Missing or Invalid Password
	9.27.2.49.27.2.2 WARMSTART with Missing or Invalid Password
	9.27.2.X Rejects Unsupported Reinitialize Types

	9.29 UnconfirmedTextMessage Service Execution Tests
	9.29.1 UnconfirmedTextMessage With No Message Class
	9.29.2 UnconfirmedTextMessage With an Unsigned Message Class
	9.29.3 UnconfirmedTextMessage With a CharacterString Message Class

	9.30 TimeSynchronization Service Execution Tests
	9.30.1 Positive TimeSynchronization Service Execution Tests
	9.30.1.1 TimeSynchronization Local Broadcast
	9.30.1.2 TimeSynchronization Directed to the IUT

	9.31 UTCTimeSynchronization Service Execution Tests
	9.31.1.1 Local Broadcast

	9.32 Who-Has Service Execution Tests
	9.32.1 Execution of Who-Has Service Requests Originating from the Local Network
	9.32.1.1 Object ID Version with No Device Range
	9.32.1.2 Object Name Version with no Device Range
	9.32.1.3 Object ID Version with IUT Inside of the Device Range
	9.32.1.4 Object ID Version with IUT Outside of the Device Range
	9.32.1.5 Object Name Version with IUT Inside of the Device Range
	9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
	9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
	9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range
	9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range
	9.32.1.11 Object Name Version, Directed to a Specific MAC Address
	9.32.1.12 Who-Has After Object_Name Changed
	9.32.1.13 Who-Has After Object_Identifier Changed

	9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network
	9.32.2.1 Object ID Version, Global Broadcast from a Remote Network
	9.32.2.2 Object ID Version, Remote Broadcast
	9.32.2.X3 Who-Has for Non-existent Object_Name
	9.32.2.X5 Who-Has for Non-existent Object_Identifier

	9.33 Who-Is Service Execution Tests
	9.33.1 Execution of Who-Is Service Requests Originating from the Local Network
	9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range

	9.33.2 Execution of Who-Is Service Requests Originating from a Remote Network
	9.33.2.3 General Inquiry, Directed to a Remote Device

	9.X40 AuditLogQuery Service Execution Tests
	9.X40.1 AuditLogQuery Service Positive Tests
	9.X40.1.1 - AuditLogQuery By Target Test
	9.X40.1.2 - AuditLogQuery By Source Test

	9.X40.2 - AuditLogQuery Negative Tests
	9.X40.2.1 - Attempting to Query a Non-existent Audit Log

	9.X41 WriteGroup Tests
	9.X41.1.X1 Channel and Group Number Test
	9.X41.1.X2 Write Priority and Overriding Priority Test
	9.X41.1.X3 Relinquish Control Test
	9.X41.1.X4 Inhibit Delay Test with WriteGroup

	9.X42 SubscribeCOVPropertyMultiple Service Execution Tests
	9.X42.1 Positive SubscribeCOVPropertyMultiple Service Execution Tests
	9.X42.1.1 Supports Non-Timestamped Notifications
	9.X42.1.2 Supports Timestamped Notifications
	9.X42.1.3 Confirmed Change of Value Notification From Property Value
	9.X42.1.4 Unconfirmed Change of Value Notification From Property Value
	9.X42.1.5 Supports Subscriptions to Multiple Properties Using Multiple Requests
	9.X42.1.6 Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References Per Context
	9.X42.1.7 Supports Client-Supplied COV Increment
	9.X42.1.8 Updating Existing Subscriptions
	9.X42.1.9 Canceling Subsets of COVM Subscriptions
	9.X42.1.10 Canceling Expired or Non-Existing Subscriptions
	9.X42.1.11 Subscription Expiration Test

	9.X42.2 Negative SubscribeCOVPropertyMutliple Service Execution Tests
	9.X42.2.1 The Monitored Object Does Not Support COVM Notification
	9.X42.2.2 The Monitored Property Does Not Support COVM Notification
	9.X42.2.3 Monitored Object Does Not Exist
	9.X42.2.4 Monitored Property Does Not Exist
	9.X42.2.5 Array Index Provided But Property is Not an Array
	9.X42.2.6 Array Index Provided Is Out Of Range
	9.X42.2.7 No Space to Add List Element
	9.X42.2.8 The Lifetime Parameter is Out Of Range
	9.X42.2.9 The Max Notification Delay Parameter is Out Of Range
	9.X42.2.10 The Max Notification Delay is Greater Than the Lifetime

	135.1-2019s-10 Improve existing DEFINITIONS
	3. DEFINITIONS
	3.5 Common language used in tests

	135.1-2019s-11 Improve the EPICS FILE FORMAT and the EPICS CONSISTENCY TESTS
	4. ELECTRONIC PICS FILE FORMAT
	4.5 Sections of the EPICS File
	4.5.9 Timers

	5. EPICS CONSISTENCY TESTS
	135.1-2019s-12 Add new and improve existing CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE TESTS
	6. CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE TESTS
	6.2 TCSL Statements
	6.2.14 Assignment Statement

	6.3 Time Dependencies
	6.3.2 Internal Processing Fail Time
	6.3.X1 Channel Write Fail Time
	6.3.X2 Auto-negotiation Fail Time
	6.3.X3 Activate Changes Fail Time
	6.3.X4 Foreign Device Registration Fail Time
	6.3.X5 Audit Notification Forwarder Fail Time

	6.X6 Test Execution Considerations
	6.X6.1 Value Comparisons
	6.X6.2 Functional Expectations
	6.X6.3 Complex Datatypes

	135.1-2019s-13 Add new and improve existing SPECIAL FUNCTIONALITY TESTS
	13. SPECIAL FUNCTIONALITY TESTS
	13.1 Segmentation
	13.1.12 IUT Abort When Segmentation Not Possible
	13.1.12.1 IUT Does Not Support Segmented Response
	13.1.12.X1 Reading with maximum-segments-accepted bit pattern B'000'

	13.5 Slave Proxy Tests
	13.5.3 Proxy Test

	13.8 Backup and Restore Procedure Tests
	13.8.1 Backup and Restore Execution Tests
	13.8.1.1 Execution of Full Backup and Restore Procedure
	13.8.1.2 Attempting a Backup Procedure While Already Performing a Backup Procedure
	13.8.1.3 Attempting a Backup Procedure While Already Performing a Restore Procedure
	13.8.1.4 Attempting a Restore Procedure While Already Performing a Backup Procedure
	13.8.1.5 Attempting a Restore Procedure While Already Performing a Restore Procedure
	13.8.1.6 Ending Backup and Restore Procedures via Timeout
	13.8.1.7 Ending Backup and Restore Procedures via Abort
	13.8.1.8 Attempting a Backup Procedure with an Invalid Password
	13.8.1.9 Attempting a Restore Procedure with an Invalid Password
	13.8.1.10 Starting and Ending a Backup Procedure when a Password is not Required
	13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required
	13.8.1.12 System_Status during a Backup Procedure
	13.8.1.13 System_Status during a Restore Procedure

	13.8.2 Backup and Restore Initiation Tests
	13.8.2.1 Initiate a Full Backup and Restore

	13.9 Application State Machine Tests
	13.9.X1 Ignore Confirmed Broadcast Requests

	13.10 Workstation Scheduling Tests
	13.10.4 Modify and Exception_Schedule
	13.10.4.9 Modify an Exception_Schedule by Adding a BACnetSpecialEvent with Period of Choice calendarEntry of Choice WeekNDay

	13.10.5 Modify a Calendar Object
	13.10.5.4 Modify a Calendar by Adding a BACnetCalendarEntry of Choice WeekNDay to the Date_List

	135.1-2019s-14 Apply miscellaneous editorial changes
	6.2.9 WAIT Statement
	6.2.11 BEFORE Statement
	6.4 BACnet References

