ANSI/ASHRAE Addendum o to ANSI/ASHRAE Standard 15-2022

Safety Standard for Refrigeration Systems

Approved by ASHRAE and the American National Standards Institute on July 31, 2024.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2024 ASHRAE ISSN 1041-2336
SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees. The Senior Manager of Standards of ASHRAE should be contacted for
a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

In response to a continuous maintenance proposal, Addendum o revises portions of Standard 15 related to ventilation of machinery rooms.

Informative Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum o to Standard 15-2022

Modify Section 8 as follows. The remainder of Section 8 remains unchanged.

8. INSTALLATION RESTRICTIONS

[. . .]

8.9 Refrigerating Machinery Room, General Requirements.

[. . .]

8.9.5 Each refrigerating machinery room shall contain a detector refrigerant detector, located in an area where refrigerant from a leak will concentrate, that actuates an alarm and mechanical ventilation in accordance with Section 8.9.7 at a set point not greater than the occupational exposure limit (OEL) value as published in ASHRAE Standard 34.3. […]

[. . .]

8.9.6* Machinery rooms, in accordance with Section 8.9, shall be vented to the outdoors, using mechanical ventilation in accordance with Sections 8.9.7 and 8.9.8. The air temperature within the machinery room shall not exceed 122°F (50°C).

8.9.7 Mechanical ventilation referred to in Section 8.9.6 shall be by one or more power driven fans capable of exhausting air from the machinery room at least in the amount given in the formula in Section 8.9.8. To obtain a reduced airflow for normal ventilation, multiple fans or multispeed fans shall be used. Provision shall be made for inlet air to replace that being exhausted. Openings for inlet air shall be positioned to avoid recirculation. Air supply and exhaust ducts to the machinery room shall serve no other area. The discharge of the air shall be to the outdoors in such a manner so as not to cause a nuisance or danger. The mechanical exhaust inlets shall be located in an area where refrigerant from a leak is likely to concentrate, in consideration of the location of the replacement air paths, refrigerating machines, and the density of the refrigerant relative to air.

8.9.7* General. Mechanical ventilation referred to in Section 8.9.6 shall comply with the following:

a. Include one or more fans capable of exhausting air from the machinery room.

b. Include makeup air provisions to replace air being exhausted.

c. Ducts for supply to and exhaust from the machinery room shall serve no other space.

d. The makeup air supply locations in the machinery room shall be positioned relative to the exhaust openings within the machinery room to avoid short-circuiting of ventilation airflow within the machinery room.

e. Inlets to exhaust openings or ducts shall be located where leaked refrigerant will concentrate.

f. The bottom edges of inlets to exhaust openings or ducts shall be within 1.00 ft (0.30 m) of the floor at locations identified per Section 8.9.7(e).

g. Where the machinery room contains refrigerants with relative molar mass less than 42.0, additional inlets to exhaust openings or ducts shall be within 1.00 ft (0.30 m) of the highest point of the machinery room.

h. The discharge of the exhaust air shall be to the outdoors in such a manner so as not to cause a nuisance or danger.

i. Mechanical ventilation systems used to exhaust refrigerant shall not be combined with combustion venting systems.
8.9.8 Ventilation Airflow. For Group A1, A2, A3, B1, B2, and B3, for machinery rooms containing only
Group A1 or B1 refrigerants, or containing any A2, A3, B2, or B3 refrigerants, the airflow shall comply
with Section 8.9.8.1 and 8.9.8.2.

8.9.8.1 When personnel are present, the machinery room mechanical ventilation in Section 8.9.7 shall
automatically or manually exhaust at an airflow rate not less than 0.50 ft³/min/ft² (0.00254 m³/s/m²) of
machinery room area.

8.9.8.2 When triggered by the refrigerant detector of Section 8.9.5, the machinery room shall be venti-
lated automatically to supply not less than the airflow calculated using Equation 8-1a or 8-1b: The mecha-
nical ventilation required to exhaust an accumulation of refrigerant due to leaks or a rupture of the
refrigeration system shall be capable of removing air from the machinery room in not less than the quantity
calculated using Equation 8-1a or 8-1b:

\[
Q = 100 \times G^{0.5} \quad (\text{8-1a [I-P]})
\]

\[
Q = 0.070 \times G^{0.5} \quad (\text{8-1b [SI]})
\]

where

\[
Q = \text{airflow, ft}^3/\text{min (m}^3/\text{s)}
\]

\[
G = \text{mass of refrigerant in the largest refrigeration system (independent circuit), any part of which is
located in the machinery room, lb (kg)}
\]

A part of the refrigerating machinery room mechanical ventilation shall be

a. operated, when occupied, to supply at least 0.5 ft³/min/ft² (0.00254 m³/s/m²) of machinery room area or
20 ft³/min (0.00944 m³/s) per person and

b. operable when occupied at a volume required to not exceed the higher of a temperature rise of 18°F
(10°C) above inlet air temperature or a maximum temperature of 122°F (50°C).

8.9.9 No open flames that use combustion air from the machinery room shall be [. . .]

8.10 Machinery Room, Special Requirements. In cases specified in the rules of Section 7.4, a refrigerating
machinery room shall meet the following special requirements in addition to those in Section 8.9:

[. . .]

8.11 Machinery Room, Special Requirements, A2L and B2L. When In cases specified in Section 7.4,
and when a refrigeration system refrigerating system is located indoors, and a machinery room is required by
Section 7.4.3, machinery rooms shall comply with Sections 8.11.1 through 8.11.7 in addition to Section
8.9.4.

8.11.1* The air temperature within the machinery room shall not exceed 122°F (50°C). There shall be no
flame-producing device or hot surface over 1290°F (700°C) in the room, other than that used for mainte-
nance or repair, unless installed in accordance with Section 8.9.9.

[. . .]

8.11.11* Ventilation. Machinery rooms, in accordance with Section 8.11, shall be vented to the outdoors
using mechanical ventilation in accordance with Sections 8.11.11.1 through 8.11.11.4.

8.11.11.1* Mechanical ventilation referred to in Section 8.11.11 shall be in accordance comply with all
of the following:

a. Include one or more power driven fans capable of exhausting air from the machinery room; multispeed
fans shall be permitted.

b. Electric motors driving fans shall not be placed inside ducts; fan rotating elements shall be nonferrous or
nonsparking, or the casing shall consist of or be lined with such material.

c. Include makeup air provisions to supply makeup air to replace that air being exhausted;

d. Ducts for supply to and exhaust from the machinery room shall serve no other area space;

e. The makeup air supply locations in the machinery room shall be positioned relative to the makeup air
exhaust opening locations within the machinery room to avoid short circuiting of ventilation airflow within
the machinery room;

f. Inlets to the exhaust openings or ducts shall be located in an area where leaked refrigerant from a leak
will concentrate, in consideration of the location of the replacement supply air paths, refrigerating machines,
and the density of the refrigerant relative to air.

f. The bottom edges of inlets to exhaust openings or ducts shall be within 1 ft (0.3 m) (0.30 m) of the lowest
point of the machinery room floor at locations identified per Section 8.11.11.1(e.) for refriger-
ants that are heavier than air and shall be within 1 ft (0.3 m) of the highest point for refrigerants that are lighter than air.

g. Where the machinery room contains refrigerants with relative molar mass less than 42.0, additional inlets to exhaust openings or ducts shall be within 1.00 ft (0.30 m) of the highest point of the machinery room.

h. The discharge of the exhaust air shall be to the outdoors in such a manner as not to cause a nuisance or danger.

i. Mechanical ventilation systems used to exhaust refrigerant shall not be combined with combustion venting systems.

j. Electric motors driving fans shall not be placed inside ducts; fan rotating elements shall be nonferrous or nonsparking, or the casing shall consist of or be lined with such material.

8.11.11.2 Level 1 Ventilation. When personnel are present, the refrigerating machinery room mechanical ventilation in Section 8.11.11.1 shall automatically or manually exhaust at an airflow rate not less than 0.50 ft³/min/ft² (0.0025 m³/s/m²) of machinery room area shown in Table 8-2.

(Table 8-2 is deleted.)

8.11.11.3 Level 2 Ventilation. A part of the refrigerating machinery room mechanical ventilation referred to in Section 8.11.11.1 shall exhaust an accumulation of refrigerant due to leaks or a rupture of a refrigerating system, or portion thereof, in the machinery room. The refrigerant detectors required in accordance with Section 8.11.8 shall activate ventilation at a set point and response time in accordance with Table 8-1, at an airflow rate not less than the value determined in accordance with Section 8.11.11.4. When triggered by the refrigerant detector of Section 8.11.8, at a set point and response time in accordance with Table 8-1, the machinery room shall be ventilated automatically to supply not less than the airflow determined in accordance with Section 8.11.11.4.

When multiple refrigerant designations are in the machinery room, evaluate the required airflow according to each refrigerating system, and the highest airflow quantity shall apply.

Ventilation reset shall be in accordance with the type of reset in Table 8-1. Manual-type ventilation reset shall have the reset located inside the refrigerating machinery room.

Modify Informative Appendix A as shown. The remainder of Appendix A remains unchanged.

INFORMATIVE APPENDIX A
EXPLANATORY MATERIAL

Sections of the standard with associated explanatory information in this appendix are marked with an asterisk “*” after the section number.

[. . .]

Section 8.9.6 and Section 8.11.11
Machinery rooms are typically provided with a ventilation system or mechanical cooling system or combination of both. When evaluating whether ventilation alone, without the use of mechanical cooling, is sufficient to maintain adequate ambient temperature in a machinery room, consult the annual 2% design dry-bulb temperature for the installation location. As the available supply air temperature during hot weather conditions approaches the temperature limit of the machinery room, the required airflow increases significantly, and the addition of mechanical cooling may be required.

Section 8.9.6 and Section 8.11.1
The limit of 122°F (50°C) is based on a safety margin to the 140°F (60°C) flame propagation test temperature used to determine flammability classification. Use of equipment marked for an ambient temperature rating in excess of 122°F (50°C) does not permit a higher allowable machinery room space temperature. Use of equipment marked for an ambient temperature rating of 104°F (40°C) will limit the allowable machinery room space temperature to 104°F (40°C).

The maximum temperature limit applies to the bulk air temperature, spatially averaged over a significant portion of the machinery room volume, and should not be evaluated locally in proximity to an exhaust outlet for an air-cooled electrical equipment or near other heat producing equipment.

Section 8.9.7(e) and Section 8.11.11.1(e)
When determining location(s) of makeup air supply and location(s) of exhaust intakes, the user should consider the resulting air paths and location(s) of refrigerating systems.
ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.
About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on LinkedIn, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous version. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.