© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

ASHRAE Standing Standard Project Committee 189.1
Cognizant TC: 2.8 Building Environmental Impacts and Sustainability
SPLS Liaison: Walter T. Grondzik
ASHRAE Staff Liaisons: Emily Toto
ICC Liaison: Mike Pfeiffer
IES Liaison: Mark Lien
USGBC Liaison: Wes Sullens

Roger Hedrick*, Chair
Charles Eley*, Co-Vice-Chair
Josh Jacobs*, Co-Vice-Chair
Michael Jouanah*, Co-Vice-Chair
Lawrence Schoen*, Co-Vice-Chair
Anand Achari
Vinay Ananthachar
Constantinos Balaras*
James Bogdan
Jeff Bradley*
Susan Bronson
Scott Buckley
Julie Chandler
Ernest Conrad*
Glen Clapper
Dru Crawley
John Cribs
John Cross*
Michael Cudahy*
Thomas Culp*
David Delaquila
Jim Edelson*
Anthony Floyd*
Mark Frankel
Patricia Fritz
Susan Gitlin*
Gregg Gress*
Maureen Gutman
Katherine Hammack
Thomas Hogarth*
Donald Horn*
Jonathan Humble
Ksenija Janic
Greg Johnson
Stephen Kanipe
James Kendzel
Andrew Klein
Gary Klein
Vladimir Kochkin
Thomas Lawrence
Neil Leslie*
Christine Locklear
Richard Lord
David Madsen
C. Webster Marsh
Joel Martell
Jonathan McHugh*
Adam McMillen*
Erik Miller-Klein
Gwelen Paliaga
Kathleen Petrie
Teresa Rainey
Steven Rosenstock*
Loren Ross
Michael Schmeida
Kent Sovocool*
Dennis Stanke
Wayne Stoppelmoor
Christine Subasic*
Michael Temple
Martha VanGeem*
Scott West*
Daniel Whittet
Joe Winters*
Jian Zhang*

* Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2019–2020
Wayne H. Stoppelmoor, Jr., Chair
Drury B. Crawley, Vice-Chair
Els Baert
Charles S. Barnaby
Robert B. Burkhead
Thomas E. Cappellin
Douglas D. Fick
Michael W. Gallagher
Walter T. Grondzik
Susanna S. Hanson
Rick M. Heiden
Jonathan Humble
Srinivas Katipamula
Essam E. Khalil
Larry Kouma
Cesar L. Lim
Karl P. Peterman
Erick A. Phelps
Lawrence J. Schoen
Steven C. Sill
Richard T. Schwercyna
Christian R. Taber
Russell C. Tharp
Adrienne G. Thomle
Theresa A. Weston
Michael W. Woodford
Craig P. Wray
Jaap Hogeling, BOD ExO
Malcolm D. Knight, CO
Connor Barbaree, Senior Manager of Standards

SPECIAL NOTE
This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerns of all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for
a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER
ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS
ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.
FOREWORD

This addendum updates the CO₂e emission factors in Table 7.5.2, expanding the list to add values for eGRID subregions. These data will be combined with the Source Energy Conversion column of Table 7.5.3, which was added in Addendum z, and the whole table will be labeled as 7.5.2. The emission factors include both direct emissions from combustion and indirect emissions from extraction, processing, and delivery of fuels to buildings or power plants. For electricity, the emissions also account for transmission and distribution losses.

Further additions to this addendum were made during the public review process and include changes to the definition of “CO₂e” as well as clarifications to informative text and table references.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum aa to Standard 189.1-2017

Modify the definition of “CO₂e” as it appears in Section 3.2.

carbon dioxide equivalent (CO₂e): a measure used to compare the impact of various greenhouse gases based on their global warming potential (GWP). CO₂e approximates the time-integrated warming effect of a unit mass of a given greenhouse gas relative to that of carbon dioxide (CO₂). GWP is an index for estimating the relative global warming contribution of atmospheric emissions of 1 kg of a particular greenhouse gas compared to emissions of an equal mass 1 kg of CO₂. The following GWP values are used based on a 100-year time horizon: 1 for CO₂, 25 for methane (CH₄), and 298 for nitrous oxide (N₂O).

Delete the following acronym from Section 3.3, as it is only used in Section 3.2 and does not appear elsewhere in the standard.

GWP global warming potential

Modify Section 7.5 as shown.

7.5.2 Annual Carbon Dioxide Equivalent (CO₂e). The proposed design shall have annual CO₂e emissions equal to or less than the annual CO₂e emissions of the baseline building design multiplied by the performance cost index target determined in accordance with 7.5.1. To determine the annual CO₂e for each energy source in the baseline building design and proposed design, the energy consumption shall be multiplied by the CO₂e emission factors from Table 7.5.2B. U.S. locations shall use values for eGRID subregions from Table 7.5.2 for electricity. Locations outside the U.S. shall use the value for “All other electricity” or locally derived values. A building project served in whole or in part by a district energy plant shall follow the modeling requirements contained in Normative Appendix C, Section C1.3, in order to comply with this section.
<table>
<thead>
<tr>
<th>Building Project Energy Source</th>
<th>CO₂e, lb/MWh</th>
<th>CO₂e, kg/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-delivered electricity and other fuels not specified in this table</td>
<td>1348</td>
<td>612</td>
</tr>
<tr>
<td>LPG or propane</td>
<td>601</td>
<td>273</td>
</tr>
<tr>
<td>Fuel oil (residual)</td>
<td>685</td>
<td>311</td>
</tr>
<tr>
<td>Fuel oil (distillate)</td>
<td>663</td>
<td>304</td>
</tr>
<tr>
<td>Coal</td>
<td>820</td>
<td>372</td>
</tr>
<tr>
<td>Gasoline</td>
<td>681</td>
<td>309</td>
</tr>
<tr>
<td>Natural gas</td>
<td>509</td>
<td>231</td>
</tr>
<tr>
<td>District chilled water</td>
<td>323</td>
<td>146</td>
</tr>
<tr>
<td>District steam</td>
<td>855</td>
<td>388</td>
</tr>
<tr>
<td>District hot water</td>
<td>807</td>
<td>366</td>
</tr>
</tbody>
</table>

The values in this table represent national averages for the United States and include both direct and indirect emissions.
Add new data to and rename Table 7.5.3 as shown. (Note: Table 7.5.3 is also used in Addendum z. The portion of the table already included in Addendum z is not underlined here.)

Table 7.5.3 Source Energy Conversion Factors and CO\textsubscript{2e} Emissions Factors

<table>
<thead>
<tr>
<th>Energy Form</th>
<th>Source Energy Conversion Factor</th>
<th>CO\textsubscript{2e} Emissions Factor, lb/MWh</th>
<th>kg/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuels Used Directly in Building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>1.09</td>
<td>681</td>
<td>309</td>
</tr>
<tr>
<td>LPG or propane</td>
<td>1.15</td>
<td>651</td>
<td>295</td>
</tr>
<tr>
<td>Fuel oil (residual)</td>
<td>1.19</td>
<td>738</td>
<td>335</td>
</tr>
<tr>
<td>Fuel oil (distillate)</td>
<td>1.19</td>
<td>715</td>
<td>324</td>
</tr>
<tr>
<td>Coal</td>
<td>1.05</td>
<td>892</td>
<td>405</td>
</tr>
<tr>
<td>Gasoline</td>
<td>1.19</td>
<td>744</td>
<td>337</td>
</tr>
<tr>
<td>Other fuels not specified in this table</td>
<td>1.05</td>
<td>892</td>
<td>405</td>
</tr>
<tr>
<td>Imported Electricity and Exported Renewable Electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKGD—ASCC Alaska Grid</td>
<td>2.52</td>
<td>1580</td>
<td>717</td>
</tr>
<tr>
<td>AKMS—ASCC Miscellaneous</td>
<td>1.21</td>
<td>738</td>
<td>335</td>
</tr>
<tr>
<td>AZNM—WECC Southwest</td>
<td>2.75</td>
<td>1496</td>
<td>679</td>
</tr>
<tr>
<td>CAMX—WECC California</td>
<td>1.94</td>
<td>957</td>
<td>434</td>
</tr>
<tr>
<td>ERCT—ERCOT All</td>
<td>2.58</td>
<td>1529</td>
<td>694</td>
</tr>
<tr>
<td>FRCC—FRCC All</td>
<td>2.97</td>
<td>1601</td>
<td>726</td>
</tr>
<tr>
<td>HIMS—HICC Miscellaneous</td>
<td>2.86</td>
<td>1717</td>
<td>779</td>
</tr>
<tr>
<td>HIOA—HICC Oahu</td>
<td>3.83</td>
<td>2460</td>
<td>1116</td>
</tr>
<tr>
<td>MROE—MRO East</td>
<td>3.08</td>
<td>2337</td>
<td>1060</td>
</tr>
<tr>
<td>MROW—MRO West</td>
<td>2.50</td>
<td>1686</td>
<td>765</td>
</tr>
<tr>
<td>NEWE—NPCC New England</td>
<td>2.87</td>
<td>1024</td>
<td>464</td>
</tr>
<tr>
<td>NWPP—WECC Northwest</td>
<td>1.39</td>
<td>936</td>
<td>425</td>
</tr>
<tr>
<td>NYCW—NPCC NYC/Westchester</td>
<td>2.92</td>
<td>1034</td>
<td>469</td>
</tr>
<tr>
<td>NYLI—NPCC Long Island</td>
<td>2.90</td>
<td>1600</td>
<td>726</td>
</tr>
<tr>
<td>NYUP—NPCC Upstate NY</td>
<td>1.97</td>
<td>540</td>
<td>245</td>
</tr>
<tr>
<td>RFCE—RFC East</td>
<td>3.05</td>
<td>1156</td>
<td>524</td>
</tr>
<tr>
<td>RFCM—RFC Michigan</td>
<td>3.06</td>
<td>1806</td>
<td>819</td>
</tr>
<tr>
<td>RFCW—RFC West</td>
<td>3.14</td>
<td>1757</td>
<td>797</td>
</tr>
<tr>
<td>RMPA—WECC Rockies</td>
<td>2.33</td>
<td>1829</td>
<td>830</td>
</tr>
<tr>
<td>SPNO—SPP North</td>
<td>2.67</td>
<td>1851</td>
<td>840</td>
</tr>
<tr>
<td>SPSO—SPP South</td>
<td>2.46</td>
<td>1737</td>
<td>788</td>
</tr>
<tr>
<td>SRMV—SERC Mississippi Valley</td>
<td>2.95</td>
<td>1421</td>
<td>645</td>
</tr>
<tr>
<td>SRMW—SERC Midwest</td>
<td>3.20</td>
<td>2234</td>
<td>1014</td>
</tr>
<tr>
<td>SRSO—SERC South</td>
<td>3.04</td>
<td>1651</td>
<td>749</td>
</tr>
<tr>
<td>SRTV—SERC Tennessee Valley</td>
<td>3.02</td>
<td>1677</td>
<td>761</td>
</tr>
<tr>
<td>SRVC—SERC Virginia/Carolina</td>
<td>3.11</td>
<td>1255</td>
<td>569</td>
</tr>
<tr>
<td>All other electricity</td>
<td>2.64</td>
<td>1418</td>
<td>643</td>
</tr>
</tbody>
</table>

District Thermal Energy

<table>
<thead>
<tr>
<th></th>
<th>Source Energy Conversion Factor</th>
<th>CO\textsubscript{2e} Emissions Factor, lb/MWh</th>
<th>kg/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled water</td>
<td>0.63</td>
<td>339</td>
<td>154</td>
</tr>
<tr>
<td>Steam</td>
<td>1.83</td>
<td>1145</td>
<td>519</td>
</tr>
<tr>
<td>Hot water</td>
<td>1.73</td>
<td>1081</td>
<td>491</td>
</tr>
</tbody>
</table>

Informative Note: Values in this table represent averages for the United States and include both direct and indirect emissions. The source energy conversion factors are based on noncombustible renewable energy having a zero heat rate. The carbon dioxide equivalent emissions of methane (CH\textsubscript{4}) and nitrous oxide (N\textsubscript{2}O) are based on their GWP for a 20 year time horizon. Other assumptions are documented in Informative Appendix K.
Remove text added to Section 7.5.3 by proposed Addendum z, as shown.

\[r_e = \text{source energy conversion factor taken from Table 7.5.3 for electricity. eGRID values shall be used for electricity where applicable.} \]

Modify the description of the term \(r_e \) in Section 7.5.3 (added in Addendum k).

\[r_e = \text{source energy conversion factor taken from Table 7.5.3 for electricity. U.S. Locations shall use values for eGRID subregions from Table 7.5.2 for electricity. Locations outside the U.S. shall use the value for “All other electricity” or locally derived values.} \]

Renumber Figure 7.5.3, added by Addendum z, as shown.

Figure 7.5.3 Map of eGRID subregions.
Crosshatching indicates that an area falls within overlapping eGRID subregions due to the presence of multiple electric service providers. Power Profiler can be used to definitively determine the eGRID subregion associated with a specific location and electric service provider (www.epa.gov/energy/power-profiler).

Modify Section 9.5.1 as shown.

9.5.1 Life-Cycle Assessment (LCA). An LCA shall be performed in accordance with ASTM E2921 and ISO Standard 14044, as modified by this section, for a minimum of two building alternatives, both of which shall conform to the owner’s project requirements (OPR). For the purposes of Section 9.5, values for global warming potential relative to \(\text{CO}_2 \) shall be based on a 100 year time horizon when used for calculations, results, and comparisons.
ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.
Standard 189.1 and the International Green Construction Code
Standard 189.1 serves as the complete technical content of the International Green Construction Code® (IgCC). The IgCC creates a regulatory framework for new and existing buildings, establishing minimum green requirements for buildings and complementing voluntary rating systems. For more information, visit www.iccsafe.org.

About ASHRAE
Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on LinkedIn, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore
ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous edition. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD
To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.