ADDENDA

ANSI/ASHRAE/IES Addendum bt to ANSI/ASHRAE/IES Standard 90.1-2022

Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings

Approved by ASHRAE and the American National Standards Institute on October 31, 2025; and by the Illuminating Engineering Society on October 16, 2025.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free I-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2025 ASHRAE

ISSN 1041-2336

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

ASHRAE Standard Project Committee 90.1

Cognizant TC: 7.6 Systems Energy Utilization

SPLS Liaison: Jennifer Isenbeck · ASHRAE Staff Liaison: Emily Toto · IES Liaison: Mark Lien

Richard Lord,* Chair	Benjamin Edwards	Nathan Kahre	Robert Ross*
Thomas Culp,* Co-Vice Chair	Kurt Fester	Maria Karpman*	Marty Salzberg*
Leonard Sciarra,* Co-Vice Chair	Francisco Flores	Andrew Klein	Christopher Schaffner
Rahul Athalye*	D. Andrew Fouss	Vladimir Kochkin*	Greg Schluterman
William Babbington	Phillip Gentry*	Toby Lau	Kelly Seeger*
John Bade*	Jason Glazer*	Chonghui Liu	Wayne Stoppelmoor*
Sean Beilman*	Melissa Goren*	Emily Lorenz	Matthew Swenka*
Daniel Bersohn	Skye Gruen	Samuel Mason*	Christian Taber*
Paula Cino*	Charles Haack*	Benjamin Meyer*	Steven Taylor*
Glen Clapper	David Handwork*	Julian Mills-Beale	Kevin Teakell
Ernest Conrad*	Armin Hauer	Nazme Mohsina	Douglas Tucker
Shannon Corcoran*	Rick Heiden	Frank Morrison*	Jason Vandever
Jay Crandell*	Gary Heikkinen	Michael Myer	Martha VanGeem*
Kelly Cunningham	Mark Heizer*	Frank Myers*	Michael Waite*
Brandon Damas*	David Herron*	Michael Patterson*	McHenry Wallace*
Hayley Davis	Mike Houston*	Timothy Peglow*	Theresa Weston
Thomas Deary*	Harold Jepsen*	Christopher Perry*	Jerry White*
Darryl Dixon	Greg Johnson*	Laura Petrillo-Groh	Jeffrey Whitelaw
Julie Donovan*	Zac Johnson	Patrick Riley	Jeremiah Williams
Craig Drumheller*	Duane Jonlin*	Michael Rosenberg*	
James Earley	Michael Jouaneh*	Steven Rosenstock*	

^{*} Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2024–2025

Douglas D. Fick, Chair	Jaap Hogeling	Kenneth A. Monroe	Paolo M. Tronville
Adrienne G. Thomle, Vice Chair	Jennifer A. Isenbeck	Daniel H. Nall	Douglas K. Tucker
Hoy R. Bohanon, Jr.	Satish N. Iyengar	Philip J. Naughton	William F. Walter
Kelley P. Cramm	Phillip A. Johnson	Kathleen Owen	David P. Yuill
Abdel K. Darwich	Paul A. Lindahl, Jr.	Gwelen Paliaga	Susanna S. Hanson, BOD ExO
Drake H. Erbe	Julie Majurin	Karl L. Peterman	Wade H. Conlan, CO
Patricia Graef	Lawrence C. Markel	Justin M. Prosser	

Ryan Shanley, Senior Manager of Standards

Christopher J. Seeton

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

Margaret M. Mathison

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for

a. interpretation of the contents of this Standard,

William M. Healy

- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Addendum bt requires that insulation for covered process piping systems be designed for optimal thermal efficiency. The insulation must meet or exceed the minimum thickness and thermal conductivity standards specified for water heating and HVAC piping currently required in ASHRAE/IES Standard 90.1-2022. The purpose of this addendum is to save energy and reduce carbon emissions by improving the thermal efficiency of process heating and cooling systems in commercial and industrial facilities. Properly insulated piping systems for processes such as steam, hot water, and other thermal fluids are essential for maintaining efficient energy use and reducing utility costs. The proposal aims to standardize insulation practices, ensuring that all covered process piping systems are equipped with insulation that maximizes energy retention and minimizes environmental impact.

The table below shows the scalar ratio for pipe insulation at different diameters for both steam and hotwater applications. Assuming a 20-year life, the scalar ratio for pipe insulation is 14.4 years. As shown below, the pipe insulation requirement easily meets this cost-effectiveness requirement.

Steam Pipe Cost Effectiveness								
Diameter (in)	Surface Temp (F)	Insulation Thickness (in)	Annual Cost Savings (\$/100 ft)	Total Cost (\$/100 ft)	Scalar Ratio			
0.75	250	1	\$ 6.03	\$ 16.16	2.7			
1.5	250	1	\$ 11.19	\$ 17.85	1.6			
3	250	1.5	\$ 18.82	\$ 21.73	1.2			
5	250	1.5	\$ 31.35	\$ 32.42	1.0			
10	250	2	\$ 56.04	\$ 50.66	0.9			
0.75	298	1	\$ 8.58	\$ 18.27	2.1			
1.5	298	1.5	\$ 15.91	\$ 28.49	1.8			
3	298	1.5	\$ 27.24	\$ 34.51	1.3			
5	298	1.5	\$ 44.43	\$ 44.79	1.0			
10	298	2	\$ 80.62	\$ 67.92	0.8			

Hot Water Pipe Cost Effectiveness								
Diameter (in)	Surface Temp (F)	Insulation Thickness (in)			Total Cost (\$/100 ft)	Scalar Ratio		
0.75	140	1	\$	1.58	\$ 15.65	9.9		
1.5	140	1.5	\$	2.92	\$ 12.47	4.3		
3	140	1.5	\$	5.22	\$ 15.13	2.9		
5	140	1.5	\$	8.11	\$ 19.28	2.4		
10	140	1.5	\$	15.40	\$ 32.03	2.1		
0.75	200	1.5	\$	3.80	\$ 20.97	5.5		
1.5	200	2	\$	6.85	\$ 15.22	2.2		
3	200	2	\$	12.16	\$ 18.64	1.5		
5	200	2	\$	18.93	\$ 24.55	1.3		
10	200	2	\$	35.89	\$ 39.83	1.1		

Informative Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and <u>strikethrough</u> (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum bt to Standard 90.1-2022

Add new Section 6.8.4 as shown (I-P and SI).

10.4.9 Process Pipe Insulation. Piping for process applications shall be insulated to not less than the thickness specified in Table 10.8-7 and shall be provided with insulation within the thermal conductivity ranges specified in Table 10.8-7, or, where the insulation thermal conductivity is not within the range the minimum insulation thickness shall be calculated as follows:

$$\underline{t_{alt}} = r[(1 + t_{table}/r) \times \underline{k_{alt}}/\underline{k_{upper}} - 1]$$

where

 \underline{t}_{alt} \equiv minimum insulation thickness of the alternate material, in. (mm)

<u>r</u> = <u>actual outside radius of pipe, in. (mm)</u>

 $\underline{t_{table}}$ = insulation thickness listed in Table 10.8-7 for applicable fluid temperature and pipe size, in.(mm)

 $\underline{k_{alt}}$ \equiv thermal conductivity of the alternate material at mean rating temperature indicated for the

applicable fluid temperature, Btu·in./h·ft²·°F [W/(m·°C)]

 $\underline{k_{upper}}$ \equiv upper value of the thermal conductivity range listed in this table for the applicable fluid

temperature, Btu·in/h·ft 2 ·°F [W/(m·°C)]

Exceptions to 10.4.9:

- 1. For nonmetallic *piping* thicker than Schedule 80 and having a *thermal resistance* greater than steel pipe, reduced insulation thicknesses are permitted if documentation is provided showing that the pipe with the proposed insulation has no more heat transfer per foot (meter) than a steel pipe of the same size with the insulation thickness shown in the tables.
- 2. Fluid pumps, steam traps, blow-off valves, and piping within equipment for process applications.
- 3. Valves, strainers, coil u-bends, and air separators with at least 0.5 in. (12.5 mm) of insulation.
- 4. For piping that is smaller than 1.5 in. (40 mm) and located in partitions within *conditioned spaces*, reduction of the insulation thickness specified in Table 10.8-7 by 1 in. (25 mm) shall be permitted provided the piping has not less than 1 in. (25 mm) of insulation.
- 5. For direct-buried system piping for process applications, reduction of the insulation thickness specified in Table 10.8-7 by 1.5 in. (40 mm) shall be permitted provided the piping has not less than 1 in. (25 mm) of insulation.

Add new Table 10.8-7 (I-P).

Table 10.8-7 Minimum Piping Insulation Thickness for Process Applications a

Fluid Operating	Insulation Thermal Conductivity		Nominal Pipe or Tube Size				
Temperature Range (°F) and	Conductivity,	Mean Rating	<u><1</u>	1 to <1 1/2	1-1/2 to <4	4 to <8	<u>>8</u>
Usage	Btu·in./h·ft ² ·°F	Temperature, °F	Insulation Thickness, in.				
>350	0.32 to 0.34	<u>250</u>	<u>4.5</u>	<u>5.0</u>	<u>5.0</u>	<u>5.0</u>	5.0
251 to 350	0.29 to 0.32	<u>200</u>	3.0	<u>4.0</u>	<u>4.5</u>	<u>4.5</u>	<u>4.5</u>
201 to 250	0.27 to 0.30	<u>150</u>	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>3.0</u>	3.0
141 to 200	0.25 to 0.29	<u>125</u>	<u>1.5</u>	<u>1.5</u>	<u>2.0</u>	<u>2.0</u>	2.0
105 to 140	0.22 to 0.28	<u>100</u>	<u>1.0</u>	<u>1.0</u>	<u>1.5</u>	<u>1.5</u>	<u>1.5</u>

a. These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature

2

Add new Table 10.8-7 (SI).

Table 10.8-7 Minimum Piping Insulation Thickness for Process Applications a

Fluid Operating	Insulation Thermal Conductivity		Nominal Pipe or Tube Size, mm.					
Temperature Range (°C) and	Conductivity,	Mean Rating	<25	25 to <40	40 to <100	<u>100 to <200</u>	<u>≥200</u>	
<u>Usage</u>	W/(m·°C)	Temperature, °C	Insulation Thickness, mm					
<u>>177</u>	0.046 to 0.049	<u>121</u>	<u>115</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>	
122 to 177	0.042 to 0.046	<u>93</u>	<u>80</u>	<u>100</u>	<u>115</u>	<u>115</u>	<u>115</u>	
94 to 121	0.039 to 0.043	<u>66</u>	<u>65</u>	<u>65</u>	<u>80</u>	<u>80</u>	<u>80</u>	
61 to 93	0.036 to 0.042	<u>52</u>	<u>40</u>	<u>40</u>	<u>50</u>	<u>50</u>	<u>50</u>	
41 to 60	0.032 to 0.040	<u>38</u>	<u>25</u>	<u>25</u>	<u>40</u>	<u>40</u>	<u>40</u>	

a. These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

ASHRAE · 180 Technology Parkway · Peachtree Corners, GA 30092 · www.ashrae.org

About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on Linkedln, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous edition. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.