© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

ADDENDA

ASHRAE Addendum s to ASHRAE Guideline 36-2021

High-Performance Sequences of Operation for HVAC Systems

Approved by ASHRAE and the American National Standards Institute on February 29, 2024.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2024 ASHRAE ISSN 1041-2336

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

ASHRAE Standing Guideline Project Committee 36

ASHRAE Standing Guideline Project Committee 36 Cognizant TC: 1.4, Control Theory and Application SPLS Liaison: Jennifer A. Isenbeck

Xiaohui Zhou*, Chair	James J. Coogan	Bryan Lang*	Joseph M. Ruggiero*
Christopher R. Amundson	Clark R. Denson	Kevin Li*	John R. Rundell
Jeffrey G. Boldt*	Brent R. Eubanks*	Christopher McGowan	Brian W. Russell
Ian Bonadeo	Richard A. Farmer	Mark F. Miller	Steven C. Sill
JoeDon Breda*	Michael Galler*	Kevin Ng	Jonathan Smith
Barry B. Bridges	Ken Gilbert	Aaron Opatz*	Ryan Soo*
Ronald Bristol*	Christopher S. Gosline	Gwelen Paliaga*	Raf Sowacki
Lance Brown*	Siddharth Goyal	Chirag D. Parikh*	Henry F. Stehmeyer, IV*
Anthony Bruno	Milica Grahovac	James Parker	Steven T. Taylor
Jayson F. Bursill*	David W. Guelfo	Michael A. Pouchak*	Meziane Touati
Cynthia A. Callaway*	Kyle W. Hasenkox	David J. Pritchard	Daniel W. Tyson
Yan Chen*	Reece Kiriu*	Paul Raftery*	Chariti A. Young*
C. Hwakong Cheng	Eric Koeppel*	Eric Rehn	Bei Zhang
Gregory Cmar*	Jean-Francois Landry	Michael J. Reimer*	

^{*} Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2023–2024

Jonathan Humble, <i>Chair</i>	Phillip A. Johnson	Kenneth A. Monroe	Christopher J. Seeton
Douglas D. Fick, Vice-Chair	Gerald J. Kettler	Daniel H. Nall	Paolo M. Tronville
Kelley P. Cramm	Jay A. Kohler	Philip J. Naughton	Douglas Tucker
Abdel K. Darwich	Paul A. Lindahl, Jr.	Kathleen Owen	William F. Walter
Drake H. Erbe	James D. Lutz	Gwelen Paliaga	Susanna S. Hanson, BOD ExO
Patricia Graef	Julie Majurin	Karl L. Peterman	Ashish Rakheja, CO
laad Hogeling	Lawrence C. Markel	lustin M. Prosser	

David Robin

Ryan Shanley, Senior Manager of Standards

Margaret M. Mathison

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. *Consensus* is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for

a. interpretation of the contents of this Standard,

Jennifer A. Isenbeck

- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this guideline. It is merely informative and does not contain requirements necessary for conformance to the guideline.)

FOREWORD

This addendum revises the trim and respond resets to direct the designer on how to set the default number of ignored requests for each application, rather than provide a fixed value that will not be appropriate for many applications.

Trim and respond setpoint reset logic is an energy efficiency strategy that aims to reduce energy use during periods of low demand while still ensuring responsiveness to meet loads during periods of higher demand. The responsiveness of the reset logic can be adjusted by changing the number of ignored requests (1). The reset will be more responsive to demand when the number of ignores is set to a low value and will provide more energy efficiency when the number of ignores is set to a higher value. In general, the number of ignores should be considered based on the size of the system and the total number of associated zones and systems that can generate requests. The original language set a default value of 2 for most resets, which was seldom changed in practice when applied to projects. For many larger systems, this may sacrifice energy efficiency opportunities with resetting setpoints.

Note: In this addendum, changes to the current guideline are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum s to Guideline 36-2021

(IP and SI Units)

Revise Section 5.1.14.3 as follows:

5.1.14.3. For each upstream system or plant setpoint being controlled by a T&R loop, define the following variables. Initial values are defined in system/plant sequences below. Values for trim, respond, time step, etc. shall be tuned to provide stable control. See Table 5.1.14.3.

Table 5.1.14.3 Trim & Respond Variables

Variable	Definition
Device	Associated device (e.g., fan, pump)
SP0	Initial setpoint
SPmin	Minimum setpoint
SPmax	Maximum setpoint
Td	Delay timer
T	Time step
I	Number of ignored requests
R	Number of requests from zones/systems
SPtrim	Trim amount

SPres	Respond amount (must be opposite in sign to SPtrim)
SPres-max	Maximum response per time interval (must be same sign as SPres)

Informative Note: The number of ignored requests (I) can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer. The number of ignored requests (I) should be set to zero for critical zones or air handlers.

Revise Section 5.16.1.2 as follows:

5.16.1.2. Static Pressure Set-Point Reset

a. Static pressure setpoint. Setpoint shall be reset using T&R logic (see Section 5.1.14) using the parameters shown in Table 5.16.1.2.

Table 5.16.1.2 Trim & Respond Variables

Variable	Value
Device	Supply fan
SP0	120 Pa (0.5 in. of water)
SPmin	25 Pa (0.1 in. of water)
SPmax	Max_DSP (see Section 3.2.1.1)
Td	10 minutes
T	2 minutes
Ι	2See note
R	Zone static pressure reset requests
SPtrim	-12 Pa (-0.05 in. of water)
SPres	15 Pa (+0.06 in. of water)
SPres-max	32 Pa (+0.13 in. of water)

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

Revise Section 5.16.2.2.b as follows:

b. During Occupied Mode and Setup Mode, setpoint shall be reset from Min_ClgSAT when the outdoor air temperature is OAT_Max and above, proportionally up to T-max when the outdoor air temperature is OAT Min and below.

1. T-max shall be reset using T&R logic (see Section 5.1.14) between Min_ClgSAT and Max_ClgSAT. The parameters shown in Table 5.16.2.2 are suggested as a starting place, but they will require adjustment during the commissioning/tuning phase.

The T&R reset parameters in Table 5.16.2.2 are suggested as a starting place; they will most likely require adjustment during the commissioning/tuning phase.

Table 5.16.2.2 Trim & Respond Variables

Variable	Value
Device	Supply fan
SP0	SPmax
SPmin	Min ClgSAT
SPmax	Max ClgSAT
Td	10 minutes
Т	2 minutes
I	2See note
R	Zone cooling SAT requests
SPtrim	+0.1°C (+0.2°F)
SPres	−0.2°C (−0.3°F)
SPres-max	−0.6°C (−1.0°F)

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

Revise Section 5.17.1.2 as follows:

5.17.1.2. Static Pressure Set-Point Reset

a. Static pressure setpoint. Setpoint shall be reset using T&R logic (see Section 5.1.14) using the parameters shown in Table 5.17.1.2.

Table 5.17.1.2 Trim & Respond Variables

Variable	Value
Device	Supply fan
SP0	120 Pa (0.5 in. of water)
SPmin	25 Pa (0.1 in. of water)
SPmax	Max_DSP (see Section 3.2.1.1)

Td	10 min
T	2 min
I	2See note
R	Zone hot-duct static pressure reset requests
SPtrim	-12 Pa (-0.05 in. of water)
SPres	15 Pa (+0.06 in. of water)
SPres-max	32 Pa (+0.13 in. of water)

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

Revise Section 5.17.2.2 as follows:

5.17.2.2. Supply Air Temperature Setpoint

a. During Occupied Mode, setpoint shall be reset using T&R logic (see Section 5.1.14) between 21°C (70°F) and Max_HtgSAT. See Section 3.1.5.1 for Max_HtgSAT.

The T&R reset parameters in Table 5.17.2.2 are suggested as a starting place; they will most likely require adjustment during the commissioning/tuning phase.

Table 5.17.2.2 Trim & Respond Variables

Variable	Value
Device	Heating Supply fan
SP0	SPmax
SPmin	21°C (70°F)
SPmax	Max HtgSAT
Td	10 minutes
T	2 minutes
I	2See note
R	Zone heating SAT requests
SPtrim	-0.2°C (-0.4°F)
SPres	+0.3°C (+0.6°F)
SPres-max	+0.8°C (+1.4°F)

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

Revise Section 5.20.5.2.c as follows:

c. CHW Plant Reset variable shall be reset using Trim & Respond logic with the following-parameters shown in Table 5.20.5.2:

Table 5.20.5.2 Trim & Respond Variables		
Variable	Value	
Device	Any CHW Pump Distribution	
	Loop	
SP_0	100%	
SP_{min}	0%	
SP_{max}	100%	
T_{d}	15 minutes	
T	5 minutes	
I	2 <u>See note</u>	
R	Cooling CHWST Reset Requests	
SP_{trim}	-2%	
SP_{res}	+3%	
SP _{res-max}	+7%	

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

Revise Section 5.20.5.4 as follows:

5.20.5.4.Coil Pumped Loops: Chilled water supply temperature setpoint, CHWSTsp, shall be reset using Trim & Respond logic with the <u>following parameters shown in Table 5.20.5.4</u>:

Table 5.20.5.4 Trim & Respond Variables		
Variable	Value	
Device	Any CHW Pump	
SP_0	CHWSTmin	
SP_{min}	CHWSTmin	
SP_{max}	<u>15.6°C (</u> 60°F)	
T_d	15 minutes	
T	5 minutes	
I	2 <u>See note</u>	
R	Cooling CHWST Reset Requests	
SP_{trim}	<u>+0.4°C (</u> +0.75°F)	
SPres	<u>-0.6°C (</u> -1°F)	

SP _{res-max}	<u>-1.4°C (</u> -2.5°F)	
Informative note	The number of ignored requests can be adjusted to	
balance responsiveness to demand (fewer ignores) vs energy efficiency		
(more ignores). The value that is set should be considered as a function		
of the total number of downstream zones or systems that can send		
requests. As a default, set the number of ignored requests to 10% of the		
total downstream zones or systems, rounded to the nearest integer.		

Revise Section 5.21.4 as follows:

5.21.4. Hot Water Supply Temperature Reset

5.21.4.1. Plant hot water supply temperature setpoint shall be reset using Trim & Respond logic with the following parameters shown in Table 5.21.4.1:

Table 5.21.4.1 Trim & Respond Variables	
Variable	Value
Device	Any HW Pump Distribution Loop
SP_0	SP _{max}
SP_{min}	32.2°C (90°F) for condensing and hybrid
	boiler plants; 68.3°C (155°F) for non-
	condensing plants
SP _{max}	HWSTmax
T_d	10 minutes
T	5 minutes
I	2See note
R	Hot-Water Reset Requests
SP _{trim}	<u>-1.1°C (-2°F)</u>
SP _{res}	<u>+1.7°C (</u> +3°F <u>)</u>
SP _{res-max}	<u>+3.9°C (</u> +7°F <u>)</u>

Informative note: The number of ignored requests can be adjusted to balance responsiveness to demand (fewer ignores) vs energy efficiency (more ignores). The value that is set should be considered as a function of the total number of downstream zones or systems that can send requests. As a default, set the number of ignored requests to 10% of the total downstream zones or systems, rounded to the nearest integer.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

ASHRAE · 180 Technology Parkway · Peachtree Corners, GA 30092 · www.ashrae.org

About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on Linkedln, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous version. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.