ERRATA SHEET FOR ANSI/ASHRAE STANDARD 158.1-2012 Methods of Testing Capacity of refrigerant Solenoid Valves

October 15, 2013

The corrections listed in this errata sheet apply to ANSI/ASHRAE Standard 158.1-2012. The first printing is identified on the outside back cover as "Product code: 86484 2/12".

Page Erratum

- **Figure 6-1 Water flow test system schematic.** Replace the current figure with the one shown below.
- 5 **Figure 7-1 Airflow test system schematic.** Replace the current figure with the one shown below.
- **Figure A-1 Example of a data sheet for water flow testing.** Replace the current figure with the one shown below.
- 9 Figure A-2 Example of a linear plot of incompressible flow data. Replace the current figure with the one shown below.
- 10 Figure A-3 Example of a data sheet for gas flow testing. Replace the current figure with the one shown below.
- Figure A-4 Example of a linear plot of acoustic ration versus compressible flow coefficient. Replace the current figure with the one shown below.

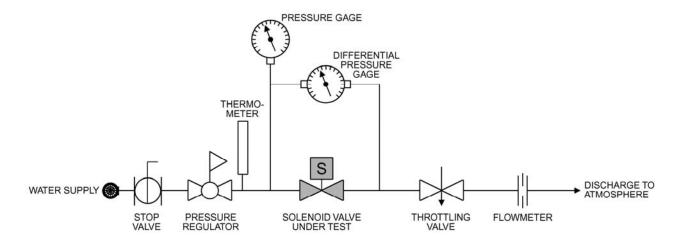


Figure 6-1 Water flow test system schematic.

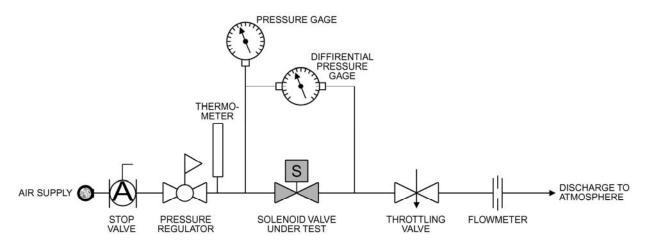


Figure 7-1 Airflow test system schematic.

VALVE	UNDER 7	Г Е ЅТ								
MANUFACTURER				Address						
MODELSIZE CONNECTIONS: TYPE						SER. NO.				
						IARKS				
Line No.	INLET CONDITIONS					FLOW				
	PRES.	ТЕМР.	ρ*	Δ P *	$(\rho \Delta P)^{1/2}$	RATE*	REMARKS			
1				2						
2				4						
3				6						
4				8						
5				10						
6				8						
7				6						
8				4						
9				2						

Figure A-1 Example of a data sheet for water flow testing.

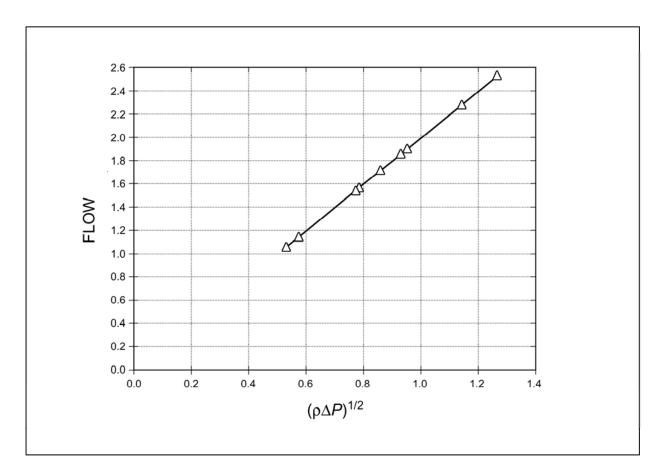


Figure A-2 Example of a linear plot of incompressible flow data.

SOLENOID VALVE AIRFLOW CAPACITY VALVE UNDER TEST ______ DATE ______ MANUFACTURER _____ ADDRESS ______ MODEL ____ SIZE ____ TYPE ____ SER. NO. ______

CONNECTIONS: Type______SIZE______REMARKS_____

	INLET CONDITIONS						FLOW RATE*			
Line No.	I	ТЕМР.	ρ*	Δ P *	$(\rho \Delta P)^{1/2}$	A_R	Increasing ΔP	Decreasing ΔP	C*	REMARKS
1	60			2						
2	60			3						
3	60			4						
4	60			5						
5	60			6		0.071				
6	60			12		0.143				
7	60			18		0.214				
8	60			24		0.286				
9	60			28.4		0.338				

DATA SHEET

OBSERVER

Figure A-3 Example of a data sheet for gas flow testing.

^{*}NOTE: Dimensions must be consistent and may be Inch-Pound (I-P) or Standard International Metric (SI). Flow rates are typically reported as pounds per minute (lb/min) in the I-P system and kilograms per second (kg/s) in the SI system of units.



Figure A-4 Example of a linear plot of acoustic ration versus compressible flow coefficient.