ERRATA SHEET FOR ANSI/ASHRAE STANDARD 62.2-2016 Ventilation and Acceptable Indoor Air Quality in Residential Buildings

September 20, 2018

The corrections listed in this errata sheet apply to all copies of ANSI/ASHRAE Standard 62.2-2016. The first printing is identified on the outside back cover as "Product code: 86198 3/16" and the second printing is identified as "Product code: 86198 5/16 *Includes all errata issued as of May 24, 2016*". The shaded items have been added since the previously published errata sheet dated March 9, 2018 was distributed. Items identified with an asterisk "*" apply only to the first printing and have already been incorporated into the second printing.

NOTICE: ASHRAE now has a list server for Standing Standards Project Committee 62.2 (SSPC 62.2). Interested parties can now subscribe and unsubscribe to the list server and be automatically notified via e-mail when activities and information related to the Standard is available. To sign up for the list server please visit **Project Committee List Servers** on the Standards and Guidelines section of the ASHRAE website at https://www.ashrae.org/technical-resources/standards-and-guidelines/project-committee-list-servers.

Page Erratum

Foreword Change the second the third sentences of the second paragraph of the Foreword as shown below. (*Note: Additions are shown in underline and deletions are shown in strikethrough.*)

> As in the previous editions of this standard, there are three primary sets of requirements and a number of secondary ones. The three primary sets involve wholebuilding dwelling-unit ventilation, local demand-controlled exhaust, and source control. Whole building Dwelling-unit ventilation is intended to dilute the unavoidable contaminant emissions from people, from materials, and from background processes.

4* 4.1.2 Infiltration Credit. Change reference 4 in Section 4.1.2a as shown below. (*Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)*

RESNET Mortgage Industry National Home Energy <u>Rating Systems Standard</u>⁴

- **9* 7.2.2 Demand-Controlled Local Exhaust Fans.** In Section 7.2.2 change "3 sone" to "3 sones" in two places.
- **9* 9 References.** Change reference number 1 in Section 9 to read as follows:

1. ANSI Z765-2003, Square Footage - Method for Calculating. National Association of Home Builders Research Center, Inc., Upper Marlboro, MD.

9 References. Revise reference number 18 in Section 9 as shown below. (*Note: Deletions are shown in strikethrough.*)

18. HVI 916-2013, Air Flow Test Procedure. Arlington-Home Ventilating Institute,

Arlington Heights, IL.

23 **Table B1 U.S. Climates.** In Table B1 change the Latitude for Weather Station Somerset (AWOS) from "38.00" to "37.05" as shown below. (*Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)*

724354 0.38 Somerset (AWOS) <u>37.05</u> <u>38.00</u> –84.60 Kentucky

24 **Table B1 U.S. Climates.** In Table B1 change Weather Station name from "Worchester Regional Arpt." to "Worcester Regional Arpt." for Massachusetts. See below. (*Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)*

725095 0.59 Worchester Worcester Regional Arpt 42.27 –71.88 Massachusetts

31 C2.2.2 Smaller Time Step Method. Change the last sentence in the second paragraph of Section C2.2.2 and Equations C1 and C2 to read as shown below. [...]

Alternatively, if ELA is calculated using Section 4.1.2, n is assumed to be 0.65, and C is calculated using Equation C1 or C2:

$C = 7400 \times \text{ELA}$	(I-P) (C1)
$C = 1050 \times \text{ELA}$	(SI) (C2)

where C = envelope leakage coefficient, cfm/in. of water^{*n*} (L/s/Pa^{*n*}) ELA = effective leakage area, ft² (m²)

41 **C2.2.1 Annual Average Method.** Revise Section C2.2.1 as shown below. (*Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough.</u>)*

C2.2.1 Annual Average Method. To calculate $Q_{inf,i}$, divide use the result from Equation 4.5, Section 4.1.2 Q_{inf} by the number of time steps in a year.