December 11, 2023

The corrections listed in this errata sheet apply to all copies of ANSI/ASHRAE Standard 90.4-2022. The first printing is identified on the outside back cover as "Product code: 86237 2/23". Shaded items have been added since the previously published errata sheet dated September 14, 2023 was distributed.

Page Erratum

29 Table B-3 ASHRAE Standard 90.4 Compliance Checklist: Section 8, "Power". In Table B-3, Section 8.4.1, change 2% to 3% as shown below.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)
8.4.1 Electrical systems serving mechanical systems have pathway losses not exceeding $3 \% 2 \%$.

47 Chart C-1 Calculation of UPS Segment of ELC

(Example Based on Modular UPS with N +1 Redundancy Designed at 80% Normal Loading) Revise the equations in the columns shown below. Changes are highlighted in yellow.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)

UPS Total Capacity, $\mathbf{k W}^{\mathbf{2}}$
550 g
f
$f=d+e$

Chart 2 Calculation of UPS-to-PDU Feeder Segment of ELC-Step \#1

Revise the equations in the columns shown below. Changes highlighted in yellow.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)

\% Design Load	UPS Output, $\mathbf{k V A}^{9,12}$	PDU Quant. ${ }^{10}$	PDU Size, kVA ${ }^{12}$	PDU Actual, kVA ${ }^{10,12}$	PDU Input, V
100\%	444.44	4	150	111.11	480
75\%	333.33	4	150	83.33	480
50\% -	222.22	4	150	55.56	480
25\%	111.11	4	150	27.78	480
a	b	c	d	e	f
$a=1$	$\underline{b=1} \underline{u}$			$e=b / c$	$f=1$ ik

Standard 90.4-2022 Errata

48 Chart 4 Calculation of Branch Circuit Portion of Distribution Segment of ELC - Step \# 3

Revise the equations in the columns shown below. Changes highlighted in yellow.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)

Loss and Efficiency of Worst Case Branch Circuit from PDU Branch Breakers to Cabinets																
\%																
Design Load,	Distrib. Volts,	Breaker Rating,	Max. Current,	Current @ Load $\%$,	Per Cond. Power,	No. Cond.	Total Power	Wire Size,	Wire Length,	$\begin{aligned} & \text { Ohms/ } \\ & \text { 1000', } \end{aligned}$	Wire Resist.,	$\mathbf{I}^{2} \mathbf{R}$	$I^{2} r$ Loss Per Cond.,	Total Loss,	Power Loss,	Segment Effic.,
\%	1Ph	A	- A^{18}	A	VA^{12}		VA ${ }^{12}$	AWG 19	ft	$\begin{array}{r} 75^{\circ} \mathrm{C} \\ 12 \end{array}$	ohms	Amps ${ }^{2}$	VA ${ }^{12,13}$	VA ${ }^{12,13}$	3 \%	\% 20
100\%	208	30	24	24	28822496	2	$\begin{aligned} & 5764 \\ & 4994 \\ & \hline \end{aligned}$	\#10	50	1.21	0.0605	576.00	34.85	69.70	1.24 1.40\%	$\begin{aligned} & \hline 98.79 . \\ & \underline{98.60 \%} \end{aligned}$
75\%	208	30	24	18	$2162 \underline{1872}$	2	$\begin{aligned} & 4323 \\ & \underline{3744} \\ & \hline \end{aligned}$	\#10	50	1.21	0.0605	324.00	19.60	39.20	$0.941 .05 \%$	$\begin{aligned} & 99.09 . \\ & \underline{98.95 \%} \end{aligned}$
50\%	208	30	24	12	1441-1248	2	$\begin{aligned} & 2882 \\ & \underline{2496} \\ & \hline \end{aligned}$	\#10	50	1.21	0.0605	144.00	8.71	17.42	0.60 0.70\%	$\begin{aligned} & 99.40- \\ & \underline{99.30 \%} \end{aligned}$
25\%	208	30	24	6	$721 \underline{624}$	2	$\begin{aligned} & 1441 \\ & 1248 \\ & \hline \end{aligned}$	\#10	50	1.21	0.0605	36.00	2.18	4.36	0.30 0.35\%	$\begin{aligned} & 99.70 \text {. } \\ & \underline{99.65 \%} \end{aligned}$
\underline{a}	b	c	d	e	f	g	\boldsymbol{h}	i	j	\boldsymbol{k}	l	\boldsymbol{m}	n	o	q	r
$\begin{aligned} & b= \\ & 3 \text { 3 } d \end{aligned}$			$\begin{aligned} & d=c \times \\ & 80 \% \end{aligned}$	$e=a \times d$	$\begin{aligned} & f=b \times e / \sqrt{3} \\ & f=b \times e / 2 \end{aligned}$	$h=f \times g$					$\begin{aligned} & l=k / 1000 \\ & \times j \end{aligned}$	$m=e \quad n=m \times l$		$\begin{aligned} & o=g \times \\ & n \end{aligned}$	$\begin{aligned} & q=o / h \times \\ & 100 \% \end{aligned}$	$\begin{aligned} & r=100 \%- \\ & q \end{aligned}$

49 Chart 5 ELC Calculation of Distribution Segment of ELC- Step 4
Revise the equations in the columns shown below. Changes highlighted in yellow.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)
Combined UPS, PDU, and Branch Ckt. Efficiencies for Distribution Segment of ELC

49 Chart 6 ELC Calculation Based on Losses
Revise the equations in the columns shown below. Changes highlighted in yellow.
(Note: Additions are shown in underline and deletions are shown in strikethrough.)

