ERRATA SHEET FOR ANSI/ASHRAE STANDARD 90.4-2022 Energy Standard for Data Centers

September 14, 2023

The corrections listed in this errata sheet apply to all copies of ANSI/ASHRAE Standard 90.4-2022. The first printing is identified on the outside back cover as "Product code: 86237 2/23".

Page Erratum

47 Chart C-1 Calculation of UPS Segment of ELC

(Example Based on Modular UPS with N+1 Redundancy Designed at 80% Normal Loading)

Revise the equations in the columns shown below. Changes are highlighted in yellow. (Note: Additions are shown in underline and deletions are shown in strikethrough.)

UPS	
Total	
Capacity,	
kW^2	
550 <mark>g</mark>	
f	
f = d + e	-

47 Chart 2 Calculation of UPS-to-PDU Feeder Segment of ELC-Step #1

Revise the equations in the columns shown below. Changes highlighted in yellow. (*Note: Additions are shown in underline and deletions are shown in strikethrough.*)

% Design Load	UPS Output, kVA 9, 12	PDU Quant. ¹⁰	PDU Size, kVA ¹²	PDU Actual, kVA ^{10, 12}	PDU Input, V
100%	444.44	4	150	111.11	480
75% -	333.33	4	150	83.33	480
50%	222.22	4	150	55.56	480
25%	111.11	4	150	27.78	480
а	b	С	d	е	f
a= 11	$\frac{b}{b} = 1u$			e = b/c	$f = 0_{\underline{j}} \underline{k}$

Chart 4 Calculation of Branch Circuit Portion of Distribution Segment of ELC – Step # 3

Revise the equations in the columns shown below. Changes highlighted in yellow.

(Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)

	Loss an	d Efficie	ency of Wo	rst Case Br	anch Circuit	from PI	DU Branch	Break	ers to Cab	oinets						
%																
Design	Distrib.	Breaker	Max.	Current	Per Cond.	No.	Total	Wire	Wire	Ohms/	Wire		I ² r Loss	Total	Power	Segment
Load,	Volts,	Rating,	Current,	@ Load %,	Power,	Cond.	Power,	Size,	Length,	1000',	Resist.,	I ² R,	Per Cond.,	Loss,	Loss,	Effic.,
%	1Ph	A	A 18	A	VA 12		VA 12 AW	G^{19}	ft	75°C	ohms	Amns	$v_{\rm VA}$ 12, 1	3_{VA} 12,	13 %	_% 20
, ,										12		rimps	V 1 L	V 1.	70	70
100%	208	30	24	24	2882 <u>2496</u>	2	5764	#10	50	1.21	0.0605	576.00	34.85	69.70	1.21 <u>1.40</u> %	<mark>98.79</mark> _
							<u>4994</u>									98.60 %
75%	208	30	24	18	2162 <u>1872</u>	2	4323	#10	50	1.21	0.0605	324.00	19.60	39.20	0.91 - <u>1.05</u> %	<mark>99.09</mark>
							<u>3744</u>									98.95%
50%	208	30	24	12	1441 <u>1248</u>	2	2882	#10	50	1.21	0.0605	144.00	8.71	17.42	0.60 <u>0.70</u> %	99.40
							<u>2496</u>									99.30%
25%	208	30	24	6	721- 624	2	1441	#10	50	1.21	0.0605	36.00	2.18	4.36	0.30	<mark>99.70</mark> _
							<u>1248</u>									<mark>99.65%</mark>
ı	b	\boldsymbol{c}	d	e	f	\boldsymbol{g}	h	i	j	k	l	m	n	0	\boldsymbol{q}	r
_	<i>b</i> =		$d = c \times$	$e = a \times d$	$f = b \times e/\sqrt{3}$		$h = f \times g$				l = k/1000	m = e	$n = m \times l$	$o = g \times$	$q = o/h \times$	r = 100% –
	3d		80%		$f = b \times e/2$						$\times j$	2		n	100%	q

Standard 90.4-2022 Errata

49 Chart 5 ELC Calculation of Distribution Segment of ELC- Step 4

Revise the equations in the columns shown below. Changes highlighted in yellow.

(Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)

Combined UPS, PDU, and Branch Ckt. Efficiencies for Distribution Segment of ELC

% Design	Load, PDU		Branch Circuit,	Combined Efficienc	ies,	Distrib. Segment
	Feeder,	PDU,			Loss,	
%	% 14 _	% 17	o _{/o} 20	o _{/o} 21	% 22	of ELC ²³
100%	99.41%	97.50%	98.79 <u>98.60%</u>	95.75 <u>95.57%</u>	4.25 <u>4.43%</u>	0.042 <u>0.044</u>
75%	99.56%	97.80%	99.09 - <u>98.95%</u>	96.49 <u>96.35%</u>	3.51 <u>3.65%</u>	0.035 <u>0.037</u>
50%	99.71%	98.00%	99.40 - <u>99.30%</u>	97.12 <u>97.03%</u>	2.88 2.97%	0.029 <u>0.030</u>
25%	99.85%	98.40%	99.70 - <u>99.65%</u>	97.96	2.04 <u>2.09%</u>	0.020 <u>0.021</u>
a	b	c	d	e	f	\boldsymbol{g}
	b = 2 r	c = 3r	d = 4 r	$e = b \times c \times d$	f = 100% - e	g = f

49 Chart 6 ELC Calculation Based on Losses

Revise the equations in the columns shown below. Changes highlighted in yellow.

(Note: Additions are shown in <u>underline</u> and deletions are shown in <u>strikethrough</u>.)

% Design Load, %	UPS Segment ⁷	ITE Distrib. Segment ²³	ELC ²⁴	ELC Standard Values ²⁵	Diff. from Standard	Pass or Fail
100%	0.042	0.042 <u>0.044</u>	0.085 <u>0.086</u>	0.110	<u>0.025</u> <u>0.024</u>	Pass
75%	0.044	0.035 <u>0.037</u>	0.079 <u>0.080</u>	0.098	0.019 <u>0.018</u>	Pass
50%	0.042 $^{-}$	0.029 <u>0</u>.030	0.070 <u>0.071</u>	0.094	0.024 <u>0.023</u>	Pass
25%	0.065	<u>0.020</u> <u>0.021</u>	0.085 <u>0.086</u>	0.093	<u>0.008</u> <u>0.007</u>	Pass
a	b	С	d	e	f	g
	<i>b</i> = 1 <u>t</u> q	c = 6 g.i	$\frac{d = b + c}{d = a + b + c}$		f = e - d	<u>f≥0</u> g-≧f